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Abstract -In order to implement a continuous and robust 
dynamic localization of a mobile robot, the fusion of dead 
reckoning and absolute sensors is often used. Depending on the 
objectives of precision or integrity, the choice of an algorithm 
could be crucial. For example, if the models used for the fusion 
are non linear, classical tools (such as a Kalman filter) cannot 
guarantee maximum error estimation. There are bounded 
error approaches that are insensitive to non linearity. In this 
context, the random errors are only modeled by their 
maximum bound. This paper compares a technique based on 
constraints propagation on intervals, with the usual Extended 
Kalman Filter for the data fusion of redundant sensors. We 
have thus developed both techniques and we consider the 
fusion of wheel encoders, a gyro and a differential GPS 
receiver. Experimental results show that the precision of a 
constraints propagation technique can be very good with 
guaranteed estimations. Moreover, such an approach is well 
adapted to a real time implementation. 

Index Terms – Outdoor Localization, Sensor Fusion, 
Bounded-error State Observation, Kalman filtering, GPS. 

I.  INTRODUCTION  
Mobile robot localization in outdoor environments is a 

key issue for many applications [5], particularly, for those 
that need absolute positioning information. Usually, the 
localization process involves dead reckoning sensors (like 
odometers, gyros, etc.) and absolute sensors (like telemeters, 
goniometers, vision, GPS, etc.) and tries to exploit their 
complementary and their redundancy. Indeed, the fusion of 
sensors measurements can bring more precision, availability 
and integrity. For example, GPS suffers from satellite masks 
occurring in forests, cities, tunnels, etc... In this case, dead 
reckoned sensors are able to provide an estimation of the 
mobile robot pose. Moreover, the quality of the positioning 
depends mainly on the visible satellites configuration. By 
using continuously dead reckoning sensors in a fusion 
process, one can filter the GPS estimates and increase the 
performances of the localizer. 

With the assumption that the model and measurement 
errors are bounded, a class of “bounded error methods” or 
“set-membership methods” propose to fuse the data in such a 
way that all results are guaranteed. 

For example, in [4], the authors propose to use SIVIA 
algorithm (Set Inversion by Interval Analysis) to find all the 
possible static 3D locations with an automatic theodolite 

using indistinguishable landmarks. If only one solution is 
obtained, then an EKF is applied.As bounded error method, 
observers based on a predictor/estimator mechanism have 
also been proposed [8, 10, 3]. The same technique has been 
used in [12] to localize a mobile robot with ultrasonic 
measurements. These approaches can reach a high precision 
with a guaranteed result, but they are not adapted to a real 
time implementation since they are very slow and since their 
computation time is not limited, because of the bisections of 
the state space used to find the result.  

If the measurements and the equations provide 
redundancy, propagation techniques on real intervals can be 
used. The main idea of such an approach is to eliminate the 
inconsistence between variables linked by the state space 
equations which provide what one calls "constraints". An 
interesting property of these techniques is that they are very 
fast, compared with the bounded error predictor/estimator 
observers. Thus, they are well adapted to a real time running.  

Furthermore, prevalent methods used in the fusion stage 
often rely on a state space representation (the most popular is 
Kalman filtering). Nevertheless, the state space 
representations considered in robotics are usually non linear 
(both for the evolution and observation models). The usual 
solution is to linearize the equations around the previous 
estimated state and then to apply a linear technique. This is 
the principle of the Extended Kalman Filter (EKF) in 
Gaussian perturbations context. The main drawback of such 
an approach is that the convergence of the observer cannot 
be guaranteed. In practice, the observer can converge 
towards a local minimum different of the real solution.  

The objective we consider in this work is to compare a 
real time bounded-error approach based on forward-
backward propagation [7] (denote FBP in the following), and 
an EKF approach in order to determine the vehicle location 
on a terrestrial global reference frame (like WGS84).  

The sensors that we consider in this work provide 
redundant data since we use two rears ABS wheel encoders, 
a gyro and a differential GPS receiver. 

The paper is organized as follows. Part II presents the 
fundamental notions of interval analysis: consistence, 
constraints propagation and contractors. Then, the FBP 
contractor we have developed is described. In section III, the 
equations of the discrete and non linear state space are 
provided. We have decomposed the fusion problem into two 
stages. We explain for both of them the solution which we 



implemented for the EKF and FBP approaches. Finally, 
section IV presents experimental results carried out with our 
experimental car with a very precise PPK GPS used for 
comparison purposes. 

II. INTERVAL ANALYSIS AND CONSTRAINTS 
PROPAGATION TECHNIQUES 

In this section, we briefly present interval analysis and 
we describe the constraints propagation technique (also 
called consistence technique in the literature) that we use for 
the multisensor fusion process. 

A. Basic definitions 
 A real interval, denoted [x], is defined as a closed and 

connected subset of IR, and a box [x] of IRn as a Cartesian 
product of n intervals ([x] = ×

= ni ...1
[xi]).  

The goal of interval analysis is to provide efficient tools 
and algorithms to guarantee the inclusion of all solutions of 
an bounded error problem to a given box with the least 
pessimism. A natural idea is to extend all elementary 
arithmetic operations like {+, −, ×, / etc…} to the bounded 
error context [13] and to extend also usual operations 
between sets of IRn like {∩, ⊃, ⊂, etc…}.  

Moreover, the objective of working with interval leads 
the introduction of inclusion function [11], defined such that 
image of an interval by a function is an interval, and 
calculate such that the interval enclosing the image set is 
optimal. 

Different algorithms exist in order to reduce the size of 
boxes [9] enclosing the solutions. For the fusion problem 
considered, we have chosen to use constraints propagation 
techniques, because of the great redundancy of data and 
equations.  

B. Notion of Constraints Satisfaction Problem (CSP) 

Constraints Satisfaction Problems (CSP) was initially 
defined for discrete domains i.e. the values xi belong to finite 
sets [6]. Later, CSP were extended to continuous domains 
(box of IRn in particular) [8].  

Consider a box [x] of IRn. Let consider m relationships 
representing the constraints and linking the components [xi] 
of [x]: 

 fi (x1, …, xn) = 0,  i = 1 …m  (1) 

Let F be the Cartesian product of fi. Equation (1) can be 
rewritten in a vectorized form as F(x) = 0  

The problem of searching the minimal box of [x] 
satisfying all the constraints fi corresponds to a CSP denoted 
H, which can be formulated as:  

 H:(F(x) =0 | x∈[x])  (2) 

The solution set of H is defined as  

 S = {x∈[x] | F(x) =0}  (3) 

One can notice that this formulation of a CSP is an 
adaptation of discrete CSP problems, where constraints are 
defined by two sets [6], to continuous intervals. 

C. Notion of consistence 
A scalar xi belonging to the ith component of [x] is 

globally consistent with H, if it is possible to find a vector x 
within S having it like ith coordinate.  

A scalar xi belonging to the ith component of [x] is locally 
consistent with H if for such constraint fi (taken separately), 
it is possible to find a vector x consistent with fi having it like 
ith coordinate 

An interval [x] is globally (respectively locally) 
consistent with H if ∀ xi ∈ [x], xi is globally (respectively 
locally) consistent with H. Consequently, global consistence 
implies local consistence.  

D. Contractors and the FBP contractor 
To contract H means to substitute the box [x] by a smaller 

box [x’] ⊂ [x] containing all the solution of H  i.e. S ⊂ [x’].  

A contractor for H is defined as an operator used to 
contract H. There are different kinds of contractors [9].  

In this paper, we use a forward backward propagation 
technique based on primitive constraints [1]. A primitive 
constraint only involves an arithmetic operator or a usual 
function (cos, exp, etc.). The FBP uses Waltz algorithm in 
order to optimise the contraction (the principle is to repeat 
the propagation until the intervals do not contract any more). 
It is a locally consistent contractor called FBP in the 
following. Please refer to 7 for more details.  

 

III. DATA FUSION USING FBP CONTRACTOR AND EKF 
 
In this section, we present the global architecture of the 

localization problem that we consider. The same scheme 
will be used by the FBP and an EKF. 

 

A. Global architecture of the multi-sensor fusion 
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Fig. 1. Localizer architecture. 

The vehicle frame origin M is chosen at the middle of 
rear axle. The elementary rotation and displacement between 
two samples can be obtained with good precision uniquely 
using the gyrometer and the two rears wheels. Consequently, 
for a better clearness and more simplicity, let consider two 
levels of fusion as shown on Figure 1. ‘δθ ’ and ‘δs’ are given 
by a static fusion stage which uses the measurements of the 
ABS sensors, the two wheels and the gyro. The result is the 
input of the dynamic module which computes the vehicle 
location. 



B. Models used 
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Fig. 2. Definition of the frames. 

Between two sampling instants, elementary rotations of 
the two rear wheels are integrated by counters. These values 
allow calculating the distances travelled between two 
samples by the rear wheels. The elementary displacement 
covered by M denoted δs,k and the rotation denoted δθ,k (see 
fig (2), at instant k, are given by the following equations:  
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Where: 
- δRL,k, δRR,k denote the measured variables (the values 

counted between two samples)  
- δs,k , δθ,k , are the estimated variables  
- L and e are the vehicle parameters (the distance 

between the axles and the wheel base). 
 

In the dynamic fusion stage, the mobile vehicle pose Xk, 
at instant k, is calculated thanks to Xk-1 and thanks to the 
output (δs,k , δθ,k) of the static fusion process: 
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Where xk and yk represent the vehicle position, at time tk, 
in the reference frame. θk is the heading angle.  

C. Static fusion 

1) FBP solution 

At the static fusion stage, the FBP returns guaranteed 
intervals for δθ,k et δs,k. At any moment tk, we have to solve 
the CSP Hk: (F(x) = 0 / x ∈[x]), where: 

• x = (δs, δRL, δRR, δθ, L, e )  

• F represents the system of equations (4) 

• The 2 rear wheels provide [δRL], [δRR]. For intervals 
borders, we suppose that the covered distance error 
between two instants tk-1 and tk, is less than the 
covered distance corresponding to one top of the 

ABS sensor counter (denoted δABS), with the 
assumption that the vehicle rolls without slipping 

 [δ] = [δmes−δABS, δmes+δABS]  (6) 

• [δθ] come from the gyro measurement. Thanks to 
specific static tests, we estimated that the maximum 
of this error is δθ,gyr ≈  3.10-3degrees 

 [δθ] = [δθ,mes−δθ,gyr, δθ,mes+δθ,gyr]  (7) 

•  [δS ] is not measured and so, initialized with 
unknown value: [−∞,+∞] 

• [L], [e] are vehicle parameters. They are roughly 
known that’s why, in part, they are treated as 
unknown quantities in the FBP. 

The estimations of [δθ,k] et [δs,k] are obtained thanks to 
the FBP contractor 7 applied to the CSP H

k
. Please notice 

that between two samples the CSP are independent. In 
addition, an originality of the method is that all the variables 
of the CSP can be contracted even the measurements and the 
parameters used in the model.  

2) EKF solution 

The EKF static fusion estimates of δθ,k and δs,k and their 
variances are obtained by a straightforward computation 
which is statistically optimal here because the equations are 
linear. 

 

D. Dynamic fusion 

1) FBP solution 

For any time index k, let consider all the state equations 
between the time indexes 0 and k. theoretically, we have to 
solve the complete CSP H

k
: (F(x)=0/x∈[x]), where  

x= (xk,…,x
0
,yk, ..., y

0
,θk,…,θ0, δS,k,…, δS,0, δθ,k,…, δθ,0) 

• [δS,i] et [δθ,i] are provided by the static fusion stage 

• The GPS measurement (xgps,mes, ygps,mes) is used to 
initialize intervals [xk] and [yk]. So, the 
longitude/latitude estimated point is converted in a 
Cartesian local frame (see Fig. (5)) and the GPS 
bounded error measurement is obtained thanks to the 
GST NMEA sentence. The error bounds are 
supposed to be equal to 3 times the estimated 
standard deviation σ̂  computed in real time by the 
GPS receiver 
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• The heading angle [θi] =[−∞,+∞] is not measured 

• F represents the odometric model (5). 
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Fig. 3. Graphical interpretation of the horizon limited CSP H. 

This CSP gives a general solution to the non linear state 
observation [8] for any instant tk. For a real time 
implementation, it is unrealistic to consider all the equations 
from t0 to tk. Therefore, we consider a limited time windows 
denoted “h” for horizon. Typically, we have used a horizon 
equal to 3 samples i.e. the dimension of the state Xk. This 
induces 27 primitive constraints for each CSP H

k
. 

2) EKF solution 

The EKF localization algorithm computes at the same 
frequency (5 Hz), the predictive phase, using the expected 
pose and using the result of the static fusion of gyro and 
ABS. The estimation phase uses the GPS measurement. 

The model (5) we consider can be written simply: 
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where 

• Xk = (xk yk θk) is the state  

• Uk = (δθ,k δS,k) the input of the system 

• Zk=(xGPS, yGPS) is the GPS navigation solutions 
projected into a French Lambert coordinates 
system  

• H verifies 

H = 





010
001  (10) 

We suppose that the reader is familiar with Kalman 
filtering and we don’t detail the equations. 

IV. EXPERIMENTAL RESULTS 
The results presented in this section were obtained by 

post-processing real sensors measurements acquired thanks 
to our experimental car (Fig. 4). The data of the two ABS 
sensors and of the optical gyro KVH were sampled at 100 
Hz. The differential GPS receiver (a Trimble AgGPS132 
working with Omnistar corrections available on Europe) was 

used in a synchronized mode at 5 Hz. Thanks to the PPS 
signal, all the data were resampled at 5 Hz and the GPS 
latency has been compensated. This simplifies the 
development of the two fusion methods. 

In order to be able to compute estimation errors, we have 
used a Thales Navigation GPS receiver used in a Post-
Processed Kinematic mode working with a local base (a 
Trimble 7400). This system was able to give positions of 
reference with a 1 Hz sampling rate. Since the constellation 
of the satellites was good enough during all the trials (April 
2004), all the kinematics ambiguities were fixed. Therefore, 
we think that a few centimeters accuracy was reached. The 
synchronization between this reference and the outputs of the 
dynamic localizers (FBP and EKF) has been made thanks to 
the GPS timestamps.  We have also taken into the position 
offsets between the antennas of the two GPS receivers and 
the origin of the mobile frame (Fig. 2). 

Figure 5 shows a top view of an experiment. It 
corresponds to two ten minutes laps. The conditions of the 
experiment are shown on Figure 6. The mean speed was 
50 kmph and reached 80 kmph. The standard deviation of the 
latitude (Fig. 6) indicates that the differential corrections of 
the geostationary satellite Omnistar were lost three times 
because of trees. In this case, the Ag132 still propagates an 
estimation of the correction during 30 s. After this duration, 
it works in an autonomous mode and the precision decreases 
significantly. 

. 

 
Fig. 4. The experimental car with the Ag132 and Thales GPS receivers 
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Fig. 5. Overview of the trial in a local frame. 
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Fig. 6. Speed and standard deviation of the latitude during the test. 

Figures 7 and 8 show the interval error for the EKF and 
the FBP respectively for the dimension x and y. In addition 
to the loss of differential correction, we have simulated two 
complete GPS masks of 30 s duration each, at the instants 7 s 
and 270 s. During these masks, the speed was about 50 kmph 
(c.f. Fig 6).  

It appears from these results that the EKF is more 
accurate since its estimated 3σ errors bounds are smaller than 
the guaranteed intervals of the FBP. This is due in part to the 
fact that the FBP provides locally consistent estimated 
intervals.  
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Fig. 7. Comparison between bound errors of EKF and FBP for x. 

On can notice that the value “0” always makes part of the 
FBP estimated interval which confirms the fact that the 
results are guaranteed. On the contrary, the EKF can be 
wrong since the real position can be out of the estimated 
ellipse has shown by Figure 7 (time≈250 s) and Figure 8 
(time≈120 s, 400 s). 
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Fig. 8. Comparison between bound errors of EKF and FBP for y. 

Figure 9 gives another example of the too much great 
confidence of the EKF since the reference PPK position is 
out of the 99% ellipse. One can remark the good contraction 
of the GPS box provided by the FBP. 
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Fig. 9. Illustration of the too much great confidence of the EKF 

 
Figure 10 plots the heading estimated error of the FBP 

and illustrates the fact that this observer is able to reconstruct 
a non directly measured variable. The three times where the 
value “0” does not make part of the estimated interval are 
due to a noise affecting the reference heading angle since it 
has been build manually from the PPK measurements. On 
can notice the very good heading estimation provided by the 
FBP. 
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Fig. 10. Observation error of the heading angle by the FBP (in degrees). 

We also noticed that the post-processing has never 
detected any inconsistence for all the data used in this trail. 
As a matter of fact, one knows that bounded error methods 
are sensitive to outliers. This indicates a good tuning of the 
FBP. 

V. CONCLUSION 
This paper has presented a new dynamic localization 

technique based on constraints propagation on real intervals. 
This approach guarantees that the real pose of the car is 
included in the estimated boxes even if the equations are 
highly non linear. This approach has been compared with the 
usual technique based on Kalman filtering which relies on 
linearization and supposes white Gaussian noises. 

In the problem treated here, there is a high redundancy in 
data and equations since we have used two encoders, a gyro 
and the measurements of a DGPS receiver. Thanks to this 
redundancy, contractors alone can be used (i.e. without 
bisection) since the consistence of all the data produces 
rather precise estimates (i.e. not too pessimistic) as shown by 
the experimental results. The contractor presented is based 
on Forward and Backward Propagation (FBP) in addition 
with the use of the Waltz algorithm. This method is well 
adapted to a real time context since, with a 1.8 GHz Pentium 
4 and a Matlab implementation, the FBP treats ten minutes of 
data in roughly 150s.  

It turned out that the estimates provided by the FBP are 
more pessimist than the one of a Kalman filter if we consider 
the 3σ bounds outputted by the filter. It's quite natural since a 
bounded error approach is always pessimist because its 
estimates are guaranteed. Nevertheless, the experimental 
results indicate that the precision is near to the one of the 
Kalman filter. Moreover, this last can be mistaken in giving 
sometimes too trustful results or can converge toward local 
minima.  

We think that for applications that need a high level of 
integrity, the pessimism of the estimates is not handicapping 
whereas the fact of obtaining guaranteed results is essential. 
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