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Design and Experimental Validation of an
Odometric and Goniometric Localization

System for Outdoor Robot Vehicles
Philippe Bonnifait and Gäetan Garcia

Abstract—A two-dimensional (2-D) mobile robot localization
system which uses odometry and the azimuth angles of known
landmarks is presented. Observability analysis helps to determine
situations where such a system may undergo difficulties, and gives
information on its behavior when one of the beacons is hidden.
Experimental results are presented.

Index Terms—Dynamic localization, Kalman filtering, multi-
sensor integration, nonlinear observability, optical triangulation
system, outdoor mobile robot.

I. INTRODUCTION

REAL-TIME localization is a fundamental requirement of
autonomous mobile robots. In this paper, we present

a localization system which is intended for later use in the
context of computer-integrated road construction (CIRC).

Today, dedicated CAD systems are used extensively to
define precisely the various layers that constitute the pavement,
with respect to an absolute reference frame. For lack of a
convenient localization system for the machines, a keystone
to automation, the CAD data cannot be directly fed to the
machines for controlling their paths and tools.

Localization can be broadly separated into two distinct
approaches: dead reckoning and absolute reckoning. Starting
from a known position and orientation and by integrating ele-
mentary displacements, dead reckoning continuously provides
location data with no delay and without any knowledge of
the environment. Nevertheless, it generally requires an initial
absolute estimated location. Moreover, the integration of the
noisy displacements causes boundless drift of the estimation.
Absolute localization refers to navigation with respect to a
coordinate frame based on the environment. A popular solution
belonging to this category is GPS. The recent advances in
differential GPS seem to provide enough accuracy for a
significant number of applications [1]. Nevertheless, when
some satellites are obscured by trees, mountains, bridges or
buildings for instance, the precision can decrease so much
that another localization system has to be used. Considering
the current state-of-the-art of technology [2], it is clear that, in
the case of our application, we must turn ourselves to optical
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systems using active beacons in order to achieve the precision
we are looking for (a few centimeters in position).

Absolute and relative localization are complementary. Gen-
erally, absolute systems do not provide localization data at
a high frequency, whereas relative systems can. Moreover,
if an absolute system does not detect enough landmarks
for its localization process, relative techniques can calculate
estimates during limited periods of time. Finally, combinations
of the two approaches can yield very accurate positioning
systems. Our approach falls into this type. We use an optical
triangulation system which measures azimuth angles of known
beacons to correct odometric estimations. The most common
formalism used to associate these two kinds of systems is the
Kalman filter, as exemplified by the localization systems of
[1], [3]–[5].

The paper is organized as follows. Section II is devoted to
the presentation of the triangulation sensor. The localization al-
gorithm [which will be called multisensor localization system
(MLS)] and its Kalman formalism are presented in Section III.
Section IV is devoted to the study of the observability of the
posture of the robot depending on the number of beacons that
can be detected and on the movement of the vehicle. Finally,
Section V reports the results of real outdoor experiments that
show that our system reaches a precision of a few centimeters
on large evolution fields. Our tests have been performed by
moving along paths, not just checking endpoints in a static
posture, as is often done.

The main contributions of the paper lie in the study of the
observability of the nonlinear system and in the implementa-
tion and validation of the MLS in real time.

II. THE OPTICAL SENSOR AND ITS SETUP ON A VEHICLE

The artificial beacons we use are battery-powered twin light
sources which are switched on and off using an HF link in
order to decrease energy consumption. The sensor is a linear
CCD camera which rotates with a constant speed (1 rad/s)
around an axis fixed to the vehicle. Hence, the landmarks are
detected one at a time and intermittently. The rotation axis
passes through the optical center (Fig. 1). The azimuth angles
(denoted ) are measured with respect to the heading by an
optical encoder. The accuracy of this measurement depends
on the scanning frequency of the camera and on the rotation
speed. The low speed we have chosen provides accurate angles
(the standard deviation of an azimuth angle is 2.2 rad).

1042–296X/98$10.00 1998 IEEE
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Fig. 1. (a) Side view and (b) top view of the azimuth sensor.

Fig. 2. Model of the vehicle.

The sensor is also able to measure simultaneously an
elevation angle (see Fig. 1). This angle is not used here, but has
previously been used for deterministic 3-D posture calculation.

A particular problem of this kind of sensor is that it provides
asynchronous measurements. Asynchronous means that the
time of the detection of a beacon cannot be known beforehand,
since the angular interval between two beacons depends on the
position and movement of the mobile.

There is no constraint on the position of the camera with
respect to the odometric reference point. It means that the
projections on the plane of the middle of the wheel base
(denoted and of the rotation axis of the camera can be
different (Fig. 2). This is essential in practice, since the sensor
may not fit above point on a given machine.

The rotation between frames and can be set to null
by an appropriate calibration procedure, so that the transform
between the two frames reduces to a translation vector (a, b).

III. T HE MLS ALGORITHM

The algorithm presented below relies on an odometric
prediction of the posture between the time instants of the
readings of two azimuth angles, and uses these angles to
update the posture. This multisensor approach takes advantage
of sensor redundancy and complementarity [3], [5].

A. Evolution Model for Point

In order to take into account the translation between frames
and (see Fig. 2), we need to express the evolution

of frame as a function of the elementary rotations of the
wheels, and between time instants and
provided by the optical encoders attached to the wheels

(1)

Let and denote the radii of the wheels, which can be a
bit different from one another for tire wheels. The wheel base

represents the distance between the middle of the two tires.
First, we can compute the distance traveled by point
and the elementary rotation of and

(2)

Let the vector represent the posture of
By considering the path as circular between time indexesand

and by taking into account the translation, we obtain [7 ]

(3)

Using (2), this system can be rewritten as

(4)

The plant model we obtain is a good approximation of
reality when and are small, which requires that the
sampling period be adapted to the linear and angular velocities
of the vehicle.

B. State-Space Description

The observations are the azimuth anglesof the landmarks
the coordinates of which are denoted The

observation equation isscalar, but nonstationary since it
depends on the coordinates of the landmark detected.

Suppose this measurement occurs at time instantFig. 2
yields

(5)

Equations (1), (4), and (5) are actually corrupted by noises
which are supposed to be zero-mean, independent and white.
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The system obtained is nonlinear and its state-space descrip-
tion is

(6)

is the model noise, which represents the effects of
slippage or skid on the ground plus the effects of errors on
robot parameters such as and and are white
noises due to measurement errors. The covariance matrices of
these noises are denoted by and

One can notice that the state-space description has two time
indexes and The last one indicates that the goniometric
measurements are done asynchronously and intermittently.

In practice, the state vector also contains the radii of the
rubber tire wheels, because they are subject to slow variations
over time. Simulations reported in [8] prove that the filter
is able to compensate for initial errors on the radii and to
track slow variations. This avoids the bias to which the output
location is subject when the radii are not identified.

C. Kalman Filtering Formulation

Because the system (6) is nonlinear, we use an extended
Kalman filter (EKF) to estimate the state The equations
are linearized thanks to the Taylor series theorem. This is
usually a good approximation, if the errors are small enough
and the non linearities are benign so that the higher order
terms can be neglected. There are few theoretical results to
indicate when such a design will be successful. La Scalaet
al. [9] derive sufficient conditions to ensure that the errors of
the EKF will remain bounded, but their results are established
for a linear observation equation. As the convergence of an
EKF cannot be demonstrated, we will propose in Section IV
to detect problematic situations thanks to the study of the
observability of the nonlinear system.

The MLS algorithm works in two steps: prediction and
filtering. In the sequel, represents the estimated at
time index using all the information available at time

1) Step 1—Prediction:Between two absolute readings, a
“high” frequency (20 Hz, as compared to the frequency of the
absolute readings 0.5 Hz) state and error prediction phase
occurs

(7)

Since the estimation error is supposed to be sufficiently
small and the random vectors and are clearly inde-
pendent, the covariance matrix of the estimation error is
given by

(8)

and are the Jacobian matrices of with respect to
and

2) Step 2—Filtering:The external measure, available at
time instant is taken into account at the next odometric
instant. This is acceptable because the change in robot posture
between two odometric instants (5 mm) is negligible with

respect to the desired precision. We use the Mahalanobis
distance in order to check if the measured angle corresponds to
a real beacon. Suppose that we know that beaconis supposed
to be detected. Then, the Mahalanobis distance is given by [7]

(9)

If is lower than a predefined threshold, the measure
and the prediction are considered as coherent, and we correct
the predicted state using expressions (10)–(12). Otherwise, no
correction is performed. In such a situation, it is impossible
to know whether the odometric estimate is wrong (slippage
etc.) or if the measure is erroneous (beacon reflection etc.).
The strategy we have chosen is: if the measures of the three
beacons become incoherent or if one beacon is incoherent for
more than three times, we consider that the MLS has to be
reinitialized and we stop the robot

(10)

The Kalman gain vector and the covariance matrix are given
by

(11)

(12)

IV. SYSTEM OBSERVABILITY

The process of designing a localizer for a mobile vehicle,
especially when using both relative and absolute sensors, can
be seen as equivalent to designing a (generally nonlinear)
observer of the state of the vehicle. The study of system
observability allows us to determine situations in which any
observer may (or sometimes will) undergo problems [10]. In
practice, these situations are not always easy to determine
intuitively, and extensive simulation tests, defined more or less
randomly, may not detect these situations. The sensitivity of
the observer to obscured beacons is also investigated through
this observability analysis. Nevertheless, it does not give any
information about the accuracy of the observer.

It should be noted that, in this section, we use a continuous
model of our system, in order to be able to apply the standard
tools of nonlinear observability. Moreover, we consider a
robot where (Fig. 2). This hypothesis simplifies the
calculations.

A. Nonlinear Observability Concept

For nonlinear systems like the one of (13), the observability
of the state depends on the inputs, contrary to the linear case

(13)

This system is observable if, and only if, the state can be
expressed as a function of the observationthe input, and
their derivatives with respect to time:

(14)
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A sufficient condition allows one to conclude to the observ-
ability of a system, by computing the rank of an observability
nx(n.p) matrix [11]

(15)

1) is the gradient vector of with respect to the state
2) is the Lie derivative of with respect to

The sufficientcondition is:If rank , then the system
is observable.

Yet, if the rank of is not full, nonobservability is not
proved, contrary to the linear case.

B. Continuous System Modeling

The system we consider is composed of the robot, the
goniometric sensor and the beacons. Let be
the control vector, where are the linear and angular
velocities. We have

(16)

If we suppose that the azimuth angles of the three land-
marks arecontinuouslyavailable, we concatenate them in an
observation vector [see (5)]

(17)

Nevertheless, while the vehicle is moving, one or even two
landmarks can be hidden or too far from the sensor to be
detected. In such a case, the dimension of the output vector
decreases to a value which will be denoted

With one beacon ( 1), the observation is a scalar. The
observation matrix is square. After calculation, we find that
det( ) is always equal to zero, whatever the state and the
input. In this case, the system is generically nonobservable.

C. Analysis with Three Beacons

1) Observability without taking into account the inputs:In
this part, 3 which is the normal situation for our localizer.
In such a case, the determination of the stategiven the
three outputs involves inverting Let us consider a
sub-matrix of the observation matrix. does not depend on
the input

(18)

If det is not equal to zero, nor is det The curve
det 0 is the circle (called defined by the three
beacons.

The difficulty for this case can be interpreted geometrically.
A solution for determining the location of the mobile given
the outputs only, is to use the fact that two measures,and

constrain the robot to lie on a given circle defined by
beacons and and the angle The three circles
available intersect at the location of the robot. Here, the three
circles merge in and so cannot be determined by the
geometrical solution.

Since rank 3 anywhere except on we can conclude
that the system isobservableanywhere except,perhaps, on
Since outside observability does not depend on the input,
the system is said to beuniformly observable.

2) Study of the degenerate situation:By factoring and
in the Lie derivatives it is easy to prove that,

on the rank is at most 2, if the vehicle is motionless. Since
the rank condition is only sufficient, we cannot assert that the
system is not observable. This is what we call a “problematic
situation.” When observability cannot be proved, the behavior
of the observer shall be checked through simulations.

In Fig. 3(a) and (b), we compare the estimations of a filter
with no initial error, and the same one, running on the same
noisy measures, but with an erroneous initial estimate (with
position and heading errors). These simulations are performed
with Gaussian distribution errors.

Fig. 3(a) shows that, for a motionless vehicle on our
observer is not able to drive an initial estimation error to zero.
Yet, in all the simulations we performed, the estimation error
remained bounded.

Let us now consider the case when the robot moves on
We could calculate higher order derivatives ( and )
but the calculations become quickly intractable. Instead, we
choose to test our observer by simulating a mobile running on
this possibly difficult trajectory. The results of Fig. 3(b) show
that a filter with initial error converges quickly and its outputs
become identical to the outputs of a filter with no initial error
running on the same data. This kind of behavior indicates the
convergence of the filter.

D. Analysis with Two Beacons

In this part, we suppose that the sensor only detects two
landmarks. We have 2. Therefore, state observation cannot
be obtained using the outputs only. The evolution model and
the input are of crucial importance here.

If the vehicle is motionless, it is easy to show, as in
Section IV-C2, that the rank of is at most 2. Intuitively, with
two beacons and when the vehicle is motionless, it is clear that
the filter cannot estimate the three independent parameters.

In order to test the rank of we have computed the
determinants of the 20 sub-matrices of thanks to
the symbolic computation software “Maple” [10]. Finally, the
problematic situations obtained are when the robot is tracking
one of the lines of Fig. 4, whatever its linear speed.

We have verified with simulations that the MLS does not
converge on the perpendicular line of Fig. 4. We have
noticed that the estimate converges toward a line through
but different from the real one [10] (same for ).

In [12], Boley and Sutherland presented a localization
system which uses two azimuth angles. Their estimation
method is based on the use of “recursive total least squares”
and relies on the hypothesis that the robot tracks a straight line.



BONNIFAIT AND GARCIA: DESIGN AND EXPERIMENTAL VALIDATION OF AN ODOMETRIC AND GONIOMETRIC LOCALIZATION SYSTEM 545

(a)

(b)

Fig. 3. (a) Filter errors for a motionless vehicle on C and (b) for a vehicle
tracking an arc of C.

Fig. 4. Problematic situations with two beacons.

It turns out that their observer does not converge either on
and More generally as proved in [12], their least squares
problem does not yield a unique solution for any straight line
through or On the contrary, we have been able to
check symbolically that the states defined by other straight
lines through B1 or B2 satisfy the rank condition for nonzero
linear speeds. Convergence of the filter has been confirmed
by simulations.

In the case of a vehicle moving along the observations
do not depend on the state; the Lie derivatives are all equal to
zero. State observation is clearly impossible.

V. REAL OUTDOOR EXPERIMENTS

Real experiments have been run on an outdoor test-track
marked out with three beacons with a three-wheeled vehicle
(Fig. 5). Reference points have been located by surveyors, in
a local frame. White strings can be stretched out on the grass

(a)

(b)

Fig. 5. Experimental robot “Melody” and the white line.

to materialize straight lines or circles of known equations.
The principle of our experiments is to make the robot track
those reference paths using a CCD camera (see the schematic
representation of Fig. 5), and to compare the MLS estimation
results with reality.

Thanks to a real-time executive, periodic readings of the
encoders, computation of the asynchronous azimuth angles



546 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Fig. 6. Experimental path and lateral error.

from the CCD camera, on and off switching of the beacons,
and all the computations of the estimation process, are done in
real time. In the worst case (i.e., when a filtering phase occurs),
the MLS needs to compute 1364 floating point operations in 50
ms. This can be done in real-time with a standard 486-based
PC system.

A. Straight Line Experiment

In the first test, the robot tracks a straight line (speed
0.2 m/s) in a 40 m 30 m field. Before the robot moves,
the filter is initialized using a deterministic iterative method.
Alternatively, as suggested by Boley and Sutherland, we could
use the solution presented in [12], which allows to initialize
the filter “on the fly.”

One should keep in mind that the accuracy of the reference
marks and beacons positioning is about one centimeter. At the
end of the trajectory, the accuracy deterioration is due to the
fact that the beacons are all behind the vehicle, hence, in a
bad configuration (see Fig. 6). Additionally, they are distant
from the mobile ( 20–35 m), so that one is too far to be
detected. Finally, because the sensor is about 1.9 m above

Fig. 7. Lateral error and�2 standard deviations and repeatability.

the ground (see Fig. 5), one degree of roll angle generates a
three-centimeter lateral error (our test-track is a lawn and not
perfectly planar).

The MLS has a good behavior since the absolute errors
remain within two estimated standard deviations, as shown in
Fig. 7. By performing the same path several times, we have
checked that the repeatability of the lateral error is smaller
than one centimeter (Fig. 7).

Considering these results, it is clear that the lateral error is
not a purely random signal due to measurement noise only.
Most probably, it is largely due to the terrain generating the
same roll angle at each test. Except for the short transient
phase which corresponds to the effect of discrepancies between
initial positioning errors, the three curves fit in a narrow one-
centimeter wide region. One centimeter is probably closer to
the standard deviation of the real lateral error, but this requires
testing with a more appropriate set-up.

B. Circle Path

The second experiment corresponds to the circle of Fig. 8.
We here compute the signed error distance to the circle.

On Fig. 8, if we compare the error of the MLS during
the first and second lap, the same behavior appears. This
phenomenon, like the repeatability of the lateral error (Fig. 7),
is most probably a consequence of the ground and of the string
positioning. Notice that a filter which would not consider the
translation between and would have 30 cm errors.
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Fig. 8. Experimental path and signed distance to the circle.

C. Test on a Degenerate Situation

We have performed a test on the problematic situation with
three beacons (see Section IV-C2). We have put the camera
of the robot as close as possible to the circle defined by the
three beacons.

The robot is initially motionless. Using the first three
azimuth angles, the system computes its static localization.
The geometrical analysis of Section IV-C1 explains why the
static localization does not converge toward the real position.
Later determinations of the posture of the robot ( 0) are
performed by the MLS. On Fig. 9, we can see that, while the
robot is motionless, the filter is not able to correct the (large)
initial estimation error. But when the robot starts moving
( 30 s), the robot leaves the singular situation and the
filter converges. This behavior is perfectly consistent with the
observability analysis.

VI. CONCLUSION

In this paper, we have presented a MLS, based on odometry
and goniometry, which takes into account each goniometric
measurement individually and asynchronously.

Moreover, our solution puts no constraint on the physical
location of the goniometric sensor with respect to the vehicle.
Such restriction would not have been acceptable on real

Fig. 9. Lateral error, heading error, and estimated linear speed.

vehicles, especially civil-engineering machines, which are our
main area of application.

Although three beacons are necessary to localize a motion-
less vehicle, our system is able to work when the vehicle
detects only two beacons while moving, except on some
degenerate trajectories which have been determined thanks
to observability analysis. In practice, this is an interesting
feature of our solution since, for instance, another vehicle can
hide a landmark accidentally. Moreover, it helps to reduce the
number of beacons and hence the cost of the infrastructure.
As far as observability results are concerned, we think that,
as exemplified by Boley and Sutherland, the problematic
situations we highlighted are generic and deserve to be tested
for any system based on the same type of measurements.

Our paper also reports the results of real outdoor experi-
ments involving a tire-type mobile robot moving on a fairly
large nonplanar field. Even if the repeatability of our localizer
is roughly one centimeter, the current experimental setup does
not allow to assert the precision of our system, since the output
errors are in the order of the precision of landmark locations,
namely one centimeter. A special test track is necessary for
precision tests. Such a facility (called “SESSYL”) is available
by the LCPC (Laboratoire Central des Ponts et Chaussées),
the French institution in charge of research and development
in the field of road construction. SESSYL is a robotized head
with three degrees of freedom that moves along a calibrated
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rail. Benches will be performed on SESSYL in the framework
of our on-going cooperation with the LCPC.
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