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ABSTRACT

The present paper reports the latest experimental
results of a prototype system developed by LCPC with
technical assistance of Heudiasyc for its pavement
management vehicles. Specification requirements can be
summarized by

- one meter precision,
- for regional itineraries,
- including urban environment,
- in a navigation post-processing.

Dedicated geo-synchronous satellites services provide
differential GPS corrections suitable for the application
concerned. The assistance of dead-reckoning sensors to
estimate the position of the vehicle during DGPS masks
enables the continuity of localisation.

An improvement of an original algorithm for post-
processing the trajectory of the vehicle is presented: it is
based on a combination of Extended Kalman Filtering,
with series of geometrical transformations applied for drift

correction during certain mask periods, under a certain
condition.

As concerns the Extended Kalman Filter, a
comprehensive set of odometric models of vehicles is
described, considering for instance that the encoder can be
located at front or rear wheels.

INTRODUCTION

The interest in techniques of localisation of vehicles is
growing, not only for professional applications like road
maintenance or fleet management, but also for all future
applications which address personal vehicles automatic
control.

This paper addresses the localisation of survey
vehicles for road maintenance. Geo-synchronous satellites
services provide differential GPS corrections suitable for
this kind of application. Nevertheless, the measurements
collected by these vehicles need to be localised with a one
meter precision for regional itineraries, including urban
environments. As it is not necessary that this localisation
process occurs in real time, smoothing techniques can be
applied afterwards to the sensors measurements stored by
an acquisition unit. As they operate in a context where
"non causal" processing can be done, the data can be
filtered in both forward and backward direction, and
finally combined.

On another hand, DGPS masks do not allow a
continuous localisation and therefore dead-reckoning
sensors are necessary to estimate the position of the
vehicle during these situations.

In [Bétaille and Bonnifait, 00], we have presented an
algorithm for post-processing the trajectory of the vehicle
which is based on a Bayesian fusion of the estimations of
Extended Kalman Filters corrected by series of
geometrical transformations (which is the main originality
of our solution) applied for drift correction during mask
periods.

The works reported in the present paper aimed at:

- improving the result of preceding tests relatively to
the model of the vehicle, considering for instance that the
encoder can be located at front or rear wheels;

- proposing a solution to a drawback of the use of
similarities in certain masked areas.



It is important to stress that the improvement that we
seek to obtain in the vehicle modelling is also applicable
in real-time operation, and not only in post-processing.

In section 1, the sensors on board the vehicle are
presented. Section 2 is dedicated to the presentation of
different odometric models. Section 3 is devoted to a study
in simulation, which enables a detailed analysis of the
models to be carried out. In section 4, experimental tests
performed with real data quantifies the performances of
the different solutions. The model we suggest to use is
then tested in full scale in section 5 in a filtering process
with real data. A particular attention is given to the
sampling frequency which plays an important part on the
quality of the result. Finally, section 6 highlights a
problem in using the similarities for the smoothing process
during certain mask periods. We show the effectiveness of
a heuristic strategy that consists to not apply the
similarities in certain situations.

1. The localisation sensors on board.

1.1. GPS.

Differential GPS appears naturally very appropriate to
provide the geographical coordinates of survey vehicles,
for further use in a Geographical Information System
(GIS) [Abbott and Powell, 99].

The precision of one meter over wide areas (several
hundreds of kilometers may be performed in the frame of
our applications) can be achieved in differential GPS with
dedicated services, provided in Europe by geo-
synchronous satellites like "Landstar" or "Omnistar", with
no significant degradation of the precision or frequent
problem of reliability.

The receiver on board the vehicle was a TRIMBLE
Ag132 (GPS code on L1 frequency) running in DGPS, at
5 Hz, by using one of the differential correction services
available in Europe. The standard deviation of the
positioning error obtained during recent static tests of this
equipment was 0.5 m, with no SA.

Note that the differential corrections may be biased
(they are actually in the region of Nantes, west of France,
by approximately 0.7 m), which therefore gives a global
"geodetic" offset when downloading the vehicle trajectory
into GIS with reference mapping of 1 meter accuracy.

Unfortunately, DGPS cannot offer a continuous
positioning. Masks of the satellites will cut off the signal,
particularly in difficult environments like cities or forests.
Furthermore, to avoid diffraction or multipath
contamination of the positioning results, raw data should
be carefully filtered, by setting-up relatively high elevation
mask (20°) and low DOP level. It is actually preferable to
cope with larger masks than to input aberrant positioning
in the data filtering and smoothing process.

Dead-reckoning sensors are obviously needed in this
process, in order to help DGPS in case of masks
occurrences. They are two of them on board our vehicle:

- an electro-mechanical shaft type encoder
- a fiber-optic 1 axis (heading) gyrometer

1.2. Encoder.

Our vehicle is doted of an encoder, which has been
calibrated using a Post-Processed Kinematic (PPK) GPS,
in static mode, between two stations (situated on a straight
line of length 1000 m) at which the vehicle stopped. We
estimate that the uncertainty of the calibration equals 1
"step" of the encoder per the performed distance,
supposing that:

- the wheels do not slip,
- the rolling surface is perfectly planar,
- the PPK GPS location produces a negligible error.

The estimated length of the step of the encoder is
0.24 m, with an error of less than 1%.

Note the step could be one of the estimated variables,
like position and heading, in the process shown below.
With the set of sensors installed on board our vehicle, it is
easy to prove the observability of the length of the encoder
step, additionally to the position and heading, with the
only condition of an effective movement of the vehicle
(non static) [Bonnifait, 97]. A balance is to be found in the
tradeoff between reliability (ability to identify a rather
improbable variation of the length of the encoder step, for
instance) and robustness. This particular point should be
addressed in our further studies.

1.3. Gyrometer.

The vehicle is equipped by a "KVH" fiber optic
gyrometer (RD 2100 digital model), which works by
application of the "Sagnac effect" principle. It outputs the
heading rotation speed at the frequency of 10 Hz. Since
the rotation speed is measured, the heading is obtained by
integration in the process after.

The characteristic of the drift of the KVH RD 2100
gyrometer is around 10 degrees per hour.

Furthermore, a Fourier analysis of the signal output
during dynamic tests (in the real condition of use with our
vehicle) enabled the level of noise to be set up, and an
acceptable value is 0.1°/s.

1.4. Data collecting.

The following measurements:

- 5 Hz GGA positioning output of the Ag132,
- 10 Hz digital output of the gyrometer,
- GPS "pulse per second" output,

were collected on a PC by interrupts, and dated using a
PC clock whose resolution was 0.01 s. The encoder steps
counter is also read at 10 Hz (at each output of the
gyrometer). The GPS pulse per second (delivered by a
TRIMBLE 7400 receiver on board, see § 4) was used to
synchronize the GPS time and the PC clock in the data
fusion post-processing.



2. Integration of the odometer and gyrometer
data in “rear” and “front” odometric models.

2.1. Rear odometric model.

The usual odometric model of a vehicle follows the
following discrete equations [Bonnifait and Garcia, 98],
where "x" and "y" are the coordinates of the middle of the
rear wheels of the vehicle (point M, see figure 1), in a
local reference frame, and "θ" its heading:

xk+1 = xk + ∆sk.cos(θk + ∆θk/2)

yk+1 = yk + ∆sk.sin(θk + ∆θk/2) (1)

θk+1 = θk + ∆θk

"∆s" represents the variation of distance (measured at
rear wheels) between two sampling instants and "∆θ"
corresponds to the elementary variation of the heading.
With a gyrometer, which gives a rotation speed, ∆θ=ω.Ts,
where "Ts" represents the sample time and "ω" the
measured heading rotation speed.

Ideally, the model described in (1) applies to the origin
of a mobile frame attached to the middle of the rear wheels
of the vehicle, with a measurement by the encoder of the
average rotation of these wheels, and with the front wheels
for steering. Mathematically, these wheels are equivalent
to a unique virtual front steering wheel, whose axis, like
the one of the actual wheels, crosses the instantaneous
center of rotation of the vehicle.

We suppose that:

- the distance measured by the encoder is the one of the
origin of the mobile frame (wheels do not slip),

- the trajectory is locally circular.

heading

rear speed vector

front speed vector
used in the front model

instantaneous
rotation center

(x,y)

used in the rear model

virtual steering wheel

M

F

Fig.1: scheme of the vehicle (Ackermann model)

Actually, most vehicles are equipped of an encoder
installed on the gearbox, and with front wheels for both
steering and driving. Our testing vehicle is a Peugeot J5
minivan, and the encoder on this van measures effectively
the rotation of the gearbox, which is the mean of the
rotation of the front wheels on this vehicle. Moreover, the
front wheels are the steering wheels.

Hence, the characteristics of our vehicle and its
encoder location do not meet the requirement for applying
the odometric model presented in (1).

2.2. Front odometric model.

If the encoder measures directly the rotation of the
gearbox on a vehicle with front wheels for both driving
and steering, then the odometric model is to be applied to

the origin of a mobile frame attached to the middle of the
front wheels.

Let consider point F (see figure 2), the middle of the
front wheels of the vehicle and "xf" and "yf" its
coordinates, in a local reference frame. We propose to
derive an odometric model having the following
equations:

xfk+1 = xfk + ∆sfk.cos(θk + βk)

yfk+1 = yfk + ∆sfk.sin(θk + βk) (2)

θk+1 = θk + ∆θk

with βk to be determined.

"∆sf" represents the variation of distance (measured at
front wheels) between two sampling instants and "∆θ" still
corresponds to the elementary variation of the heading.

The next figure enables equations (2) to be completed.
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Fig.2: front odometric model

Geometrically, it appears that:

β = π – A1 – A2 (3)

with:

A1 = arccos(E/Rk) = arccos(E.∆θk/∆sfk)

A2 = (π – ∆θk)/2

So: β = ∆θk/2 + arcsin(E.∆θk/∆sfk)

Note ∆sfk/∆θk is an estimation of the radius of
curvature, Rk. For large curves, E<<Rk. E is the distance
between M and F, or wheelbase.



Consequently, by using the development of Taylor of
the arcsin:

βk ~ E.∆θk/∆sfk + ∆θk/2 (4)

In a straight line, the only term remaining is ∆θk/2,
which corresponds to equations (1).

The front model is equal – at the first order – to other
models identified in the literature [Bonnifait et al., 01],
[Kochem et al., 02]). It appears to be theoretically an
adequate odometric model to be applied onto our testing
vehicle.

2.3. Odometric model for any point of the vehicle.

The equations in (1) or (2) describe the evolution of
the origin of a mobile frame (M or F), attached to the
vehicle, with a specific location in the vehicle: the middle
of rear wheels, or the middle of front wheels. It may be of
great interest to derive the similar equations for any other
point of the vehicle, particularly when combining these
equations with positioning estimation by DGPS. Then, we
will not presume of the actual position of the DGPS
antenna relatively to the vehicle, and we will introduce the
translation parameters "tx" and "ty" of the antenna
relatively the mobile frame used in the model.

xfk+1 = xfk + ∆sfk.cos(θk + βk) + ∆θk.(tX.sinθk+tY.cosθk)

yfk+1 = yfk + ∆sfk.sin(θk + βk) + ∆θk.(tX.cosθk-tY.sinθk)   (5)

θk+1 = θk + ∆θk

3. Performances of “rear” and “front”
models in simulation.

3.1. Set up reference points series.

We are going to demonstrate in simulation the interest
of the front model.

Suppose the vehicle is performing a perfect circle with
a radius of R=100 m (for illustrating purpose, note R=5 m
on figures in xy plane). Heading steps are supposed to be
constant, named "∆θ". The number of steps equals :

n = 2π/∆θ (6)

As well as angle steps, distance steps are supposed to
be constant, named "∆s" (for rear point) and "∆sf" (for
front point).

Let us name "rear point" the middle of the rear wheels
(represented by point M on figure 1), and "front point" the
middle of the front wheels (point F on figure 2).

For the rear point: ∆s = R.∆θ
For the front point: ∆sf = sqrt(R²+E²).∆θ
where E is the distance between M and F. E=5 m for

numerical application purpose (for illustrating purpose
again, E=2 m on figures in xy plane).

The reference position of the rear point is given by the
points series:

Mk(Xk,Yk)

Xk = R.cos(k.∆θ)

Yk = R.sin(k.∆θ)

for k=1 to n.

The reference position of the front point is given by the
points series:

Fk(Xfk,Yfk)

Xfk = sqrt(R²+E²).cos(k.∆θ + atan(E/R))

Yfk = sqrt(R²+E²).sin(k.∆θ + atan(E/R))

for k=1 to n
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Fig.3: reference points series

3.2. Different uses of the rear model.

Let us suppose that we have an encoder measuring the
performed distance of the rear point.

3.2.1. Nominal use.

Firstly, we are going to compute the position of the
rear point, by using the rear model applied onto the rear
point. ∆s (distance performed by the rear point) and ∆θ are
input.

Initial rear point coordinates are x=R, y=0, θ=π/2.

The following figure displays the difference between x
and y series output by the model, and the corresponding
reference series. The error is due to the fact that ∆s is
applied on the chord instead of the arc. It decreases with
∆θ (i.e. when the frequency of the gyrometer increases). It
can be demonstrated that the maximum value of error
"Emax" equals:

Emax = 2R.((π/n)/sin(π/n)-1) ~ R.(π/n)²/3 (7)

with "n" given in equation (6).

Table 1 gives a numerical application for different
values of n.

table 1

n 100 200 400
∆θ 2π/100 2π/200 2π/400
Error 0.03 0.01 0.002
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3.2.2. Positioning error on front point.

Next, let us compute the position of the front point, by
using the rear model applied onto the rear point, and the
translation terms from rear point to front point: tx=E and
ty=0. ∆s (distance performed by the rear point) and ∆θ are
input.

Initial front point coordinates are xf=R, yf=E, θ=π/2.

The following figure displays the difference between xf

and yf series output by the model, and the corresponding
reference series. The error is due to the fact that cos(∆θ)~1
and sin(∆θ)~∆θ in derivating the model available for any
point of the vehicle, given in equations (5). This error
decreases with ∆θ,i.e. when the frequency of the
gyrometer increases (see table 2).

table 2

n 100 200 400
∆θ 2π/100 2π/200 2π/400
Error 0.3 0.15 0.08
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Fig.5: positioning front point with rear model

Let us now suppose that we have an encoder measuring
the performed distance of the front point.

The problem is to compute the position of the rear
point. The rear model may be used in two different ways.

3.2.3. Use of the rear model with the distance performed
by the front point.

Firstly, we are going to compute the position of the
rear point, with the assumption that the rear and front
points both perform the same distance, by using the rear
model applied onto the rear point. ∆sf (distance performed
by the front point) and ∆θ are input.

Initial rear point coordinates are x=0, y=R, θ=π/2.

The following figure displays the difference between x
and y series output in this first case, and the corresponding
reference series. The maximum value of the error equals:

Emax = 2R.(sqrt(1+E²/R²)-1) (8)

It equals 0.25 m in our example.



−6 −4 −2 0 2 4 6

−4

−2

0

2

4

X in m

Y
 in

 m

Position of rear point by degraded use of rear model (1st case)

rear point reference    
rear point by rear model

0 10 20 30 40 50 60 70 80 90 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

n sampling instants

er
ro

r 
(m

)

Error on rear point by degraded use of rear model (1st case)

error in x
error in y

Fig.6: use of the rear model
with the distance traveled by the front point

Note that the error does not depend on ∆θ (frequency
of the gyrometer) because the arc-chord approximation
(see equation (8)) is negligible with respect to the
modeling error.

3.2.4. Use of the rear model applied onto the front point.

Secondly, we are going to compute the position of the
rear point, by using the rear model applied onto the front
point, and the translation terms from front point to rear
point: tx=-E and ty=0. ∆sf (distance performed by the
front point) and ∆θ are input.

Initial rear point coordinates are x=0, y=R, θ=π/2.

The following figure displays the difference between x
and y series output in this second case, and the
corresponding reference series. The maximum value of the
error equals:

Emax = 2E (9)

It equals 10 m in our example.

For the same reason as already mentioned in § 3.2.3,
the error does not depend on ∆θ (frequency of the
gyrometer).
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applied onto the front point

Conclusion.

Firstly, the nominal use of the rear model is obviously
the best to do, even when measuring the performed
distance of the front point.

Secondly, if the evolution of the front wheels is
needed, it is better to use the nominal model and make the
translation tx and ty, instead of measuring the distance on
the front wheels.

3.3. Use of the front model.

The front model is specifically designed to fit with the
evolution of the front point.

We are going to compute the position of the front
point, by using the front model applied onto the front
point. ∆sf (distance performed by the front point) and ∆θ
are input.

Initial front point coordinates are xf=R, yf=E, θ=π/2.

The following figure displays the difference between xf

and yf series output by the front model (with no
development of the arcsin included in the model, and also
with this development), and the corresponding reference
series. The error is again due to the approximation of the
arc by the chord. An additional error (depending on the
ratio E/R) comes from the development of the arcsin when
this is done.
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Fig.8: use of front model for front point positioning
E = 5 m and R = 100 m

When the arcsin is not developed, it can be
demonstrated again that the maximum value of error
"Emax" equals: Emax ~ sqrt(R²+E²).(π/n)²/3.

It is the same as Emax reported in equation (7) but
with sqrt(R²+E²) instead of R.

Note: the maximum value of the error, if the arcsin is
developed (Taylor’s series), has been obtained in
simulation.

Note that the errors – with and with no development of
Taylor – are about the same with E=5 m and R= 100 m,
but get very different with E=2 m and R= 5 m.

table 3

n 100 200 400
∆θ 2π/100 2π/200 2π/400

0.03 0.01 0.002Error
(R=100 m
E=5 m) 0.03 if arcsin is developed, indep. of n

0.002 0.0005 0.0001Error
(R=5 m
E=2 m) 0.1 if arcsin is developed, indep. of n
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Fig.9: use of front model for front point positioning
E=2 m and R = 5 m

So, if the evolution of the front wheels is needed, it is
the best to use the front model and the distance performed
by the front wheels.

This simulation shows that by using an adequate model
onto front point (front wheels), we can reduce the error
that we would obtain in case of misusing the rear model.

4. Comparison of the models with real data.
We have seen in simulation that two different degraded

use of the rear model may give an approximation of the
trajectory of the vehicle.

The first approximation consists in applying equations
(1) to the mobile frame attached to the middle of the rear
wheels with the measurement ∆sf of the rotation of the
front wheels (instead of that of the rear wheels).

The second approximation consists in applying
equations (1) to the mobile frame attached to the middle of
the front wheels with ∆sf too.

The simulation definitely proved that the last one is
causing much more error than the first one. The model
corresponding to equations (1) is indeed valid exclusively
for the non steering wheels whereas the front wheels are
actually the steering ones with our vehicle.

Consequently, only the first approximation (use of the
rear model with the distance performed by the front point)
and the front model itself are going to be tested in parallel,
with exactly the same data.

The tests reported in this section were performed at
low speed (10 km/h maximum) on the LCPC tracks, near
Nantes. The steering wheels of the minivan were turned to
their maximum angle, firstly on the right hand side and
secondly on the left hand side.

A centimeter precision reference path was computed
for each test, by RTK GPS at 5 Hz. Two TRIMBLE 7400
receivers (GPS L1 and L2 carrier) were used, one antenna
on a monument in the vicinity of the circuit, the other on
top of the roof of the minivan (see figure 10). The
environment of the circuit offers excellent conditions to
perform GPS measurements, with no natural masks (the
reference was thus obtained continuously).
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Fig.10: the equipped minivan scheme
(RTK antenna)

The trajectory was firstly computed by using the rear
model. The rear model describes the odometry of the rear
point. Whereas the distance is measured on the front
wheels, it is applied onto the rear model. Translation
parameters are also used (see § 2.3), from rear point to
reference point: tx=2.71 m and ty=0.

The trajectory was secondly computed by using the
front model. The front model describes the odometry of
the front point, where we effectively have the distance
measured. Again, translation parameters are used from
front point to reference point: tx=-0.51 m and ty=0.

Note that the trajectory computed here is only obtained
by integrating distance and rotation measurements
(odometer and gyrometer) and it does not use GPS for
filtering or smoothing purpose (GPS only provides a
reference here).

From visual inspection, it clearly appears that the front
model gives a better estimation of the position of the
reference point than the rear model.
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Fig.11: comparison of rear and front models on circular
trajectories.

An immediate conclusion is that when the radius of
curvature is small, it is better to use the front model than
to misuse the rear model.

It is also worth to note that the front model seeks to
estimate the radius of curvature (∆θk/∆sfk). It shows a level
of noise relatively high when data are collected at 10 Hz
compared to that shown if data were collected at 2 Hz for
instance (at low speed, only 0, 1 or 2 steps are made in 1
sample). A decimation from 10 Hz down to 2 Hz gives
better results (illustrated in figure 12). Another solution
would be to use an encoder with a lower step value in
order to refine the measurement of distance.
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Fig.12: comparison of rear and front models on circular
trajectories,

with data decimated from 10 down to 2 Hz.

From visual inspection again, it appears that a good
estimation of the radius of curvature is possible at 2 Hz,
since the distance performed in a sample time is sufficient,
and the obtained trajectory is less noisy than at 10 Hz.

5. Fusion of odometry and DGPS data.
The tests reported in this section were performed at

three different average speeds (20, 40 and 60 km/h) on a
circuit near Nantes. The maximum speed not to exceed
was 90 km/h. Again, a centimeter precision reference path
was computed for each test, by RTK GPS. No natural
masks around the circuit perturbed the GPS or DGPS
reception. (DGPS masks were in fact simulated for this
study).

The DGPS antenna is represented on the next figure,
close-by the RTK reference antenna.

Only the first approximation (use of the rear model
with the distance performed by the front point) and the
front model itself are going to be tested in parallel, both
with data collected during the tests on circuit.
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Fig.13: the equipped minivan scheme
(DGPS and RTK antennas)
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Fig.14: experimental circuit

The point which needs an evolution model is the
DGPS antenna (see figure 13), in order to facilitate the
formulation of the Extended Kalman Filter. Hence, ty = 0
(the antenna is centered); but:

tx = 2.11 m (in front of the rear wheels axis), in case of
the degraded use of the rear model;

tx = -1.11 m (behind the front wheels axis), in case of
use of the front model.

The derivation of the equations used in the filter can be
found in [Bétaille and Bonnifait, 00]. It gives the
formalism of an Extended Kalman Filter (EKF) to fuse the
encoder and gyrometer data, and the DGPS locations.
Note that contrary to the hypothesis made in that paper
(where we supposed that the DGPS antenna was located
on the vertical axis of the mobile frame), the model and
Jacobian matrixes to be computed are slightly more
complicated, because of the translation terms tx and ty.

The variances of both the DGPS receiver and the
gyrometer measurements were estimated a priori, and
based upon static tests (for the DGPS receiver: (0.5 m)2)
and dynamic tests (for the gyrometer: (0.1°/s)2).

Besides, the variance of the measurements of the
distance equals: step²/12.

The variances for the model were tuned so that the
error between the filtered path and the reference path is
always comprised into a 3σ envelope, where σ are
obtained for both x and y coordinates (diagonal elements
of the variance EKF output matrices).



The filter was tuned on the registered data for the test
at lower speed (for which wheels slipping is reduced). We
simulated the obscured periods by suppressing the DGPS
data for a series of masks of 60 s, separated by 10 s
periods of available DGPS locations.
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Fig.15: positioning errors and 3σ envelopes

table 4

Test nb Rear model Front model
1 (20 km/h)
Error maxi 14.6 m 10.6 m
RMS 3.7 m 3.3 m
2 (40 km/h)
Error maxi 17.6 17.1
RMS 6.1 3.6
3 (60 km/h)
Error maxi 19.5 25.5
RMS 4.3 6.0

Note: the error is computed between the filtering
process output x and y coordinates, and the x and y
references, at same time, given by RTK GPS.

It appears that the interest of using the front model in
the fusion with DGPS decreases when the speed gets high.

We have to keep in mind that the position prediction
during a DGPS mask shows a drift which is explained by:

- the drift of the gyro itself,
- the approximation of the non-linear integration model,
- the fact that the road is not perfectly planar,
- the slipping of the wheels.

The behaviour of the filter when using the front model
shows a certain instability. This may be due to:

- the additional error term corresponding to βk;

- the high sensitivity of the front model with
slipping, since slipping biases the estimation of the
radius of curvature;

- the additional non-linearity in the Kalman filter.

Considering these results, it is clear that the filtering
must be completed with smoothing, if non-causal data
processing is possible.

6. The geometrical smoother by similarities
and a condition of use.

[Bétaille and Bonnifait, 00] compared several non-
causal filters which can be directly computed from EKF
outputs because they use the same formalism.

We had observed that the main drawback of the EKF is
that the heading estimation is less corrected than the
position, in the estimation step of the filter, when a DGPS
measurement is available after a GPS mask. We had
noticed that a simple similarity applied on the positions
between two DGPS estimations significantly improve the
precision, even when these estimations are separated by
some tenths of seconds due to GPS masks.

The parameters (rotation and scale factor) are
calculated in order to superpose the final predicted
position with the new estimated DGPS position. This
transformation repeats each time a DGPS estimation is
used to correct a series of dead-reckoning predictions.

Mk|k = center of rotation

Mk+1|k+1 = image of Mk+1|k

Mk+1|k

DGPS estimation

prediction series transformed by similarity

Fig.16: graphical illustration of the similarity

The next figure illustrates a critical use of the
similarity and the necessity of setting a condition before
deciding to apply such a geometric transformation.

In this figure, the geometrical elements Mk|k, Mk+1|k
and Mk+1|k+1 used to compute the similarity have a
configuration that causes a very large correction to be
made in part of the trajectory.
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Fig.17: critical use of the similarity

A simple way to circumvent the problem is to check if
the trajectory is contained in a band twice wide the
distance between the two DGPS estimated points (Mk|k
and Mk+1|k+1) used in the definition of the similarities.



The next figure illustrates the condition applied onto
similarities.
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Fig.18: graphical illustration of the conditional similarity

Between the two DGPS estimated points: Mk|k and
Mk+1|k+1, the trajectory is NOT contained in a band
twice wide the distance || Mk|k Mk+1|k+1 ||. No similarity
is applied. On the contrary, it is applied further on the
circuit, and each time where the trajectory does not show
circumvolutions.

The complete algorithm uses the front model and runs
by the following steps:

- compute forward trajectory, and store the full
variance-covariance matrices associated to the x and
y positions,

- apply the conditional similarities, and compute
"modified" variance-covariance matrices (the
similarities are actually non determinist and they
modify the stochastic properties of x and y),

- compute backward trajectory, and do the same
treatment with x and y positions and their variance-
covariance matrices,

- combine in a Bayesian fusion x and y obtained
forward and backward by the preceding treatments;
"modified" variance-covariance matrices are to be
used in the fusion.

table 5

Test nb filtering real-
time process

smoothing post-
process (*)

1 (20 km/h)
Error maxi 10.6 m 3.4 m (3.4 m)
RMS 3.3 m 0.9 m (1.0 m)
2 (40 km/h)
Error maxi 17.1 3.4 (5.8)
RMS 3.6 1.2 (1.7)
3 (60 km/h)
Error maxi 25.5 6.0 (9.1)
RMS 6.0 2.0 (2.7)

(*): into () in table 5 are reported statictics if no
condition of use of the similarities is applied.

As expected, this combination of the smoothed
trajectories gives the best results and approaches the level
of precision required by the application. It also could be
noticed that (contrary to real-time filtering process)
smoothing post-process results are quite similar
irrespective of using the rear or front model.

CONCLUSION

With these new experimental results, we can discuss
the interest of refining the modelisation of the vehicle. The
model presented in the paper is more accurate than that
used in general case, but it is also more sensitive to noise
in measurements. Therefore, the global performance of the
smoother is not improved. An adequate acquisition and
filtering process is worth to be studied further, in
particular in order to obtain a good estimation of the
radius of curvature.

Lastly, the test condition of the similarity carries out
real improvements to the smoothing technique that we
presented in ION 2000. It makes us tackle the objective of
localising a vehicle at 1 m precision, using a low-cost
gyrometer, an odometer and DGPS, despite a series of
masks considered to be particularly severe.
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