
Abstract
A localization system using GPS, ABS sensors and a
driving wheel encoder is described and tested through
real experiments. A new odometric technique using the
four ABS sensors is presented. Due to the redundancy of
the measurements, the precision is better than the one of
differential odometry using the rear wheels only. The
sampling is performed when necessary and when a GPS
measurement is performed. This implies a noticeable
reduction of the GPS latency, simplifying thus the data-
fusion process and improving the quality of its results.

1 INTRODUCTION

Real-time continuous localization is essential for many
applications concerning outdoors vehicles [6-1-9]. It
consists of estimating the vehicle location in a global
digital map. GPS is a very attractive solution because it is
affordable and convenient. Moreover, since May 2000,
the SA degradation has been turned off, and the natural
precision (a few meters) is sufficient for usual navigation
tasks. Nevertheless, GPS still suffers from satellite masks
occurring in urban environments, under bridges, tunnels
or in forests. GPS appears then as an intermittent
positioning system that demands the help of a dead-
reckoning system. Commercially available solutions use
an odometer, a gyro and sometimes a magnetic compass
[1] to maintain an estimation of the position during
satellites masks. On the other hand, braking in modern
cars is assisted with ABS systems that utilize angular
encoders attached to the wheels. In this case, the sensors
basically measure the wheel speeds. We propose
hereafter to use them to estimate traveled distances.
This paper presents a new odometric technique that can
advantageously replace the commercially available dead-
reckoning techniques that use supplementary sensors like
gyros [2]. The models presented in the sequel are real
odometric models and not discretized kinematics models
like in [7]. Assumptions are made on the elementary
motions and geometric relationships are expressed to
provide relations between the rotations of the wheels and
the displacements.
The paper is organized as follows: section 2 describes an
odometric technique using four ABS sensors together

with an encoder measuring the driving wheel angle. The
fusion of all these measurements uses an Extended
Kalman Filter. A special attention is dedicated to the
sampling process that is customized to the GPS. This is
done by taking both the displacement and the time as
progression variables. Experiments show the efficiency of
this technique in comparison with differential odometry
using only the sensors of the rear wheels. The complete
localizer in then presented in section 3. Experiments
performed with a laboratory car quantify the precision
obtained when the GPS is available and when satellite
masks occur.

2 ODOMETRY WITH ABS SENSORS

The purpose of odometry is to build an incremental
model of the motion using measurements of the
elementary wheel rotations. In this section, we first
introduce the generic integration process whose inputs are
theoretical quantities (not directly measured). In a second
time, these inputs are estimated using the measurements
of all the encoders. This is one major contribution of the
paper, the second one being the sampling strategy.

2.1 Integration process
Consider a car-like vehicle (figure 2). The mobile frame
MM is chosen with its origin M attached to the center of
the rear axle. The x-axis is aligned with the longitudinal
axis of the car. At time tk, the vehicle position is
represented by the (xk,yk) Cartesian coordinates of M in a
world frame WW. The heading angle is denoted θk.
Let Mk and Mk+1 be two successive positions. Supposing
the road is perfectly planar and horizontal, as the motion
is locally circular, we have (figure 1):

∆ = ρ.ω (1)
where ∆ is the length of the circular arc followed by M, ω
the elementary rotation of the mobile frame, and ρ the
radius of curvature and I the instantaneous center of
rotation.
Supposing the car is moving forward, the variation on the
position is expressed as:
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From basic Euclidean geometry, we know that
{∆ ≈ |MkMk+1|} up to the second order. The integration
process is then:
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Figure 1: elementary displacement between 2 samples
The question is now to estimate the ∆ and ω.

2.22.2 Estimating ∆ ∆ and ωω
Consider the four wheels vehicle sketched on figure 2.
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Figure 2: geometry of car in a turning manoeuvre
Let us denote e the half-track, L the wheel-base and ψ the
steering angle of the virtual front wheel of the bicycle
model. This angle is directly proportional to the angle of
the steering wheel.
In order to develop an odometric model, we assume that,
between two samples, the wheels do not slip and that the
distances e and L are known and constant: this is a
simplified view of the phenomenon occurring at the
tire/ground contact zone.
∆ and ω can be estimated using the steering angle ψ and
the elementary distances traveled by each wheel. In the
sequel, ∆RL and ∆RR denote the distances traveled between
two samples by the rear wheels and ∆FL and ∆FR those
traveled by the front wheels.

Observation equation
The driving wheel encoder (which measures ψ) provides
a relation between ∆ and ω. Figure 2 gives:

tan(ψ) = 
L
ρ (3)

Rewriting equations (1) and (3):

tan(ψ) = L.
ω
∆ (4)

Let consider the situation described in figure (3). Since
the rear wheels do not turn, we directly have:

∆RL = ω.(ρ-e) = ∆-e.ω (5)

∆RR = ω.(ρ+e) = ∆+e.ω (6)
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Figure 3: elementary displacement of a car in a turning
manoeuvre

Commonly, in the technique called differential odometry
[9], ∆ and ω are computed just using the measurements
(∆RR, ∆Rl):

∆=
∆RR+∆RL

2   ω =
∆RR-∆RL

2.e
The measurements of the front wheels are more difficult
to use because their orientation with respect to the mobile
frame is not constant. In order to simplify, let consider
the virtual front wheel. The length of the circular arc it
follows between two samples is (Fig 3):

∆F = D.ω
Now,

D = 
L

sin(ψ)
By using (3), we have:

D = 
ρ

cos(ψ)
By multiplying each side by ω:

∆F .cos(ψ) = ∆ (7)
The same procedure can be applied to each front wheel; it
yields (ψL and ψR are shown on figure 2):



tan(ψL) = 
L

ρ-e and tan(ψR) = 
L

ρ+e. (8)

ρ can be eliminated in (8) by using relation (3). One gets:

ψL = atan



tan(ψ).L

L-e.tan(ψ)  and ψR = atan



tan(ψ).L

L+e.tan(ψ)  (9)

Finally, the adaptations of equation (7) for each wheel
are:

∆FL.cos(ψL) = ∆-e.ω  (10)

∆FR.cos(ψR) = ∆+e.ω (11)
Equations (4, 5, 6, 10, 11) define a redundant and non-
linear system that links the unknown quantities (∆, ω) to
the measured variables (∆FL, ∆FR, ∆RL, ∆RR, ψ):















.+=

.−=

.+=

.−=

.=)(

ω∆ψ∆
ω∆ψ∆
ω∆∆
ω∆∆

∆
ω

ψ

e)(.

e)(.

e

e

L

RFR

LFL

RR

RL

cos

cos

tan

(12)

Defining an equivalent measurement vector (13),
equation (12) takes the usual form of observation
equation (14).

z = [tan(ψ), ∆RL, ∆RR, ∆FL.cos(ψL), ∆FR.cos(ψR)]T (13)

z = h(ζ) (14)

State estimation of (∆∆, ω)ω)
Because of presence of unavoidable slippage and
modeling errors, we propose to use all the measurements
to estimate the state vector ζ=[∆, ω]Τ. The redundancy
should reduce the effects of the unknown disturbances.
Since the observation equation (14) is not linear, we
propose to apply an Extended Kalman Filter (EKF),
interpretable here as a Weighted Least Squares estimator.
This technique presents also the advantage to estimate the
covariance of the estimation error, which will be useful
for  further estimating the localization [x, y, θ]Τ by EKF.
Since the models we use are odometric ones and that no
acceleration nor forces are supposed to be known, the
variation of the state vector is modeled by a Wiener
process whose input γk is a zero-mean white noise with a
Qγ covariance matrix:

ζk+1 = ζk + γk

Since the equivalent measurements that are the
components of z (eq. 13) are obtained from five different
sensors, we can assume that the covariance matrix R of z
is diagonal. The EKF estimation can therefore be split
into five independent computations, each one involving a
scalar division in place of inverting a 5x5 matrix.
Denote S the variance of the estimation error. The EKF
works in six steps:

Prediction stage

Sk+1/k = Sk/k + Qγ

Estimation stages
1) As the first observation equation is not defined when ∆
equal zero (see eq. 13), we only use it when the speed of
the car is high enough.
Moreover, this equation being non-linear, we compute the
Jacobian matrix with respect to the state:

C1 = 



δz1

δζ  = 



-L.ω

∆2
L
∆

The updated state and variance matrix are then given by:

Kk= Sk+1/k.C1
t.( )C1.Sk+1/k.C1

t+R2
-1

ζk+1 = ζk + Kk.(z2 – C1.ζk)

Sk+1/k+1 = (I22 - Kk.C1).Sk+1/k

2) The four other observations provide estimations as
follows:
for i=2 to 5,

Ci = [ ]1 +/-e

Kk= Sk+1/k+1.Ci
t.( )Ci.Sk+1/k.Ci

t+Ri
-1

ζk+1 = ζk+1 + Kk.(zi – Ci.ζk+1)

Sk+1/k+1 = (I22 - Kk.Ci).Sk+1/k+1

end for.
Finally, each estimation of (∆, ω) is used in the model (2)
to provide an odometric location (starting from a given
position and heading). This technique is called odometric
EKF in the sequel.

2.3 Sampling the odometric EKF
Commonly, odometric models are sampled with respect
to time. One should notice that they can be sampled with
respect to the traveled distance. As a matter of fact, the
sampling rate must be such that the elementary motion is
circular. Actually, as long as the steering angle is
constant, the motion is circular. Therefore, the model
should be sampled when a significant variation of the
steering angle is detected during a displacement.
This sampling strategy presents also the interest to be
well adapted to the physical nature of the process: if the
car is motionless, the model is not sampled and the
estimation error logically does not increase.
On the other hand, the position (x, y) in the model (2) is
not observable [3] from the encoder measurements (13).
One can use a GPS receiver to correct the unavoidable
drift of the odometric EKF. This is nowadays an
affordable sensor, but its latency can induce unacceptable
errors when the speed is high. The GPS latency is the
delay between the moment all the visible satellites
measurements are performed and the moment the position
is output and received by the onboard computer. The
transmission delay is unavoidable but the latency can be
reduced to its minimum by using the analogous signal
"1PPS" available on the Motorola VP ONCORE used in



our experiments. This signal rises each time the satellites
are sampled. Thus, we propose to trig the odometric EKF
using the "1PPS" signal.
In summary, the sampling is performed as following:
- each time a GPS measurement is performed,
- each time the car has traveled one meter and the

steering angle has changed more than 0.5 degree.
The two sampling processes are asynchronous. The
sampling frequency is not constant and higher than 1Hz.
It can reach several Hz while entering in a roundabout for
example.

2.4 Tuning of the filter
For the car used in the experiments (a Citroën Xantia
Break see photo on figure 4), the sources of errors that
affect the observation (14) are numerous. The first ones
result from the resolutions of the ABS encoders (1.93 cm
for ∆RL,  ∆RR, ∆FL,  ∆FR) and of the driving wheel encoder
(2.π/4096 rad for ψ). The other ones are due to the
approximate nature of the model (12) (for instance,
distances e and L are not exactly constant).
Since there are several uncorrelated causes of error, we
can suppose that inaccuracy can be globally represented
by an additive zero-mean temporally uncorrelated noise.

Figure 4: the car used in the experiments
In order to tune the EKF, we have computed position
errors in comparison with a post-processed DGPS. The
tuning of the filter is assumed to be correct when the
errors are consistent with the 3 σ bounds (99% of
confidence bounds).

2.5 Results of the odometric EKF
The experimental results presented in this section were
obtained using stored data of the sensors. The sampling
of the odometric EKF has been done has presented in
section 2.2.3. The rough measurements of the GPS
receiver VP ONCORE were stored and then processed in
association with a fixed receiver in order to produce the
true positions of the car (Kinematic Differential GPS on
L1 with the software Jupiter). The precision is estimated
to be better than two meters while the car is moving.
The initial heading has been computed with an error less
than 0.5 degrees.
The odometric EKF has been tested on four laps of
2.4 km long, at the maximum allowed speed of 50 km/h.
Results are shown on figure (5) (thick line) and compared

with differential odometry using rear wheels only (dotted
lines) and with the true trajectory (thin line).
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Figure 5: tops views of the experiments

Figures (6) and (7) show longitudinal and lateral errors
(with respect to the DGPS) as functions of the linear
abscissa, making the benefit of the odometric EKF
clearer.
It can be seen from these plots that the use of all the
sensors increase significantly the precision. This can be
explained by the fact that the redundancy in average
allows a better estimation. For example, slips which
disturb the front wheels may not affect the rear ones.
Moreover, other experiments, not reported here, have
shown that the drift of the estimation of the heading of the
odometric EKF is in the same order as the one of a dead-
reckoning technique using an odometer and a vibrating
gyro (a British Aerospace VSG2000).
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Figure 6: longitudinal errors as functions of the distance
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Figure 7: lateral errors as functions of the distance

3 SENSOR FUSION OF GPS AND ODOMETRY

When a GPS position is available, a correction of the
odometric estimation is performed using an Extended
Kalman Filter formalism with noisy input.

3.1 Architecture
The odometric EKF computes an estimation of ζ=(∆, ω)
and of the covariance matrix S. This data is used as the
input of a second EKF estimating (x,y,θ). The
measurements (x,y) of the GPS (in a local ground frame)
are used as the observations. It is obvious that the GPS
data change with the number of visible satellites. One
usual way to take into account this non stationarity
consists to inflate the state covariance matrix each time
the constellation changes.
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Figure 8: architecture of the localization system
This architecture can be seen as a "loosely coupled fusion
system" [8].

3.2 Heading observability
The heading θ is not directly measured since the GPS is
used as a position sensor. Nevertheless, by studying the
state observability of the non linear system [3], it is easy
to verify that the observability condition is verified when
the speed of the car is non-zero.
In order to assess what happens in this case, let consider a
car when it stops: the measurement ω becomes zero
without any noise (no signal come from the ABS
encoders) and the odometric prediction of the heading

does not change. This is interesting when compared with
a dead reckoning system using a gyro that will suffer
from drifting in the same condition. When the vehicle
will move again, the localizer will start with a non
detoriorated estimation of the heading.

3.3 Tuning of the filter
The errors on position measured by GPS (with the SA
degradation off) are temporally correlated. We have
estimated a first order Auto-Regressive model [5] of the
noise. The time-constant of this AR model is
approximately 2 hours [4]. This value exceeds the time-
constant desired for the filter from several degrees of
magnitude. It is thus not good to define an augmented
state that incorporate this AR model.
One practical solution to take into account the correlation
of the noise consists to increase the variances of the
observations. If not, the filter would yield erroneous too
confident estimations [4]. In the experiments presented in
the sequel, we have supposed that the variances Rx and
Ry of the observations were constant and, experimentally,
we have used a 5 ratio for the augmentation
(Rx=5*1.222 m and Ry=5*2.752 m). The first rough GPS
measurement is used to initialize the position.

3.4 Results
The global localizer has been tested on the four laps of
the experiment of section 2.5 (9.6 km long run). Errors
are computed thanks to the post-processed DGPS.
Three characteristics are tested in this experiment:
1) The normal operation with all measurements

available,
2) seven small GPS masks of ten seconds (for

70<t<210 s), similar to the ones observed in town
circuits,

3) a large one of 5 minutes (for 900<t<1200 s) to test
the robustness of the error computation.

Figures 9, 10, 11 and 12 present the results (the dotted
lines are the 3 σ estimated bounds).
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Figure 12: x error when the GPS is ok.
Even if they are computed using a linearized model, the
large mask shows that the errors are well estimated since
the confidence bounds are consistent with the errors
(figures 9 and 10).
Figures 11 and 12 focus on interesting parts of figure 9.
On figure 11, it should be noticed that, each time a mask
occurs, the error is consistent with the estimated
confidence. This realistic situation gives an idea of the
actual precision (a few meters) of the localization.

Figure 12 indicates that the tuning of the filter is well
done since the estimated 3 standard deviation is
consistent with the error. Naturally, the position error is
mainly the one of the GPS and therefore is not white.

4 CONCLUSION

This work has presented the development of a
localization system and its experimentation with real data.
It is a very cheap localizer, since it uses natural GPS
receiver and ABS sensors available on most modern cars.
Thanks to an adequate sampling, the proposed odometric
method is computed when necessary and in a way well
adapted to a GPS correction. The experiments have
proved that the use of all the ABS sensors increases the
precision of the positioning system in comparison with
the use of only the two ones associated with the rear
wheels. This dead-reckoning technique is sufficient to
maintain a precise estimation of the position during small
GPS masks. During large masks, we think it will produce
an efficient estimation of the local trajectory which
should be useful for the map-matching process with a
precise digital map. The future work concerns the study
of an automatic calibration of the wheels circumference.
As a matter of fact, even it not very sensible to the
variation of tires pressure, the circumference changes
with the wear of the tires.
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