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Abstract 

In order to get continuous dynamic localization of a mobile robot, 
dead reckoning and absolute sensors are usually merged. The models 
used for this fusion are non linear and, therefore, classical tools (such 
as Kalman filter) cannot guarantee a maximum error estimation. In 
some applications, integrity is essential and the ability to guaranty the 
result is a crucial point. There are ensemblist approaches that are 
insensitive to non linearity. In this context, the random errors are only 
modeled by their maximum bound. This paper presents a new 
technique to merge the data of redundant sensors with a guaranteed 
result based on constraints propagation techniques on intervals. We 
have thus developed an approach for the fusion of the 4 ABS wheel 
encoders, a measure of the angle of the driving wheel and a 
differential GPS receiver. Experimental results show that the 
precision that one can obtain is very good with a guaranteed result. 
Moreover, constraints propagation techniques are well adapted to a 
real time implementation. 

I.  INTRODUCTION  
Mobile robot localization is a well known problem. Usually, 

the localization process involves dead reckoning sensors (like 
odometry, gyros, etc.) and absolute sensors (like telemeters, 
goniometers, GPS, etc.). These two technologies are 
complementary and the fusion of the sensors measurements can 
bring more precision, availability and integrity. For example, 
GPS suffers from satellite masks occurring in forests, cities, 
tunnels, etc. In this case, a dead reckoning technique can still 
provide an estimation of the pose of the mobile robot. 
Moreover, by using continuously odometry in a fusion process, 
one can filter the GPS estimates.  

Furthermore, the methods used in the fusion stage, like 
Kalman filtering often rely on a state space representation. 
Nevertheless, the state space representations considered in 
robotics are usually non linear (in the evolution and observation 
models). The classical solution is to linearize the equations 
around the previous estimated state and then apply a linear 
technique. This is the principle of the Extended Kalman Filter in 
Gaussian perturbations context. The main drawback of such an 

approach is that the convergence of the observer cannot be 
guaranteed. In practice, the observer can converge towards a 
local minimum which can be different of the real solution.  

With the assumption that the model and measurement errors 
are bounded, completely different approaches can be studied. 
These ensemblist approaches (also known as “bounded error 
methods” or “set-membership methods”) can be completely non 
linear. For example, in [2], the authors propose to use Sivia 
algorithm (Set Inversion by Interval Analysis) to find all the 
possible static 3D locations with an automatic theodolite using 
indistinguishable landmarks. If only one solution is obtained, 
then an EKF is applied. Ensemblist observers based on a 
predictor/estimator mechanism have also been proposed [5, 7, 
8]. The same technique has been used in [1] to localize a mobile 
robot with ultrasonic measurements. These approaches can 
reach a high precision with a guaranteed result, but they are not 
adapted to a real time implementation since they are very slow 
and since their computation time is not limited, because of the 
bisections of the state space used to find the result.  

When there is a high redundancy of measurements and 
equations, propagation techniques on real intervals can be used. 
The key idea of such an approach is to find the consistence of 
all the data linked by the state space equations which provides 
what one calls "constraints". A remarkable property of these 
techniques is that they are very fast, compared to the bounded 
error predictor/estimator observers, and thus they are well 
adapted to a real time running.  

The objective we consider in this work is to develop a real 
time bounded-error approach based on interval analysis, in 
order to guarantee the vehicle location on a terrestrial reference 
frame. We are not looking for a high precision but we want to 
achieve a high integrity in the localization process [12]. This is 
essential for driving assistance systems that use digital maps.  

The sensors that we consider (the 4 ABS wheel encoders, a 
measure of the angle of the driving wheel and a differential GPS 
receiver) provide redundant data.  Therefore, we propose to 
study in this paper how propagation techniques on real intervals 
can fuse all this information.  



The paper is organized as follows. Part II presents the 
fundamental notions of interval analysis, consistence and 
constraints propagation. The contractor we have used in the 
experiments is described. In section III, the equations of the 
discrete and non linear state space are provided. We have 
decomposed the fusion problem into two stages and we explain 
for both of them the ensemblist solution we have applied. 
Finally, section IV presents experimental results carried out 
with our experimental car.  

II. INTERVAL ANALYSIS AND CONSTRAINTS PROPAGATION 
In this section, we briefly present interval analysis and we 

explain the constraints propagation technique (also called 
consistence technique in the literature) used for the multisensor 
fusion process. 

A.  Basic definitions 
 A real interval, denoted [x], is defined as a closed and 

connected subset of IR, and a box [x] of IRn as a Cartesian 
product of n intervals ([x] = ⊗

= ni ...1
[xi]).  

The main idea of interval analysis is to provide efficient 
tools and different algorithms to guarantee with the least 
pessimism, the inclusion of all possible solutions of an 
ensemblist problem to a given box. All elementary arithmetic 
operations like {+, −, ×, /} are extended to the ensemblist 
context [10]. Extensions are also defined for usual operations 
between sets of IRn like {∩, ⊃, ⊂, etc…}.  

The image of an interval by a function isn’t necessarily an 
interval, so the inclusion function [11] has been developed to 
calculate efficiently an interval enclosing the image set. 

For the fusion problem considered, we have chosen to use 
constraints propagation techniques, because of the great 
redundancy of data and equations.  

B. Constraints Satisfaction Problem 
Constraints Satisfaction Problems (CSP) were initially 

defined for discrete domains i.e. the values xi belongs to finite 
sets [4]. Later, CSP were extended to continuous domains (box 
of IRn in general) [5]. 

Consider a box [x] of IRn. Let consider m relationships 
representing the constraints and linking the components [xi] of 
[x] : 

 fi (x1, …, xn) = 0,  i = 1 …m  (1) 

Let f be the Cartesian product of fi. Equation (1) can be 
rewritten in a vectorized form as f(x) = 0  

The problem of searching the minimal box of [x] satisfying 
all the constraints fi corresponds to a CSP denoted H, which can 
be formulated as:  

 H:(f(x) =0 | x∈[x])  (2) 

The solution set of H is defined as  

 S = {x∈[x] | f(x) =0}  (3) 

C.  Consistence 
A scalar xi belonging to the ith component of [x] is globally 

consistent with H, if it is possible to find a vector x within S 
having it like ith coordinate.  

∃ x1 ∈ [x1], …, xi-1 ∈ [xi-1], xi+1 ∈ [xi+1], …, xn ∈ [xn] / f(x1, 
… xi-1, xi, xi+1, …, xn) =0  

A scalar xi belonging to the ith component of [x] is locally 
consistent with H if for such constraint fi (taken separately), it 
is possible to find a vector x consistent with fi having it like ith 
coordinate :  

∀ fi,  ∃ x1 ∈ [x1], …, xi-1 ∈ [xi-1], xi+1 ∈ [xi+1], …, xn ∈ [xn] / 
fi(x1, …, xn) =0 

An interval [x] is globally (respectively locally) consistent 
with H if ∀ xi ∈ [x], xi is globally (respectively locally) 
consistent with H. Global consistence implies local consistence.  
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Fig. 1. Global (left) and local (right) consistence. 

Figure 1 illustrates these notions: S1 and S2 are the solutions 
of two constraints considered separately, S is the solution of the 
CSP.  

D. Contractors 
To contract H means to substitute the box [x] by a smaller 

box [x’] ⊂ [x] containing all the solutions of H i.e. S ⊂ [x’].  

A contractor for H is defined as an operator used to contract 
H.  

There are different kinds of contractors [6]. In this paper, we 
use a forward backward propagation technique based on 
primitive constraints [4]. It is a locally consistent contractor 
called FBP in the following. 

The principle is the following. Let consider the constraint 
z=x.cos(y). At first, this constraint is decomposed into primitive 
constraints. A primitive constraint only involves an arithmetic 
operator or a usual function (cos, exp, etc.).  
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where a is an auxiliary variable initialized by [a] =[-∞,+∞]. 
Let [cos] and [cos-1] be inclusion functions for functions cos and 
cos-1. The FBP works as follows. 

%forward propagation 

[a]=[a]∩[cos]([y])  F1 

[z]= [z]∩[x].[a]  F2 

%backward propagation 

[x]=[x]∩[z]/[a] B3 

[a]=[a]∩[z]/[x] B4 

[y]= [y]∩[cos-1]([a]) B5 

Please, notice that the order of the constraints is important. 
In the considered example, this order is optimal as shown by the 
graph. For more details, please see [4]. 

Suppose that x∈ [x]=[-1;2], y∈ [y]=[0;π/2], z∈ [z]=[1;3]. In 
this case, the FPB contractor gives the following results: 

F1: [a]=[−∞,+∞]∩[cos]([0, π/3]) = [0.5, 1]  

F2: [z]=[1, 3]∩[ -1, 2].[ 0.5, 1] = [1, 2] 

B3: [x]=[ -1, 2]∩[ 1, 2]/[ 0.5, 1]= [1, 2] 

B4: [a]=[ 0.5, 1]∩[ 1, 2]/[ 1, 2]= [0.5, 1] 

B5: [y]= [0, π/2]∩[cos-1]([ 0.5, 1])= [0, π/3] 

When there are several redundant constraints, the graph 
corresponding to the elementary constraints contains cycles, in 
general. In that case, the FBP contractor may not reach a locally 
consistence. A solution is then to apply the algorithm of Waltz 
whose principle is to repeat the propagation until the intervals 
do not contract any more [3].  

III. DATA FUSION USING THE FBP CONTRACTOR 

A. Global architecture of the multi-sensor fusion 
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Fig. 2. Localizer architecture. 

For a better clearness, let consider two levels of fusion as 
shown on figure 2. The elementary rotation and displacement 

δθ,k et δs,k are given by a static fusion which uses the 
measurements of the ABS sensors of the 4 wheels and the 
driving wheel encoder. The redundancy of the information 
provided by these sensors should decrease in a significant way, 
the pessimism of the initial box. The result is the input of the 
dynamic module which computes the vehicle location. 

B.  Models used 
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Fig. 3. The Ackerman model of a car in a turning maneuver. 

For the static fusion stage, we consider an Ackerman model 
(fig (3), see [9]). It provides the non linear system: 
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Where: 
- δRL, δRR, δFL, δFR, ψ denote the measured variables (the 

distances travelled between two samples by the 
different wheels and the angle of a virtual wheel, 
measured by the driving wheel encoder);  

- δs , δθ , ψR , ψL are the estimated variables (the 
elementary distance, the angle between two samples 
and the angles of the two front wheels);  

- L and e are the vehicle parameters (the distance 
between the axles and the wheel base). 

 
In the dynamic fusion stage, we consider an odometric 

model. The mobile vehicle pose Xk, at time instant k, is 
calculated thanks to Xk-1 and to the output of the static fusion 
process by: 
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where xk and yk represent the vehicle position, at time tk, in 
the reference frame and θk the heading angle.  

C. Static fusion 
The aim of the static fusion stage is to compute guaranteed 

intervals for δθ,k et δs,k. At every moment tk, let consider the CSP 
Hk: (F(x) = 0 / x ∈[x]), where: 

• x = (δs, δRL, δRR, δFL, δFR, δθ, ψ, ψR, ψL, L, e )  

• F represents the system of equations (5) 

• The 4 ABS provide [δRL], [δRR], [δFL], [δFR]. In order to 
determine borders for the intervals, we suppose that the 
covered distance error between two instants tk-1 and tk, 
is less than the covered distance corresponding to one 
step of the ABS sensor (denoted δABS), with the 
hypothesis that the vehicle rolls without slipping. 

 [δ] = [δmes−δABS, δmes+δABS]  (7) 

• The error of the angle ψ is linked to the error of the 
driving wheel encoder. Thanks to specific tests, we 
estimated that the maximum of this error is 
ψDWE = 0.5 deg.  

 [ψ] = [ψmes−ψDWE, ψmes+ψDWE]  (8) 

• [δS ], [δθ] , [ψR], [ψL] are not measured. They are 
initialized with unknown value: [−∞,+∞] 

• [L], [e] are vehicle parameters. They are roughly known 
that’s why they are treated as unknown quantities in the 
FBP. 

The estimates of [δθ,k] et [δs,k] are obtained thanks to the FBP 
contractor (presented in section II.D) applied to the CSP Hk. 
Please notice that between two samples the CSP are different 
and independent. In addition, an originality of the method is that 
all the variables of the CSP can be contracted even the 
measurements and the parameters used in the model. The 
appendix presents the algorithm we have developed. 

D. Dynamic fusion 
For every moment k, let consider all the state equations 

between the time indexes 0 and k. In theory, we have to solve 
the complete CSP H:(F(x)=0/x∈[x]), where:x = (xk,…,x

0
,yk, ..., 

y
0
,θk,…,θ0, δS,k,…, δS,0, δθ,k,…, δθ,0) 

• [δS,i] et [δθ,i] are provided by the static fusion stage 

• The GPS measurement (xgps,mes, ygps,mes) is used to 
initialize the intervals [xk] and [yk]. The 
longitude/latitude estimated point is converted to his 
Cartesian coordinate, in a local frame (see Fig. (6)). The 
GPS bounded error measurement is obtained as it 
follows. The GST NMEA sentence is used to 
characterize the error bound which is taken such as 3 
times the estimated standard deviation σ̂  (computed in 
real time by the GPS receiver). 
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• The heading angle [θi] =[−∞,+∞] is not measured 

• F represents the system of odometric model (6). 

This CSP gives a general solution the non linear state 
observation [5]. For a real time implementation of this method, 
it is unrealistic to consider all the equations from t0 to tk. 
Therefore, we consider a limited horizon ‘h’. Typically, we 
have considered a horizon equal to 4 (i.e. 4 samples) which 
induces 27 primitives constraints. Please notice that the inputs 
δS,i, δθ,i, are contracted a second time in H.  

 h

h
(xk, yk, θk, δS,k, δθ,k) 

(xk-1, yk-1, θk-1, δS,k-1, δθ,k-1) 
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time

  

Fig. 4. Graphical interpretation of the horizon limited CSP H. 

IV. EXPERIMENTAL RESULTS 
Several tests have been carried out with our experimental 

car (Fig. 5). The data of the four ABS, the driving wheel 
encoder and the Trimble Ag132 differential GPS receiver 
(working with Omnistar differential corrections) have been 
synchronized thanks to the Pulse Per Second output of the GPS 



receiver The sampling rate was 5 Hz. The data of an optical 
gyro KVH has been also collected for comparison purposes. 

Figure 6 shows the top view of an experiment. In the 
continuation, we will limit our study to the part framed in black. 
It contains two roundabouts, a straight line and a turn. 

.  
Fig. 5. View of the experimental car with the Ag132 GPS receiver. 
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Fig. 7. Estimated δs. 
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Fig. 8. Estimated δθ. The data of the KVH gyro is dotted.  

The results of the static fusion are plotted on figures 7 and 8. 
Each estimate represents a guaranteed elementary displacement 
or rotation during 200 ms. The irregularities of figure 8 are due 
to the fact that the acquisition process is not perfectly periodic. 
Nevertheless, the method we have used is insensible to this 
phenomenon since the odometric model does not require a 
strictly periodic sampling.  
The estimated elementary rotation is very good (+/- 0.2 deg.) 
and very close to the measurement provided by a fiber optic 
gyro (Fig. 8). 

Figure 9 indicates that the ensemblist fusion of all the 
sensors reduces significantly the uncertainty while ensuring 
guaranteed estimates. Moreover, one can remark that the FBP 
provides a dead reckoning estimate of the pose of the car when 
the GPS signal is blocked. This estimate is also guaranteed. On 
Fig. 9, the duration of the GPS failure is 10 seconds. 
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Fig. 9. Estimated location boxes in meters 

(DGPS in thin and FPB in bold). 

Finally, the FBP contractor is able to reconstruct a non 
directly observed quantity, like the heading angle (see Fig.10). 
Please keep in mind that this estimate is the result of a 
guaranteed non linear state observation. 
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Fig. 10. Observation of the heading angle (in degrees). 



For purposes, the static fusion stage treats one minute of 
data in roughly 30s and the dynamic fusion stage in 15s, with a 
1.8 GHz Pentium 4 (Matlab implementation). 

V. CONCLUSION 
This paper has presented a new dynamic localization 

technique based on constraints propagation on real intervals. 
This approach guarantees that the real pose of the car is 
included in the estimated boxes. 

In the problem treated here, there is a high redundancy in 
data and equations since we have used the 4 ABS encoders, the 
driving wheel encoder and the measurements of a DGPS 
receiver. All this information is available in modern cars. 
Thanks to this redundancy, contractors alone can be used (i.e. 
without bisection) since the consistence of all the data produces 
rather precise estimates (i.e. not too pessimistic) as shown by 
the experimental results. The contractor presented is based on 
Forward and Backward Propagation (FBP) in addition with the 
use of the Waltz algorithm for the cycles in the constraints 
graph, in order to optimise the contraction. As shown, this 
method is well adapted to a real time context. 

The major implementation problem of such an approach is 
to determine correctly the bounds of the noises. Indeed, if these 
bounds are underestimated, the contractor can say that there is 
no solution. On the contrary, if the bounds are overestimated, 
the estimated boxes can be very large (the estimates are then 
very pessimistic). A methodological way to treat the tuning of 
these parameters represents the main perspective of this 
research. 
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VII. APPENDIX: FBP CONTRACTOR FOR THE STATIC FUSION 
First, let introduce auxiliary variables ai for i ∈[1,8] to get 
primitive constraints. Then, we apply the FBP algorithm: 
While it contracts “enough”, repeat 
 
Forward propagation  Backward propagation 

[a1,i] = [a1,i]∩[tan]([ψi]).[Li]         (1) [a8,i] = [a8,i]∩[δθ,i]/[δS,i]                 (16) 
[a2,i] = [a2,i]∩[tan]([ψi]).[Ei]          (2) [ψi] = [ψi]∩[tan-1]([Li].[a8,i])         (14) 
[a3,i] = [a3,i]∩[Li]−[a2,i]                  (3) [Li] = [Li]∩[tan]([ψi])/[a8,i]           (14) 
[ψL,i] = [ψL,i]∩[tan-1]([a1,i]/[a3,i])   (4) [a7,i] = [a7,i]∩[δRR,i]−[δS,i]              (12) 
[a4,i] = [a4,i]∩[Li]+[a2,i]                  (5) [a7,i] = [a7,i]∩[δS,i]−[δRL,i]              (13) 
[ψR,i] = [ψR,i]∩[tan-1]([a1,i]/[a4,i])   (6) [a7,i] = [a7,i]∩[a5,i]−[δS,i]                (10) 
[a5,i] = [a5,i]∩[δFR,i]. [cos]([ψR,i])   (7) [a7,i] = [a7,i]∩[δS,i]−[a6,i]                (11) 
[a6,i] = [ a6,i]∩[δFL,i].[cos]([ψL,i])   (8) [δRL,i] = [δRL,i]∩[δS,i]−[a7,i]            (13) 
[a7,i] = [a7,i]∩[δθ,i].[Ei]                   (9) [δRR,i] = [δRR,i]∩[δS,i]+[a7,i]           (12) 
[δS,i] = [δS,i]∩[a5,i]−[a7,i]              (10) [Ei] = [Ei]∩[a7,i]/[δθ,i]                      (9) 
[δS,i] = [δS,i]∩[a6,i]+[a7,i]              (11) [δθ,i] = [δθ,i]∩[a7,i]/[Ei]                    (9) 
[δS,i] = [δS,i]∩[δRR,i]−[a7,i]            (12) [a6,i] = [a6,i]∩[δS,i]−[a7,i]                (11) 
[δS,i] = [δS,i]∩[δRL,i]+[a7,i]            (13) [a5,i] = [a5,i]∩[δS,i]+[a7,i]                (10) 
[a8,i] = [a8,i]∩[tan]([ψi]) /[Li]       (14) [δFL,i] = [δFL,i]∩[a6,i]/[cos]([ψL,i])    (8) 
[δθ,i] = [δθ,i]∩[a8,i].[δS,i]               (15) [ψL,i] = [ψL,i]∩[cos-1]([a6,i]/[δFL,i])  (8) 
[δS,i] = [δS,i]∩[δθ,i]/[a8,i]               (16) [δFR,i] = [δFR,i]∩[a5,i]/[cos]([ψR,i])   (7) 

[ψR,i] = [ψR,i]∩[cos-1](a5,i/δFR,i)       (7) 
[a1,i] = [a1,i]∩[a4,i].[tan]([ψR,i])        (6) 
[a1,i] = [a1,i]∩[a3,i].[tan]([ψL,i])        (4) 
[a4,i] = [a4,i]∩[a1,i]/[tan]([ψR,i])        (6) 
[a3,i] = [a3,i]∩[a1,i]/[tan]([ψL,i])        (4) 
[Li] = [Li]∩[a3,i]+[a2,i]                     (5) 
[Li] = [Li]∩[a4,i]−[a2,i]                     (3) 
[a2,i] = [a2,i]∩[a4,i]−[Li]                    (3) 
[a2,i] = [a2,i]∩[Li]−[a3,i]                    (5) 
[Ei] = [Ei]∩[a2,i]/[tan]([ψi])             (2) 
[ψi] = [ψi]∩tan-1([a2,i]/[Ei])             (2) 
[Li] = [Li]∩[a1,i]/[tan]([ψi])             (1) 
[ψi] = [ψi]∩[tan-1]([a1,i]/[Li])          (1) 

 


