
 
 

 

Abstract — This article deals with data fusion using 
ensemblist tools in general, and Constraints Satisfaction 
Techniques on real intervals, in particular. Indeed, such an 
approach seems to be well adapted if the data presents a 
strong redundancy, if the equations are non linear and if 
the real time implementation on a computer is a key issue. 
The contribution of this work is primarily methodological 
as we propose an original method to reach Global 
Consistency in a calculable number of arithmetic 
operations. From the application point of view, we are 
interested here in the state estimation process of the 
kinematics state of a car using the measurements of the 
four ABS sensors, the angle of the driving wheel and a 
GPS receiver. Experimental results illustrate the 
performance of such an approach in comparison with the 
Extended Kalman Filter.  
 
Key Words — Ensemblist State Estimation, guaranteed 
data fusion, constraints propagation on real intervals. 

I. INTRODUCTION 
Mobile robot localization[1, 10] is a well known 
problem. Usually, the localization process involves dead 
reckoning sensors (like odometry, gyros, etc.) and 
absolute sensors (like telemeters, goniometers, GPS, 
etc.). These two technologies are complementary and 
the fusion of the sensors measurements brings more 
precision, availability and integrity. For example, GPS 
suffers from satellite masks occurring in forests, cities, 
tunnels, etc. In this case, a dead reckoning technique can 
still provide an estimation of the pose of the mobile 
robot. Moreover, by using continuously odometry in a 
fusion process, one can filter the GPS estimates and 
eliminate its latency [11]. 
In some applications, integrity is essential and the 
ability to guaranty the result is a crucial point. With the 
assumption that the model and measurement errors are 
bounded, guaranteed techniques based on ensemblist 
approaches, can be studied. Some of these ensemblist 
approaches (also known as “bounded error methods” or 
“set-membership methods”) have the advantage to be 
independent of the non-linearities of the state space 
representations thanks to Interval Analysis theory tools 
[9, 12]. When there is a high redundancy of 
measurements and equations, propagation techniques on 
real intervals (like Waltz algorithm [3]) can be used. 
The main idea of such an approach is to find the 
consistence of all the data linked by the state space 
equations which provides what one calls "constraints". 
A remarkable property of these techniques is that they 
are very fast and thus they are well adapted to real time 
considerations.   

The objective that we consider in this work is to develop 
a real time bounded-error approach based on interval 
analysis, in order to guarantee the vehicle location on a 
terrestrial reference frame.  
The sensors that we consider (i.e. the 4 ABS wheel 
encoders, a measure of the angle of the driving wheel 
and a differential GPS receiver) provide redundant data.  
We propose to study in this paper how satisfaction 
techniques on real intervals can fuse all this information 
on the basis of “Consistency Domains”.  
In order to solve a Constraints Satisfaction Problem 
(CSP), the first step consists in characterizing the graph 
of the constraints. If this graph is a tree, a Waltz’s 
algorithm (noted Forward-Backward Propagation (FBP) 
or Climb-Fall algorithm in the literature [7 6]), solves 
the problem in an optimal way (the time of calculation 
is known and the estimated boxes are optimal). 
Nevertheless, generally in data fusion problems, the 
graph contains cycles. In this case, Waltz’s algorithm 
can only provide a locally consistent box (satisfying all 
the constraints taken one by one) with an unknown 
calculation duration. Our approach based on 
Consistency domain tries to solve the problem of the 
cycles: it reaches global consistency (satisfies all the 
constraints taken together), in a known duration of 
calculation.  
In section II, we present this theoretical concept and we 
show, in section III, how it efficiently solves a 
localization problem having high redundancy 
information. Thanks to data acquired with our 
experimental car, a comparison of the results of such an 
approach with the ones of the usual Extended Kalman 
Filter is given in section IV. Estimation errors are 
computed by using a centimetre precision GPS obtained 
thanks to post-process kinematics treatments.  

II. CONSISTENCY DOMAINS 
This section presents the notion of “consistency 
domains” and several theorems and properties. Please, 
refer to [2] for the demonstrations. 

A. Local and Global Consistencies  
Consider [x] a box of IRn. To solve the CSP 

H = (x∈[x] | F(x)=0) means to seek in this box all the 
inconsistent values with the constraints system F(x)=0 
and afterwards to eliminate them.  
Let denote S, the set of the solutions in [x] satisfying the 
constraints F: 

 S ={x∈[x] | F(x)=0} 
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To contract H means to replace the box [x] by a sub-box 
[x’] ⊂ [x] which contains all the solutions S, i.e. S ⊂ 
[x’].  
A box [xi] is locally consistent with H if it verifies all 
the constraints taken separately (one by one). A box [xi] 
is globally consistent with H if it verifies all the 
constraints taken together.  

B. Consistency domain associated to a sub-vector 
Consider I = (1, …, n) and J = (j1, …, jm) a subset of I of 
cardinal m. 
For a vector noted x ∈ IRn, let us denote xJ a sub-vector 
of x associated to J. This sub-vector is of dimension m 
and can be written as: xJ = (x(j1), …, x(jm))T 
In the same way, for a box [x] of IRn, the sub-box of [x] 
associated to J, noted [xJ] ∈ IRm, can be written as 
[xJ]=([x(j1)],…, [x(jm)])T. 
Let us call K=I \ J the complementary of J in I. 
Consider the simple case described by figure 1, where 
H  is a CSP with 2 variables (x, y) and made up by 2 
constraints (a band and an ellipse, here). For the value x0 
chosen, the set DF(x0) containing all y such as (x0, y) is 
globally consistent with H, is represented on figure 2. 
In general, consider xJ a sub-vector of x associated to J. 
We call “consistency domain associated to xJ”, the set 
DF(xJ) included in the set of all sub-vectors associated to 
K. 

x0 

D F(x0) 

 
Figure 1. Consistency domain associated to the value x0. 

 
DF(xJ) is empty or verifies the following conditions: 

1. Any globally consistent vector having xJ like sub-
vector, has its complementary components to xJ 
included in the consistency domain, i.e. 
∀ z ∈ IRn such as zJ = xJ and z verifies all the 
constraints F, then zK ∈ DF(xJ) 

2. Any vector ∈ IRn made up with sub-vectors zK ∈ 
DF(xJ) and xJ is globally consistent, i.e. 
∀ zK ∈ DF(xJ), the Cartesian product zK × xJ in IRn 
(in the good order) verifies all the constraints F. 

For a sub-vector given xJ, DF(xJ) represents thus, the 
greatest set of sub-vectors such that their Cartesian 
products with xJ gives a vector in IRn globally consistent 
with H. 

C. Consistency domain associated to a set of sub-
vectors 

Now, let us consider the case described by figure 2 
where, this time, one seeks to characterize for a given 
interval [x], the set of y for which ∃ x ∈ [x] such as (x, y) 

is globally consistent with H. This set, noted DF([x]), is 
called consistency domain associated to the interval [x]. 
In the general case, for AJ, a given nonempty set of sub-
vectors associated to J, DF(AJ) represents the greatest set 
of sub-vectors verifying:∀ zK ∈ DF(AJ), ∃ xJ ∈ AJ such 
as the Cartesian product with xJ gives a vector in [x] 
globally consistent. 

DF([x])  

[x]  
Figure 2. consistency domain of an interval. 

 
Consequently, DF(AJ) (included in the set of sub-vectors 
in [x] associated to K) is empty or verifies: 

1. If z is globally consistent and if its components 
according to J are included in AJ, then the other 
components, according to K, belong to the 
consistency domain, i.e. ∀ z∈ IRn such as zJ ∈ AJ 
and such as z verifies all the constraints F, then 
zK ∈ DF(AJ) 

2. For any sub-vector in DF(AJ), one can find a sub-
vector in AJ such as the resulting Cartesian product 
is globally consistent, i.e ∀ zK ∈ DF(AJ), 
∃ zJ ∈ [AJ] such as the Cartesian product of zK and 
zJ in IRn verifies all the constraints F.  

 
Note: if AJ is empty, DF (AJ) is empty. 

D. Properties 
Interesting properties are quoted below. They lead to 
crucial results making possible to evaluate consistency 
domains. 

1. In the particular case of two variables x and y 
connected by a constraint x = f (y), one has 
Df([y])=f([y]). 

2. Consider [z] and [y] a sub-box of [x] associated to J 
such as [y] ⊂ [z] then DF([y]) ⊂ DF([z]) 

3. The consistency domain associated to a sub-box is 
the union of the consistency domains of all the sub-
vectors of this under-box, i.e. 

∀ [xJ], DF([xJ]) =
[ ]
U

JJ xx ∈
DF(xJ). 

4. Consider a sub-box [z], and p sub-box [zJ,1], …, 
[zJ,p] associated to J constituting a covering of [z],  
i.e [z] = U

pi≤≤1
[zJ,i].  Then DF([z]) = U

pi≤≤1
DF([zJ,i]). 

5. If a constraints system G (x)=0 is a subset of the 
system F (x) =0, then for [xJ] sub-box of [x], one 
has DF([xJ]) ⊂ DG([xJ]). 

6. Let us suppose that the system F (x)=0 is equivalent 
to a system which is written G (x)=0, then for [xJ] 
under-box of [x], one has DF([xJ]) = DG([xJ]). 



 
 

 

E. Theorems 
Consider a box [x] of IRn, (fi) i=1… p, p real functions,  

F=(f1, …,fp), I={1…n} and the CSP H = (F(x) | x∈[x]). 

1) Theorem 1: calculation of the globally consistent 
box using the consistency domains associated to the 
complementary of each component 
For any J ∈ I, Πj(S) = [xj]∩ DF(

{ }×
−∈ jIi

[xi]) 

where Πj(S) is the projection of the solution S according 
to the jth component. By repeating n times this operation 
for all the components, one obtains a globally consistent 
box. 

2) Theorem 2: choice of punctual variables and box 
variables depending of they occurrence, for calculate a 
consistency domain by considering constraints one by 
one 
Consider [xJ] the sub-box of [x] associated to J. One 
notes [ −1

Jx ] and [ +1
Jx ] the components of [xJ] which 

appear respectively once at most and twice at least in 
the graph of the constraints.  
For all +1

Jx in [ +1
Jx ], 

DF([ −1
Jx ]× +1

Jx )=
pi ...1=

I D if ([ −1
Jx ]× +1

Jx ) 

3) Theorem 3: calculation of a consistency domain 
thanks to a calculation of a precise consistency domain 
associated to the set of solution of a “sub-CSP“ of H.  

For j ∈ 1…n, consider in IRn-1, the CSP noted HI-{j}, 
corresponding to the variables reduced to the xi ≠ xj and 
the constraints connecting them i.e. HI-{j} = (g(y)=0, 
y∈

{ }×
−∈ jIi

[xi]) where g is the subset of all the constraints 

in F, independent of the variable xj. Let us note SI-{j} the 
set of solutions of the CSP HI-{j} 
One has the result: DF(

{ }×
−∈ jIi

[xi]) = DF(SI-{j})  (1) 

Corollary 1 
Let us pose f{j} the set of the constraints 

connecting the variable xj to the other variables in H. 
One has the following relation, rising from the 
preceding result:  
 DF(

{ }×
−∈ jIi

[xi]) = D { }jf (SI-{j}). (2) 

Corollary 2 
Let us suppose moreover, than the set of 

constraints f{j} connects xj only to q variables whom 
indices are j1,…, jq (q≤n), one has: 
 DF(

{ }×
−∈ jIi

[xi]) = D { }jf (Π j1 … j p ,(SI-{j})  (3) 

where Π j1 … j p
is the projection on the space of 

(x j1 ×…× x j p
). 

III. APPLICATION TO THE DATA FUSION PROBLEM  

A. Global architecture of the multi-sensor fusion 
The vehicle frame origin M is chosen at the middle of 
rear axle. The elementary rotation and displacement 
between two samples can be obtained with good 

precision uniquely using the measurements of the ABS 
sensors of the 4 wheels and the driving wheel encoder. 
Consequently, for a better clearness and more 
simplicity, let consider two levels of fusion as shown on 
figure 3. ‘δθ ’ and ‘δs’ are given by a static fusion stage 
which uses the measurements of the ABS sensors and 
driving wheel encoder. The result is the input of the 
dynamic module which computes the vehicle location. 

Figure 3. Localizer architecture. 

B. Static fusion 
Thanks to the Ackerman [5] model (see Fig. 4), the 
system of constraints can be written as: 
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Where: 
- δRL, δRR, δFL, δFR, ψ denote the measured 

variables (the distances travelled between two 
samples by the different wheels and the angle 
of a virtual wheel, measured by the driving 
wheel encoder);  

- δs , δθ , ψR , ψL are the estimated variables (the 
elementary distance, the angle between two 
samples and the angles of the two front 
wheels);  

- L and e are the vehicle parameters (the distance 
between the axles and the wheel base). 
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Figure 4. Ackerman model of a car in a turning manoeuvre. 

 
This stage of the fusion is solved thanks to the 
consistency domains method described previously. For 
a better clearness, let us build the graph of constraints. 
To obtain a simplified graph of constraints, one can 
introduce 4 new intermediate variables called a1, a2, a3 
and a4:  

L
e

a
)tan(

1
ψ⋅=    )cos(.2 ψδ RFRa =  

)cos(.3 ψδ LFLa =    δθ⋅= ea4  
The system of equations (4) becomes:  

ABS 

Driving
wheel 

Static 
fusion 

Localization 
GPS 

Entries (δs, δθ ) 

Dynamic 
fusion 
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Its graph of constraints is presented on figure  5. 
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Figure 5. Graph of constraints of the CSP  

 
One takes x = (δs, δθ, δRR, δRL, δFR, δFL, ψ, ψR, ψL, e, L, 
a1, a2, a3, a4) gathering the state, the parameters of the 
model and the auxiliary variables. 
Consider I = {1, …, 15} the set of the indices of vector 
x. The problem is to calculate intervals [δs] et [δθ] 
solutions thanks to the method based on the consistency 
domains.  
In the continuation, we show how to proceed to 
calculate the interval [δs]. The method is quasi-similar 
for [δθ]. 

C. Calculation of [δs] globally consistent 
1) Step 1 
According to theorem 1, one has:  
Π1(S)  = [δs] ∩ DF(xI\{1})  

 = [δs] ∩ DF([δθ], [δRR], [δRL], [δFR], [δFL], [ψ], 
[ψR], [ψL], [L], [e], [a1], [a2], [a3],[a4])  
 

δRL 

a4 

δRR a1 

ψ δFL ψL 

a3 

δFR ψR 

a2 

δθ

e 

L 

 
Figure 6. Graph reduced to the variables other than δs 

Now, the problem is to calculate DF(xI\{1}), knowing that 
δs is connected only to the variables δRR, δRL, e, a1, a2, 
a3 et a4 of respective indices 3, 4, 12, 13, 14 and 15 in x.  
By using corollary 2, one can write: 

DF(xI\{1}).= D {}1f (Π3, 4, 12 ,13, 14, 15 (SI-{1})) 
where SI-{1} is the set of the solutions of CSP HI-{1} only 
made up by the variables other than δs and the 

constraints other than those involving δs, like illustrated 
on figure 6. 
 
2) Step 2 
Let us calculate projection Π3, 4, 12, 13, 14, 15(SI-{1}). It turns 
out that HI-{1} is a set of trees: global consistency can be 
reached using the algorithm “CLIMB/FALL” [4, 7, 6] 
for each tree. In addition HI-{1} has a structure such as 
the variables solutions (δRR, δRL, a2, a3)  are independent 
between them and independent of others solutions (a1, 
a4) (see figure 6); the fact that δθ and a4 are initialised 
with [−∞, +∞] has the effect to ‘inhibit’ the constraint 

δθ⋅= ea4 and so leads independency between variable 
a1 and a4. Consequently one has: 
Π3, 4, 12, 13, 14, 15(SI-{1})= Π3(SI-{1}) × Π4(SI-{1}) × Π12(SI-{1})  

   ×Π13(SI-{1}) × Π14(SI-{1}) × Π15(SI-{1}) 
 
The calculation of projections of SI-{1} on these six 
spaces is done by the following calculations: 

Π3(SI-{1})=[δRR] 
Π4(SI-{1})=[δRL] 

Π12(SI-{1})=[a1]=
[ ] ( )

][
][tan

L
e ψ⋅  

Π13(SI-{1}) = [a2] = [δFR].cos([ψR]) 
Π14(SI-{1}) = [a3] = [δFL].cos([ψL])  
Π15(SI-{1}) = [−∞, +∞] 

 
Finally   

Π3, 4, 12, 13, 14, 15(SI-{1}) = [δRR]×[δRL]× [ ] ( )
][

][tan
L

e ψ⋅  

 × [δFR].cos([ψR])×[δFL].cos([ψL])× [−∞, ∞] 

3) Step 3 
It remains to calculate D {}1f (Π3, 4, 11, 12 ,13, 14 (SI-{1})). 
a4 appearing several times, by applying theorem 2, for a 
scalar a4 ∈ [a4] and for the intervals [δRR], [δRL], [a1], 
[a2], [a3], one has:  
D {}1f ([δRR], [δRL],[a1], [a2], [a3], a4) =(a4/[a1]) ∩  

([δRR]−a4) ∩ ([δRL]+a4) ∩ ([a2]−a4) ∩ ([a3]+a4) 
Let study the case a4 >0 (to write a4/[a1] boundaries), 
the other case is similar. 

D {}1f ([δRR], [δRL],[a1], [a2], [a3], a4) = ([
1

4

a
a , 

1

4
a
a

]) ∩  

([ RRδ − a4, RRδ  − a4]) ∩ ([ RLδ  + a4, RLδ  + a4]) ∩ 

 ([ 2a + a4, 2a + a4]) ∩ ([ 3a  − a4, 3a  − a4])  

=  [Sup{
1

4
a
a , RRδ  − a4, RLδ  + a4, 2a + a4, 3a  − a4},  

 Inf{ 
1

4
a
a , RRδ  − a4, RLδ  + a4 , 2a + a4 , 3a  − a4 }] 

The problem of the research of the min and max 
according to a4 is simplified by posing  
a5=Sup{ RLδ , 3a } and a6=Sup{ RRδ , 2a }. One has: 

Sup{
1

4
a
a , RRδ  − a4, RLδ  + a4, 2a  + a4, 3a  − a4} = 

Sup{
1

4
a
a , a5 + a4, a6 − a4} 



 
 

 

In the same way, by posing a7 = Inf{ RLδ , 3a } and  

a8 = Inf{ RRδ , 2a } one has then:  
D {}1f ([δRR], [δRL],[a1], [a2], [a3], a4) =  

[Sup{
1

4
a
a , a5 + a4, a6 − a4}, Inf{

1

4
a
a , a7  + a4, a8 − a4}] 

The study of Sup{
1

4
a
a , a5 + a4, a6 − a4} and  

Inf{
1

4
a
a , a7  + a4, a8 − a4} when a4 varies in IR, gives a 

squaring of the space of a4 where boundaries of 
D { }1f ([δRR], [δRL],[a1], [a2], [a3], a4) are well known. 
Thanks to a similar reasoning, by comparing the 
boundaries, one can square the space of a4 in which  

Sup{
1

4
a
a , RRδ  + a4, RLδ  − a4, 2a + a4, 3a  − a4}  

≤  Inf{ 
1

4
a
a , RRδ  + a4, RLδ  − a4, 2a + a4 , 3a  − a4 } 

i.e where D {}1f ([δRR], [δRL],[a1], [a2], [a3], a4) ≠ φ. 

4) Step 4 
The final stage is the calculation of  
D { }1f ([δRR], [δRL],[a1],[a2], [a3],[a4])  
The property used is: 

D {}1f ([δRR], [δRL],[a1], [a2], [a3],[a4]) = 
U

][ 44 aa ∈
D {}1f ([δRR], [δRL],[a1], [a2], [a3], a4) 

To calculate this union, the monotony of the different 

functions
1

4
a
a , a5 + a4 and a6 − a4 is used. 

D. Dynamic Localization 
In the dynamic fusion stage, we consider an odometric 
model. The mobile vehicle pose Xk, at time instant k, is 
calculated thanks to Xk-1 and to the output of the static 
fusion process by: 
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where xk and yk represent the vehicle position, at time tk, 
in the reference frame and θk the heading angle.  
For every moment k, let consider all the state equations 
between the time indexes 0 and k. In theory, we have to 
solve the complete CSP H: (F(x)=0/x∈[x]), where: 
x = (xk,…,x

0
,yk, ..., y

0
,θk,…,θ0, δS,k,…, δS,0, δθ,k,…, δθ,0) 

• [δS,i] et [δθ,i] are provided by the static fusion 
stage 

• The GPS measurement (xgps,mes, ygps,mes) is used 
to initialize the intervals [xk] and [yk]. The 
longitude/latitude estimated point is converted to 
a Cartesian coordinate, in a local frame. The 
GPS bounded error measurement is obtained as 
it follows. The GST NMEA sentence is used to 
characterize the error bound which is taken such 

as 3 times the estimated standard deviation σ̂  
(computed in real time by the GPS receiver). 

 
]ˆ3 ,ˆ3[][

]ˆ3 ,ˆ3[][
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ymesgpsymesgpsgps
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yyy
xxx

σσ
σσ

+−=
+−=

 (6) 

• The heading angle [θi] =[−∞,+∞] is not 
measured. 

• F represents the system of odometric model (5). 

This CSP gives a general solution to the non linear state 
observation. For a real time implementation of this 
method, it is unrealistic to consider all the equations 
from t0 to tk. Therefore, we consider a limited horizon 
‘h’. Typically, we have used a horizon equal to 3 (i.e. 3 
samples) corresponding to the dimension of the state Xk. 
This induces 18 primitive constraints for each CSP Hk. 
To solve this complex CSP, we have used Waltz’s 
algorithm, precisely a Forward Backward Propagator 
(FBP). This is a tractable solution even if it provides 
only locally consistent boxes. 

IV. EXPERIMENTAL RESULTS 
We have developed two localisers. The first one is a 
usual EKF that supposes zero mean white noises. The 
second one uses the constraints satisfaction approach 
described in this paper. 
The results presented in this section were obtained by 
post-processing real sensors measurements acquired 
thanks to our experimental car. The data of the ABS 
sensors were sampled at 100 Hz. The differential GPS 
receiver (a Trimble AgGPS132 working with Omnistar 
corrections available on Europe) was used in a 
synchronized mode at 5 Hz. Thanks to the PPS signal, 
all the data were resample at 5 Hz and the GPS latency 
has been compensated. This simplifies the development 
of the fusion methods.  
Let consider first the static fusion stage. 
Figure 7 shows guaranteed estimates of the elementary 
displacement [δs] between two samplings (the speed of 
the vehicle is of approximately 70km/h). The method 
based on the consistency domains (curve with “+”) 
gives a more precise estimate than a method based on 
Waltz’s algorithm (curve with “*”). Indeed, the 
inaccuracy is reduced at least by 25% what is very 
significant. This result is in conformity with the theory 
since the method based on the consistency domains 
reaches global consistency and thus provides more 
accurate boxes. On the contrary, a method based on 
local consistency induces additional pessimism. 
In term of computing time and to fix the order of 
magnitude, an iteration of the method takes 280ms 
under Matlab and with a PC equipped with a processor 
INTEL Pentium IV at 1,7Ghz. For the Waltz’s 
algorithm, the computing time is 35ms with an iteration 
count varying generally between 3 and 4, for a selected 
threshold of contraction of 10-3 order. Regarding the 
real-time issue, the method based on consistency 
domains has a known number of computations contrary 
to the Waltz’s method. This result is extremely 
encouraging for a real-time implementation. 
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Figure 7. Guaranteed estimates of δS (consistency domain “+” and 

Waltz’s method “*”) 
In order to be able to compute estimation errors, we 
have used a Thales Navigation GPS receiver used in a 
Post-Processed Kinematic mode working with a local 
base (a Trimble 7400). This system was able to give 
positions of reference with a 1 Hz sampling rate. Since 
the constellation of the satellites was good enough 
during all the trials (April 2004), all the kinematics 
ambiguities were fixed. Therefore, we think that a few 
centimetres accuracy was reached. The synchronization 
between this reference and the outputs of the dynamic 
localizers (FBP and EKF) has been made thanks to the 
GPS timestamps.  We have also taken into account the 
position offsets between the antennas of the two GPS 
receivers and the origin of the mobile frame. 
Figure 8 shows the interval errors of the EKF and of the 
FBP for the x dimension. In addition to the loss of 
differential correction, we have simulated 2 complete 
GPS masks of 30s duration each, at the instants 7s and 
270s. During these masks, the speed was about 50kmph. 
It appears from these results that the EKF is more 
accurate since its estimated 3σ errors bounds are smaller 
than the guaranteed intervals of the FBP. 
Nevertheless, on can remark the too much great 
confidence of the EKF since the reference PPK position 
is sometimes out of the estimated interval error.  
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Figure 8. Interval errors of EKF and FBP 

V. CONCLUSION 
This paper has presented a new dynamic localization 
technique based on Constraints Satisfaction on real 
intervals. This approach guarantees that the real pose of 
the car is included in the estimated boxes even if the 
equations are highly non linear. This approach has been 
compared with the usual technique based on Kalman 

filtering which relies on linearization and supposes 
white Gaussian noises. 
In the problem treated here, there is a high redundancy 
in data and equations since we have used 4 ABS 
encoders, a measurement of the driving wheel angle and 
the measurements of a GPS receiver. Thanks to this 
redundancy, constraints satisfaction techniques alone 
can be used (i.e. without bisection) since the consistence 
of all the data produces rather precise estimates (i.e. not 
too pessimistic) as shown by the experimental results. 
For the dynamic fusion, the contractor presented is 
based on Forward and Backward Propagation in 
addition with the use of the Waltz algorithm. This 
method is well adapted to a real time context since, with 
a 1.8 GHz Pentium 4 and a Matlab implementation, the 
FBP treats ten minutes of data in roughly 150s.  
It turned out that the estimates provided by the FBP are 
more pessimist than the one of a Kalman filter if we 
consider the 3σ bounds outputted by the filter. It's quite 
natural since a bounded error approach is always 
pessimist because its estimates are guaranteed. 
Moreover, by using consistency domain to solve cycles 
on the dynamic fusion stage, this precision could be 
improved. The experimental results indicate that the 
precision is near to the one of the Kalman filter. 
Nevertheless, this last can be mistaken in giving 
sometimes too trustful results or can converge toward 
local minima.  
We think that for applications that need a high level of 
integrity, the pessimism of the estimates is not 
handicapping whereas the fact of obtaining guaranteed 
results is essential. 
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