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6 DOF dynamic localization of an outdoor mobile robot
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Abstract

A novel design of a three-dimensional localizer intended for outdoor mobile robots is presented. By integrating data from two
inclinometers and an odometer, the system provides high-frequency position and attitude data. The unavoidable dead-reckoning
location divergence is corrected by using the azimuth and elevation angles of known landmarks, provided by a rotating linear camera.
Even if these measurements are intermittent and are obtained at a low frequency and one at a time, simulations indicate that the
formalism proposed in this paper is able to reach an accuracy of a few centimeters on the elevation. Finally, real experiments
performed with an outdoor mobile robot are presented and analyzed. ( 1999 Elsevier Science ¸td. All rights reserved.
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1. Introduction

This paper presents a localization system which is
intended for later use in the context of computer-
integrated road construction (CIRC). However, the prin-
ciple of the method is of general relevance to robotics.

The peculiarity of civil-engineering tasks is that some
of them require the six degrees of freedom (DOF) of the
machine or of its tool to be determined, with high pre-
cision. For example, the finishing process (applying the
final layer of the road) requires a 0.1° precision on the roll
and pitch angles. For this same task, a 1 cm precision or
better is desired on the altitude. These are very tight
precision levels. On the other hand, the machines to
which the system should be applied are very slow, typi-
cally 0.1 m/s in the highest-precision task of the road
finishing process (Le Corre and Garcia, 1992). In such
a context, dynamics and accelerations are very small and,
thus, the use of inclinometers is attractive since they
directly provide attitude angles. Here, their comparat-
ively slow response does not degrade the estimation

process. In contrast, dead reckoning based on strap-
down-type inertial units is suited to more dynamic ap-
plications. Several variants of solutions based on
accelerometers and/or gyros can be found in the litera-
ture. For instance, six accelerometers alone (Chen et al.,
1994) or redundant gyros (Rintanen et al., 1994) allow the
computation of the angular and linear speeds. Mixed
solutions can take advantage of both systems (Barshan
and Durrant-Whyte, 1995; Vaganay et al., 1993).

Nevertheless, whatever the algorithmic solution, an
absolute position sensor is necessary to overcome long-
term drift, and to increase the reliability of the system.
Moreover, the integration of dead-reckoning data does
not allow a precise estimation of the elevation, which is
a crucial parameter in the application of interest here.
For these reasons, the inertial location is corrected using
the azimuth and elevation angles of known beacons, the
positions of which are accurately measured by surveyors.
The Kalman filter formulation detailed in the following
allows each goniometric measurement to be taken into
account individually and asynchronously.

The paper is organized as follows. The sensors are
described in Section 2. Section 3 is devoted to the 6 DOF
position and attitude representation. A new attitude rep-
resentation is proposed, which directly uses the para-
meters measured by the inclinometers. In Section 4, new
3D odometric equations are derived with two in-
clinometers, for a mobile moving on a non-planar
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Fig. 1. The robot and its sensors.

surface. Then, the Kalman filter formulation is described.
In Section 5, the proposed method is evaluated through
simulations. Finally, real experimental results are re-
ported and analyzed in Section 6.

2. Description of the sensors

Fig. 1 shows the experimental setup. The external
sensor is a linear CCD camera which rotates at a con-
stant speed (+1 rad/s) around an axis fixed to the ve-
hicle. Artificial beacons (battery-powered twin-light
sources) are placed in the environment at known loca-
tions. So, with three beacons, the camera detects, on
average, a landmark every 2 s. These beacons are auto-
matically switched on using a radio link, just before the
rotary sensor is going to detect them. Once the reading
has been taken, the light is switched off in order to
decrease energy consumption. Hence, the landmarks are
detected one at a time and intermittently. The maximum
range of the system (i.e. the distance between a beacon
and the sensor) is 40 m.

The azimuth angles (denoted j) are measured with
respect to the heading by an optical encoder. Simulta-
neously, the sensor measures the elevation angle (p) be-
tween the camera’s optic axis and the line that passes
through the optical center and the beacon (cf. Fig. 1).
Several existing systems rely on azimuth and elevation
angles. For instance, in Tsumura et al. (1993), the localiz-
er is made up of two laser scanners. Each one rotates
a fan-shaped laser beam for detecting corner cubes, and
measures azimuth and elevation angles. The system of
Horn and Schmidt (1995) provides the same angles plus
the distance between the sensor and the beacon, by using
a camera and a 3D laser.

The goniometric sensor has already been used success-
fully in 2D applications (Bonnifait and Garcia, 1996).
Several tests performed in sunny weather conditions have
proved the reliability of the system. It has also proved
able to provide accurate 6 DOF data when used as
a stand-alone sensor by deterministic algorithms, in
static situations (Le Corre and Garcia, 1992). When the
vehicle is moving, the measurements to the beacons do
not correspond to the same positions. This problem can
be solved by adding on-board sensors that allow a dead-
reckoning localization to be computed. In other words,
these additional sensors enable the movement of the
vehicle between two external measurements to be esti-
mated. Moreover, this approach improves the precision
and robustness of the positioning system. For these rea-
sons, the work described here uses two inclinometers and
encoders mounted on two wheels of the robot (see Fig. 1).
The pendulous inclinometers directly measure attitude
angles of the mobile robot with respect to the gravity of
the earth with a precision better than 0.1°, when the
vehicle is motionless. The odometer provides the linear
and angular speeds of the vehicle.

The multisensor integration presented in this paper is
realized by an extended Kalman filter (EKF). This es-
timation method is very appropriate here because the
noise, the redundancy and the complementarity of the
sensors are naturally taken into account.

3. Choice of the state vector

In general, six independent variables are required to
describe the posture (position and attitude) of a solid.
Usually, position is given by the Cartesian coordinates,
but as regards the attitude, many representations can be
used. For instance, rotation matrices are given by roll-
pitch-yaw angles (Fuke and Krotkov, 1996; Tsumura et al.,
1993) or Euler angles (Barshan and Durrant-Whyte,
1995). These transformations have singularities but need
only three parameters. On the other hand, quaternions
(Rintanen et al., 1994; Vaganay et al., 1993) provide
non-singular representations, but with four parameters.

A new attitude representation is presented here. This
‘‘geometrical’’ parameterization is defined by the direc-
tion angle t, the gradient dc and the orthogonal cross-fall
dv (see Fig. 2) which are directly measured by the in-
clinometers. Eq. (1)—(6) give the attitude matrix as a func-
tion of t, dc and dv:

0As"C
cos(t) cos (dc) n

x
a
x

sin (t) cos (dc) n
y

a
y

sin (dc) !sin (dv) s D (1)

where

s"Jcos (dc)2!sin (dv)2 (2)
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Fig. 2. Choice of the six independent parameters.

Fig. 3. Elementary motion in the plane defined by the last estimated
position and the inclinometers.

One can notice that the gradient and the cross-fall are
not defined for $n/2. These situations never occur in
realistic situations. Moreover, since Ddc D#Ddc D(n/2, s is
always defined.
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The relations between (t, dc, dv) and the ‘yaw-pitch-
roll’ angles (in this order) are given by:

t"yaw

dc"!pitch

sin (dv)"!sin (roll) ) cos (pitch) (7)

As the Cartesian position is used, the state vector to be
estimated is:

X"[x y z t dc dv]T (8)

4. Recursive 6 DOF estimation

The recursive state estimator is based on an EKF
formulation. The odometric measured speeds are seen as
the control input to the mobile and, therefore, appear in
the prediction phase (20 Hz). As presented in a 2D case
(Bonnifait and Garcia, 1996), the prediction error is
computed using a linearized method. A synchronized
estimation phase is performed with the inclinometer
data, whereas a second intermittent correction phase
(+0.5 Hz) is done using the azimuth and elevation

angles of a beacon. On average, this correction phase
occurs every 40 prediction-estimation phases.

4.1. Odometry on a non-planar surface with two
inclinometers

When moving on a non-planar surface, the posture of
a mobile changes in three dimensions.

If the equation of the surface is known, Kim et al.
(1996) describe a dead-reckoning method for a two-
wheeled robot with two encoders. Except in particular
applications, curved surfaces are unknown and this tech-
nique is not applicable. Fuke and Krotkov (1996) use
encoders to calculate the velocity. By an EKF, they
combine three gyros and three accelerometer signals and
determine the attitude. Then, they incrementally update
the position.

The approach presented below uses only four sensors:
two encoders and two tilt sensors.

4.1.1. Principle
Let R

S
be the robot frame to be localized. Suppose X

i
,

the state vector at time i, is known. The goal is to
compute X

i`1
, knowing U

i
"[*

i
, u

i
]T, the elementary

translation and rotation measured by the odometer be-
tween times i and i#1, and (a

i
, b

i
) the measurements of

the two inclinometers at time i.
Consider an auxiliary frame, denoted Rn , such that

(R
s
)
i
"(Rn)i. At time i, the origin X of Rn is equal to point

S, the origin of R
s
. While the robot moves between time

indexes i and i#1, the frame Rn remains motionless:

(0An)i"(0A
S
)
i
"[0sn 0nn 0an]i (9)

where 0An represents the rotation matrix between frames
Rn and R

0
(Fig. 3). The elementary movement of the

robot is done on the plane defined by (), a6 ).
So, the problem is to determine the elementary vari-

ation of the state sub-vector Y"[x, y, z, t]t. The new
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values of dc and dv are directly given by the inclinometer
measurements (a, b).

in R
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In other words, the aim is to compute now the elemen-
tary rotation and translation in R

0

dRo i"0[0 0 dt
i
]T (11)

dTo i"0[dx
i

dy
i

dy
i
]T. (12)

In order to simplify the equations, the subscripts ‘i’ will
be omitted in the equations that follow.

4.1.2. Elementary translation (dx, dy, dz) in R
0

Knowing U, dTo can be expressed in Rn. The robot is
supposed to perform first a translation of length * and
then a rotation of angle u. This evolution model is
a simplification of the classical one presented in (Bon-
nifait and Garcia, 1996)

ndT"[* 0 0]T. (13)

In R
0
, the coordinates of this vector are

0dT"[dx dy dz]T"0Ann dT (14)

After computation

dx"* cos(a) cos(t) (15)

dy"* cos(a) sin(t) (16)

dz"* sin(a) . (17)

4.1.3. Elementary rotation dt in R
0

The rotation vector dRo in the frame Rn is obtained
from the elementary rotation u measured in the rolling
plane owing to the encoders

nR"[0 0 u]t . (18)

Hence, in R
0
,

0dR"0Ann dR . (19)

The third component of 0dRo is the projection of dRo on
the z

0
axis of R

0
and is the variation on t: After computa-

tion

dt"uJcos(a)2!sin(b)2 (20)

4.2. Prediction phase with odometry

The plant model for the state is adapted from equa-
tions (10), (15)—(17) and (20), but the evolution model for
dc and dv is a constant. The evolution is allowed thanks
to the model noise [a

dc
, a

dv
]T. If the variance of this noise

becomes small, the overall effect of the EKF for dc and dv

is similar to a ‘low-pass’ filter applied to their measure-
ments. This can be of great use, in real situations, to filter
the vibrations induced by the engine.

The plant model is then
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8MXi#1"F(Xi , Ui)#ax . (22)

Since the noise on the encoders (the variance of which
is denoted Q

U
) is clearly independent of the state, the

predicted variance of X can be computed by a classical
Taylor expansion (Bonnifait and Garcia, 1996)

P
i`1@i

"A
LF

LXBP
i@iA

LF

LXB
T

X0 i@i

#A
LF

LUBQ
UA

LF

LUB
T

Ui`1

#Qa
(23)

4.3. Estimation phase with the inclinometers

In this section, the classical Kalman filtering formula-
tion, presented by Chen et al. (1994), is applied, with the
observation equation given by:

A
a
i

b
i
B"C

0 0 0 0 1 0

0 0 0 0 0 1DXi"CXi (24)

Knowing the variance Q
*/#

of the inclinometers, the
Kalman gain is computed

K"Pi#1/iC
¹(CPi#1/iC

¹

#Qinc)~1 . (25)

The updated estimate and its associated estimated
covariance matrix are then given by:
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4.4. Correction phase with the exteroceptive sensor

At time j, when an asynchronous optical measure oc-
curs, the predicted sub-vector [x, y, z, t]t is corrected.
Thanks to this step, estimation errors on these para-
meters do not drift. In order to express the relations
between the measurement angles (j, p) and the state X,
the position of the beacon in the frame R

S
of the ex-

teroceptive sensor has to be determined.
In R

0
, the known homogeneous position of the beacon

is defined by:

0P
B
"[0x

B
0y

B
0z

B
1]T (28)
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Fig. 4. Projection of the real path.

Let 0T
S

denote the homogeneous transformation
matrix of the sensor frame relative to R

0
.
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In R
S
, Eq. (28) becomes
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After calculation, using Eqs. (1), (29) and (30)
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Finally, the two observation equations (see Fig. 1) are
given by
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The subscript b of function G
b
means that these equa-

tions depend on the landmark that has been detected.
Thus, the observation equation is, in this phase, non-
stationary.

The Kalman filter formulation is identical to the one
shown in Section 4.3. Instead of (a, b), (j, p) are used; C is
replaced by the Jacobian matrix (LG

b
/X) because the

observation equation is not linear. Moreover, Q
*/#

is
replaced by Q

s
which represents the goniometric errors.

4.5. Overview of the algorithm

The dynamic localization method is described by the
following algorithm:

Begin

Static localization, filter initialization
Do

U"read odometric data
(X, P)"prediction phase (X, P, º)
I"read inclinometers data
(X, P)"estimation phase (X, P, I)
if (external measure ") do
D (X, P)"correction phase (X, P, ")
End if.

End loop at the frequency of 20 Hz

End.

5. Simulation results

Simulations have been performed with SimuCIRC
(Bétaille and Peyret, 1997), a specialized computer integ-
rated road construction software package, based on Mat-
lab and Simulink. Gaussian random noises have been
added to the measurements. In particular, the variance of
the errors of the inclinometers has been multiplied by
two, in order to compensate for the effects of the vibra-
tions and accelerations of the machine. Noise variances
for the goniometric sensor and for the encoders are those
of the real sensors, already used in Bonnifait and Garcia
(1996) and Le Corre and Garcia (1992).

5.1. Real trajectory

The real trajectory corresponds to the curves of Figs.
4—7, with a constant projected speed of 0.1 m/s, in (O, x

0
,

y
0
). The projected path of Fig. 4 is made up of a straight

line, a semicircle and a straight line (see beacon location).
Figs. 5, 7 and 8 show the altitude, dc and dv as functions
of the curvilinear abscissa in (O, x

0
, y

0
). During the first

line, the elevation follows a linear variation, whereas after
the semicircle, the variation is parabolic. Finally, the
cross-section is horizontal, except in the semicircle, as
plotted in Fig. 7.

The principle of the simulation is to have a modeled
robot which follows this 3D path. While it is moving,
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Fig. 5. Altitude along the real path.

Fig. 6. Gradient along the real path.

Fig. 7. Cross-fall along the real path.

Fig. 8. x estimation.

Fig. 9. y estimation.

Fig. 10. Altitude estimation.

inclinometer and odometric measurements are cal-
culated. The rotation of the camera is also modeled;
therefore, the asynchronicity of the azimuth and elev-
ation angles is taken into account.

5.2. State estimation analysis

Even if the EKF is initialized with significantly large
errors (50 cm error on xy, 15 cm on z, 2 degrees on W and
1 degree on dc and dv), the transient phase is short, as
shown in Figs. 8—11.
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Fig. 11. Direction estimation.

Fig. 12. Altitude estimation.

Fig. 13. The mobile robot moving on the bridge.

The global estimation process has a good behavior,
since the errors have zero means. Moreover, they are far
lower than three estimated standard deviations, as
exemplified by Figs. 8—10: this condition is necessary for
a good EKF process.

The 2D behavior, i.e. the estimation of the sub-vector
[x, y, t]T (Figs. 8, 9 and 11), is close to the one encoun-
tered with real data (see Bonnifait and Garcia, 1996). The
distance error is of the order of a few centimeters
((0.05 m), and the heading error standard deviation is
equal to 0.4°.

In Fig. 10, the zero mean elevation error remains
bounded by 1 cm. Its shape does not depend on either
the longitudinal-section or the cross-section. This
proves that the 3D odometric evolution is good. The
filtering of the inclinometers is of particular importance
since, in addition to reducing errors on dc and dv, it also
significantly improves the elevation estimation (Fig. 12).
Indeed, oscillations and peaks are filtered. This is an
interesting aspect of the filter: by applying a ‘low-pass’
filter on dc and dv, the z estimation is improved.

6. Real experiments

Real experiments have been carried out with an out-
door mobile robot. The computations of the location
data are done at 20 Hz with a 486 DX 33 PC-type
computer. On a lawn, a 0.5 m]8 m bridge has been put
parallel to the x axis of the reference frame. Fig. 13
describes a typical experiment. First, when the robot is
motionless and when three different beacons have been
detected, a static localization is computed. Afterwards,
the robot starts to move at a constant speed equal to
0.06 m/s until the end of the bridge.

This section is devoted to the results of the altitude
estimation, since this parameter is the most crucial one
for the CIRC application. The errors on the x and y para-
meters are of the same order as the ones reported in
Bonnifait and Garcia (1996), i.e. of the order of 5 cm.

In Fig. 14, the results of two experiments are reported.
These tests correspond to the same trajectory, and the
displacement is done from x "96 to x "84. The curves
of Fig. 14 show that the repeatability of the altitude
estimation is very good: the distance between the curves
is bounded by one centimeter, except at the beginning of
the slope. This discrepancy can be explained by the fact
that the ground was extremely muddy at this spot, and
altered in successive tests, due to the weight of the robot.

The precision of the altitude estimated by the position-
ing system cannot be precisely determined with this ex-
perimental set-up: a benchmark system has to be used.
Nevertheless, for a static position, the altitude of the
EKF has been compared with that of a differential
Global Position System (GPS) running a real-time kin-
ematic algorithm. The precision of this kind of GPS
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Fig. 14. Estimated altitude as a function of the estimated abscissa.

Fig. 15. Altitude computed by the EKF compared to a differential GPS
on a static position.

receiver is of the order of centimeters on average, and
typically better than two centimeters if the averaging
period is ‘sufficiently’ long. For the 13-min experiment
reported in Fig. 15, the averaged altitude of the GPS is
equal to 11.94 m. The distance between this value and the
altitude estimated by the EKF is less than 1 mm. This of
course does not prove that when moving the precision of
the EKF is still of the order of 1 cm; it only ascertains
that the optical system is well calibrated.

7. Conclusions and future work

In this paper, a localization system based on 3D-
odometry and external goniometry has been presented.
This system is intended for slow-dynamics outdoor ve-
hicles, requiring a high precision in their altitude.

The 3D-odometric equations use measurements from
two inclinometers and two encoders. The estimated state
exhibits the tilt sensor measurements, thanks to an un-
usual attitude representation in robotics, based on the

orthogonal cross-fall and gradient angles. The updating
of the dead-reckoning location is performed by a six-state
EKF which allows each goniometric measurement to be
taken into account individually and asynchronously.

Furthermore, simulations indicate that the precision
on the altitude can be better than 1 cm, if a low-pass filter
is applied to the inclinometer data. Real experiments
with this algorithm have been performed with a mobile
robot moving on an outdoor test-track. The tuning of the
EKF running on real data has been made easier thanks
to the simulations, and the same behavior of the filter has
been noted. These first tests indicate that the optical
system is well calibrated, and they prove that unmodelled
low accelerations do not degrade the inclinometer
measurements. When the vehicle is moving, the altitude
accuracy cannot be determined precisely, but is clearly of
the order of centimeters. Moreover, the repeatability of
the altitude estimation is better than 1 cm.

Future work will involve benchmarking this multi-
sensor localization system on the special test track,
‘SESSYL’, of the Laboratoire Central des Ponts et
Chaussées of France. SESSYL is a robotized head with
three degrees of freedom, mounted on a carriage that
moves along a calibrated rail.
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