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Abstract 

A novel roadmap matching method is developed. This 
method provides an accurate position of a vehicle 
relatively to a digital road map using Belief Theory and 
Kalman filtering. Firstly, an Extended Kalman Filter 
fuses DGPS and ABS sensors measurements to estimate a 
rough pose of the vehicle. This pose is then used to select 
the most likely segment from the database. The strategy 
fuses several criteria based on distance, heading and 
velocity measurements using Belief Theory. Finally, a 
new observation is built thanks to the selected segment, 
and used to correct the rough pose thanks to a second 
Kalman filter estimation stage. A special attention has 
been given to the modeling of the system. It appeared 
that augmenting the state with the bias of the roadmap 
significantly increases the performance of the method. 
Real experimental results show that this method is able 
to work a long time without GPS, if it has been correctly 
initialized. 

1. Introduction 
Many modern in-vehicle navigation and safety 

applications require real-time positioning of the vehicle 
with respect to a given set of digital map data. As a 
matter of fact, real-time positioning allows the driving 
assistance module to accurately depict the position of the 
vehicle on the map, facilitates operations such as route 
calculation, supports Advanced Driver Assistance System 
applications - ADAS - such as Adaptive Cruise Control - 
ACC, adaptive lighting control, collision warning, lane 
departure warning, etc. The quality of the localization 
process depends mainly on the quality of the roadmap 
matching which is a complicated problem when one 
seeks to obtain a reliable, precise and robust vehicle 
location on the road network [2, 8].  

Today, the positioning system relies very often on the 
use of GPS, because it is an affordable and convenient 
sensor. Nevertheless, GPS suffers from satellite masks 
occurring in urban environments, under bridges, tunnels 
or in forests. GPS appears then as an intermittent 

positioning system that demands the help of a dead-
reckoning system [1]. In this paper, we use the rear 
wheels ABS sensors of the car for this purpose. This 
multisensor fusion is performed by an Extended Kalman 
Filter (EKF).  

The selection of candidate roads is the first stage of the 
roadmap-matching problem [7]. Generally, it consists in 
applying a first filter which selects all the segments close 
to the estimated position of the vehicle. Then, the goal is 
to select the most likely segment(s) from this subset. 
Nowadays, since the geometry of the roadmaps is more 
and more detailed, the number of segments that represent 
the roads is increasing. The road selection is therefore 
essential for the stability of the system and because, if 
this stage is neglected, the computation time of many 
roadmap-matching algorithms cannot be acceptable for a 
real-time implementation. In order to be focused on this 
point, an accurate map Géoroute V2 provided by the 
French National Institute of Geography (IGN) has been 
used in this work. Our strategy is based on the fusion of 
several criteria (using distance, heading and velocity 
measurements, connectivity with the latest matched road 
and one way restrictions) using Belief theory. 

A more accurate location of the vehicle can be 
obtained by fusing the selected segment with the 
odometry / GPS estimated pose. The key idea is to model 
the fact that the true position of the vehicle is located 
around the centerline of the most likely road. This region 
depends mainly on the width of the road, which is an 
information, stored in the digital map database as an 
ADAS attribute. So, the most likely road is considered 
like a new Kalman observation and its associated error is 
estimated. The map observation modeling is an important 
contribution of this paper. 

The outline is as follows. In section 2, the architecture 
of the roadmap-matching method is described. The state 
space formulation of the problem, the road selection, the 
map observation and the EKF are detailed. In section 3, 
real data results are analyzed. Finally, the concluding 
remarks are made in section 4. 
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2. Description of the roadmap 
matching method 

The roadmap matching method described in this 
section relies on Kalman filtering like in [6]. We suppose 
that the reader is familiarized with this formalism, so, we 
will just detail the state space representation, i.e. the state 
vector, the evolution model, the observation model and 
the covariances of the errors.   

2.1. Evolution model: odometry 
Let consider a car like vehicle with front-wheel drive. 

The mobile frame is chosen with its origin M attached to 
the center of the rear axle. The x-axis is aligned with the 
longitudinal axis of the car (see Fig 1). 

 x0

 θk M y k

 xk

 y0

 W

 M

  

Fig. 1. The mobile frame attached to the car 

The vehicle position is represented by the (xk,yk) 
Cartesian coordinates of M in a world frame. The 
heading angle is denoted θk. If the road is perfectly 
planar and horizontal and, if the motion is locally 
circular, the evolution model can be expressed by [4]: 
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where δs is the length of the circular arc followed by 
M, δθ the elementary rotation of the mobile frame. These 
values are computed using the ABS measurements of the 
rear wheels.   

2.2. Observation equation 

When a GPS position is available, a correction of the 
odometric estimation is performed using an Extended 
Kalman Filter (EKF). If the GPS satellites signal is 
blocked by buildings or tunnels, for example, the 
evolution model provides a dead-reckoned pose. 

This rough pose is used to select the most likely 
segment(s) from the database. This approach is presented 
in section 2.3. If several segments are candidates, the 
observation function is non-linear. 

 
kXfY k β+= )(  (2) 

Two main strategies can deal with this non-linearity: 
• the management of multi-hypotheses  
• the selection of the most likely segment 

among the segments set. 

In this paper, we consider the second solution. The 
most likely segment is used to construct a map 
observation, denoted (xh,yh), and its associated error (see 
section 2.4). Therefore, the observation equation 
becomes linear: 
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βk represents the observation error.  

The GPS measurement error can be estimated in real 
time using the NMEA sentence "GST" provided by the 
Trimble AgGPS132 receiver which has been used in the 
experiments. Therefore, the GPS noise is not stationary.  

If we assume that the GPS position and the map 
observation errors are not correlated, the covariance 
matrix of the complete measurement Y can be separated 
in two blocs: 

• Qgps: covariance matrix of the GPS error 
• Qh: covariance matrix of the map observation 

error. 
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Since Qk is diagonal, the GPS and map observations 
can be used in two separated Kalman filter estimation 
stages.  

2.3. Segment selection using Belief Theory 
Belief theory allows one to reason with uncertainty 

and suggests a way for combining uncertain data. This 
theory is the generalization of Bayes theory in the 
treatment of uncertainty. Generally, this theory is used in 
a multi-sensor context to fuse heterogeneous information 
in order to obtain the best decision.  

In the first place, a frame of discernment has to be 
defined. It is the set of all possible answers to a specific 
question. In our particular case, the segments are treated 

Qgps 

Qh 
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one by one and a pertinent question is: "is this segment 
the good one?" The response can be: yes, no or perhaps. 
The frame of discernment is then Θ ={Yes, No} and the 
mass assignments are computed on the definition 
referential 2Θ = {Yes, No, Perhaps}. The mass 
assignments allocate a degree of Belief to each 
hypothesis. A mass assignment must satisfy the 
following rules:  

 ∑
Θ⊆

==
A

Amm 1)(0)(φ   (5) 

Each mass function m(.) is represented by a real 
number in [0,1]. The mass notion is very near to the 
probabilistic mass notion, exception that it is not shared 
only among single hypotheses but it is also possible to 
attribute a mass to an union of hypotheses. 

In practice, the selection criteria must be clearly 
identified in order to assign masses. The criteria used in 
this article can be formulated as follows:  

- the vehicle location is close to a segment of the 
neighborhood. This criterion is a function of the error 
ellipse (on the assumption that the error distribution is 
Gaussian), 

- the segments corresponding to the vehicle location 
are those which have an angle close to the heading of the 
vehicle. This criterion a function of the estimated 3σ 
bound of the heading and a function of the speed, 

- if at time k , an arc is selected without any ambiguity, 
at time k+1, the good segment would belong to this arc 
or to an arc having an extremity connected to it, 

- the vehicle orientation should respect the traffic 
direction of the road (in case of a one-way road). This 
ADAS attribute is stored in the map database. 

In order to assign masses, criteria have to be 
fuzzyfied. For more information on that point one can 
refer to [5]. Then the mass functions are fused and a 
decision has to be taken. Several decision laws can be 
used. In this work, we have used the “ideal decision law” 
in order to keep only the non ambiguous segments.  

Let consider a concrete case to illustrate the method 
with the proximity and heading criteria only. In figure 2, 
the vehicle is running on the road represented by the 
segments 1 and 3, at a speed of 80 km/h. Estimation 
errors and roadmap errors induce an erroneous estimated 
position, which is closer to segment 2 than to the others. 
The mass assignments for each segment using the two 
criteria are indicated on figure 2 . 

One can remark that for segment 1, the proximity 
criterion and the heading criterion are in accordance 
because both of them assigns a large Belief to the Yes 
hypothesis, a little to the Perhaps hypothesis and nothing 

to the No hypothesis. Conversely, segment 2 presents a 
total conflict between the two criteria. With these mass 
assignments, the fusion will indicate that only segments 1 
and 3 respect the ideal decision law. 
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pose 

 mp(Yes)=0.72 
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 mh(Yes)=0.68 
 mh (No)=0  
 mh (Perhaps)=0.32 
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 mp(No)=0 
 mp(Perhaps)=0.32 

 mh(Yes)=0.63 
 mh (No)=0  
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 mp(Yes)=0.8 
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 mh(Yes)=0  
 mh (No)=0.87  
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Segment 1 Segment 3 

Segment 2  

Proximity 
criterion 

Heading 
criterion 

Fig. 2. Estimated pose of the vehicle and 3 candidate segments. 

Note that the key characteristic of this road selection 
strategy is the quantification of the Belief in the selected 
segments. As we have chosen a very reliable decision 
strategy, one can be sure that, when the selection stage 
provides a segment, this segment corresponds to the real 
road with a high probability. On the contrary, if there is 
no credible segment, this method indicates that the car is 
off-road or on a road which is not stored on the database. 

2.4. Map observation 
A way to fuse the most likely segment with the other 

sensors is to treat it like an observation, that is a function 
of the state vector.  Much effort has been spent on 
modeling the map observation error in a realistic way. It 
has turned out that a Gaussian mixture which encloses 
the road works well.  

To build the map observation, we consider two cases. 

Principle: case of a straight road 
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Fig. .3. Case of a straight road. 
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The simplest case occurs when the most likely 
segment corresponds to a straight road. In figure 3, the 
road selection stage provides three segments (in bold). 
Their masses of Belief are 0.9, 0.7 and 0.55 for segments 
1, 2 and 3, respectively. As all these segments are 
credible (decision given by the road selection stage), it is 
an ambiguous situation and the map observation is non 
linear. A way to circumvent this difficulty is to select the 
segment which has the highest Belief value (segment 1 
here). The map observation (xh, yh) is defined as the 
orthogonal projection of the estimated position (xk, yk) 
onto segment 1 [3]. The map observation can be 
constructed in a different way. In [6], the observation is 
the distance to the nearest road. In the Recursive 
Bayesian Estimation context (i.e. a particle filter), this 
(non linear) measurement should be equal to zero.  

The problem is now to estimate the error of this 
observation.  

The box surrounding the segment and representing the 
road determines the maximum error of the map 
observation. The resulting probability density function is 
then theoretically spatially truncated. In the Kalman 
filtering context, this box is approximated by a Gaussian 
ellipse as shown on figures 3 and 4.  

Let consider a local frame attached to the segment. Its 
x axis is collinear to the segment. In this frame, the 
Gaussian ellipse is oriented along the road segment and 
the coordinates of its center are (xh, yh).  

The error is then given by :  
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where E
xhσ  and E

yhσ  are the longitudinal and the 

transversal standard deviations. If the segment is infinite, 

then ∞=E
xhσ . This means that the map measurement can 

only correct the position in the y direction. 

The transversal standard deviation is given by: 

  
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where wy is the width of the road segment (wy is stored 
in the database as an ADAS attribute) and k  is the 
constant associated with the chosen probability error 
ellipse P given by:  

 )1ln(2 Pk −−=  (8) 

Case of a curved road  

In general, the roads are not straight and, because the 
new digital roadmaps include many details, the segments 
have a small length (see Fig. 4).  
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         True trajectory 
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(xt,yt) 
result of the 

fusion 

 

Fig 4. Case of a curved road. 

The map observation is the nearest point from (xk,yk) 
making part of the most likely segment. Depending on 
the case, it is the orthogonal projection of (xk,yk) onto the 
segment or one of its extremities. One can notice that the 
most likely segment represents a linearization of the 
curved road.  

In this case, E
xhσ  is not infinite, but it has to be chosen 

big enough in comparison with E
yhσ  to indicate that the 

correction is higher in the y direction (in the local frame 
attached to the segment).  

In the reference frame, the covariance matrix Qh of the 

map observation is obtained from E
hQ  (see equation (6)) 

by a simple rotation. If α is the orientation of the 
segment with respect to the x axis of the reference frame, 
then: 
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2.5. Augmenting the state vector 

The roads are symbolized by arcs whereas the car is 
running on a surface centered on these arcs. Moreover, 
the geometrical transformation between the GPS 
reference frame and the French Lambert projection 
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frame can present an offset of several meters (<5m). 
Finally, the segments coordinates present errors because 
of the plotting of the geographers and because the 
coordinates are stored as integers in the database (1 m 
roundness).  

For all these reasons, the fusion of the GPS with 
odometry has a variable offset with the map data. A 
solution to this problem is to add two offsets (denoted δx 
and δy) in the state vector and to observe them.  

As the goal of the positioning module is to localize the 
car on the road network (because the ADAS attributes 
are attached to this network), it is the GPS measurement 
which presents an offset rather than the map observation.  
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δx and δy are observable because they can be expressed 
as a combination of the measurements. The evolution of 
δx and δy is modeled by a constant. The evolution is 
made possible thanks to a non zero state noise αk. Eq. 1 
becomes: 
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Let denote X=[x, y, θ,  δx, δy]
T and U=[δs, δθ]T. By 

rewriting Eq. 11 and 12, we obtain the state space 
representation: 
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The observation model is linear whereas the evolution 
one is non linear. An Extended Kalman Filter with a 
measured input is then a way to fuse all this data.  

2.6. Overview of the roadmap matching method 

The algorithm firstly fuses the ABS measurements 
with a DGPS position, if it is available. Then, using this 
estimation, the credible roads are selected. If at least one 
segment is credible, the map observation is built and 
fused with the other data thanks to a second Kalman 
filter estimation stage. 
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   - Select the most credible segment
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Sensors 

Road Selection  

Odometry 

X k 

 
Fig.5. Synoptic of the roadmap matching method 

3. Experimental results 

Figure 6 presents a top view of a 4-km long 
experimental test performed in Compiègne. The map 
data-base was managed by the GIS software 
"Geoconcept". The DGPS receiver used was a Trimble 
AgGPS132 with an Omnistar differential correction.  

In the following, the map observation covariance 

matrix has been chosen with E
xhσ  = 150 m and P=0.9. 
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Fig 6. Experimental path and candidates roads.  

In figure 6, the gray path corresponds to the rough 
absolute positions provided by the DGPS transformed in 
the French Lambert coordinates system of the map. The 
black path is the result of the fusion of the sensors with 
the roadmap. In this experience, a DGPS signal mask has 
been simu lated (i.e. the DGPS measurements haven't 
been used). This signal mask starts at the exit of the first 
roundabout (in the bottom of Fig. 6). One can remark 
that in spite of the long DGPS mask (about two 
kilometers), the vehicle location is matched correctly. As 
a matter of fact, the final estimated positions stay close to 
the DGPS points. 
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The fine performance of the road selection method is 
illustrated on figure 7. Between the two roundabouts, the 
journey is a 2x2-lane road: each roadway is represented 
by a one-way arc. In spite of the closeness of the DGPS 
positions to the wrong arc, the estimated poses are 
associated to the good arc. Moreover, the roundabouts 
correct efficaciously the estimation even if they are 
represented by many segments which lead to ambiguous 
situations. 
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Fig. 7. DGPS positions and {ABS, DGPS, map} fused positions 
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Fig. 8. DGPS positions, {ABS, DGPS, map} fused positions and 

dead-reckoned ABS only positions  

In order to prove the interest of the map observation, 
figure 8 shows the dead-reckoning results using the ABS 
sensors only, when the GPS signal is not available. One 
can see that the map observation corrects efficiently the 
drift of odometry (the GPS mask still starts at the exit of 
the roundabout in the bottom of the figure).  

4. Conclusion 

This article has presented a roadmap matching method 
based on multi-sensor fusion and on multi-criteria fusion 
for the road selection. The main contributions of this 

work are the formalization of a roadmap observation in 
the Kalman filtering context, the use of a road selection 
method based on multi-criteria fusion using Belief 
theory, and an experimental validation with real data. 

It seems that the GPS measurements are not necessary 
all the time since the fusion of odometry and roadmap 
data can provide a good estimation of the position for a 
long time. Nevertheless, we have noticed that sometimes 
this estimation can diverge. This is due to the fact that 
the strategy presented in this paper keeps only the most 
likely segment. When approaching an intersection, 
several roads can be good candidates. If a wrong road is 
more credible than the good one, the method will 
diverge, because the GPS is not available to correct this 
wrong choice. A solution to this problem is to manage 
several hypotheses until the situation becomes 
unambiguous. We think that is the main perspective of 
this research.  
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