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 Abstract - This paper describes a method that provides an 
estimated location of an outdoor vehicle relative to a digital 
road map using Belief Theory and Kalman filtering. Firstly, an 
Extended Kalman Filter combines the DGPS and odometer 
measurements to produce an approximation of the vehicle’s 
pose, which is then used to select the most likely segment from 
a road network database. The selection strategy merges several 
criteria based on distance, direction and velocity 
measurements using Belief Theory. In this work, a particular 
attention is given to the elaboration of a Localization 
Uncertainty Gauge which takes into account imprecision of 
data sources (the sensors and the map) and uncertainty of the 
techniques used in the fusion process. This Gauge indicates the 
level of confidence assigned to the selected road by the system. 
Real experimental results illustrate this approach. 

Index Terms – Outdoor Localization, Sensor Fusion, Belief 
Theory, Extended Kalman Filtering, GIS, GPS. 

I. INTRODUCTION 
Outdoors mobile robots currently hold the attention of 

many researchers because they can bring solutions to many 
applications related to transport of passengers in urban 
environments. An example of such a robot is the Cycab [9]. 
The robot needs to know its position on the road network 
for navigation needs, but also to recover the attributes 
associated with these data bases. Examples of attributes are 
authorized maximum speed, the width of the road, the 
presence of landmarks for precise localization, etc. 
Unfortunately, the precise localization on a map cannot be 
guaranteed because there are always errors on the estimate 
of the position (GPS, proprioceptive sensors) and, because 
the map represents a deformed sight of the world (for 
example, roads are not charted). A solution to deal with this 
problem consists in seeking to locate the robot on the road 
network and, at the same time, to calculate an indicator of 
confidence in this positioning which is called here the 
“Localization Uncertainty Gauge” (LUG). 

The quality of an absolute localization on a map 
depends mainly on the quality of the road-matching process 
which is a complicated problem when seeking to obtain 
reliable, precise and robust vehicle positioning on the road 
network [2], [5], [13]. 

Outdoor positioning systems often rely on GPS, 
because of its affordability and convenience. However, GPS 
suffers from satellite masks occurring in urban 
environments, under bridges, tunnels or in forests. GPS 
appears then as an intermittently-available positioning 
system that needs to be backed up by a dead-reckoning 
system [1]. In [5], the method is based on the use of 

encoders positioned at the rear wheel of a robot. We use 
these sensors to measure elementary rotations of the wheels 
and to estimate the displacement of the robot. Thus, a dead-
reckoned estimated pose is obtained by integrating the 
elementary rotations of the wheels using a differential 
odometric model. The multisensor fusion of GPS and 
odometry is performed by an Extended Kalman Filter 
(denoted EKF in the following).  

The selection of candidate roads is the first stage of the 
road-matching problem [12]. Generally, this involves 
applying a first filter which selects all the segments close to 
the estimated position of the vehicle. The goal is then to 
select the most likely segment(s) from this subset. 
Nowadays, since the geometry of roadmaps is more and 
more detailed, the number of segments representing roads is 
increasing. The robustness and complexity of the 
localization depends mainly on the road selection module. 
In order to be focused on this point, an accurate map 
Géoroute V2 provided by the French National Institute of 
Geography (IGN) was used in this work. Our strategy is 
based on the fusion of several criteria using distance, 
direction and velocity measurements within the framework 
of Belief Theory.  

The pose obtained by GPS and odometry can be more 
accurately estimated by fusing the selected segment. The 
key idea is to model the fact that the true position of the 
vehicle is located around the centerline of the most likely 
road. This region depends mainly on the width of the road, 
which is an attribute also stored in the database. We suggest 
using the most likely road in order to build a new Kalman 
observation with its estimated associated error. 

In parallel with the localization process, we propose a 
way to compute the LUG which quantifies the confidence in 
the road-matched location. This computation is done by 
taking into account the imprecision of the EKF sensor 
fusion stage, the uncertainty of the road selection and the 
topology of the charted road network around the estimated 
absolute position. The LUG is the novelty relatively to 
previously published material [5]. 

The outline is as follows. Section II describes the 
architecture of the road-matching method. The state space 
formulation and the observation equations are detailed. In 
Section III, we discuss the problem of road selection and we 
present the formulation of the problem in the framework of 
Belief Theory. The way of calculating the LUG is then 
presented. Finally, real data results are presented in section 
IV.  



 

  

II. PRINCIPLE OF THE ROAD-MATCHING METHOD: 
MULTI-SENSOR FUSION 

The road-matching problem probably does not have an 
ideal solution. All developed methods have their advantages 
and their disadvantages and are optimized for the 
applications they were designed for [11], [13].  

In addition, the techniques used to address this problem 
are in permanent evolution. Some problems solved today 
can disappear and other can appear. For example, 
improvements in satellite positioning systems have tended 
to reduce absolute positioning errors. On the other hand, 
making an accurate road network increases the number of 
points describing arcs, thus making more complicated the 
segment selection problem. 

The road-matching method described in this section 
relies on Kalman filtering like in [7]. The proposed 
approach can be described by Figure 1. Firstly, the 
algorithm combines the ABS measurements with a GPS 
position, if it is available. Then, using this estimate, the 
credible roads are selected. If at least one segment is 
credible, a map observation is built and merged with the 
other data in a second Kalman filter estimation stage. We 
suppose that the reader is familiar with this formalism, so 
only the state-space representation will be detailed, i.e. the 
state vector, the motion model, the observation model and 
the covariance of the errors. 
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Fig. 1. Synoptic of the road-matching method. 

A. Localization and heading estimation by combining 
odometry and GPS 
Let us consider a car-like vehicle with front-wheel 

drive. The mobile frame is chosen with its origin M attached 
to the center of the rear axle. The x-axis is aligned with the 
longitudinal axis of the car (see Fig 2). 

 
 

 x0 

 θk  M  yk 

 xk 

 y0 

 W 

 M 

 
Fig. 2. The mobile frame attached to the car. 

The vehicle’s position is represented by the (xk,yk) 
Cartesian coordinates of M in a world frame. The heading 
angle is denoted θk. If the road is perfectly planar and 
horizontal, and if the motion is locally circular, the motion 
model can be expressed as [8], [3]: 
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Where δs is the length of the circular arc followed by M 
and δθ  is the elementary rotation of the mobile frame. These 
values are computed using the ABS measurements of the 
rear wheels. Let denote Xk the state vector containing the 
pose. 

B. Observation equations: GPS and MAP 
When a GPS position is available, a correction of the 

odometric estimate is performed using an EKF updating 
stage. If the GPS satellites signal is blocked by buildings or 
tunnels, for example, the motion model provides an 
odometric estimate that can drift unboundedly. 

This approximation of pose is used to select the most 
likely segment(s) from the database. If several segments are 
candidates, they constrain a sub-part of the state space (see 
Fig. 3). 

 

Estimated 
position  

Fig. 3 Most likely segments extracted from the database. 

A way to fuse these segments with the previous 
estimate of the pose is to use them to build “map 
observations” and to apply a second update Kalman stage.  

The map observations can be obtained by projections 
onto the segments: if the orthogonal projection onto line 
(AB) does not make part of the segment [AB], the closer 
extremity is kept. 

If several segments are candidates, the observation is 
multi-modal. Two main strategies can deal with this 
multimodality: 

 The management of multi-hypotheses [10] 
 The selection of the most likely segment from the 

segment set. 
The management of multi-hypotheses is theoretically 

the ideal solution. Nevertheless, implementation is 
complicated because of combinatorial problems.  

In this paper, the second solution is considered because 
of the simplicity of processing. The major drawback of this 
strategy is that the estimated location can be attributed to the 
wrong road, particularly when GPS measurements are not 
available. For this reason, we propose to manage an 
Uncertainty Gauge which indicates the ambiguousness of 
the location of the vehicle relative to the map. 

The most likely segment is used to construct a map 
observation, denoted (xh, yh), and its associated error. 



 

  

Therefore, the complete observation equation becomes 
linear: 
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Where (xgps, ygps) is the GPS position measurement and 
(xh, yh) is the map observation. 

The GPS measurement error can be estimated in real 
time using the NMEA sentence "GST" provided by the 
Trimble AgGPS132 receiver which has been used in the 
experiments. Therefore, the GPS noise is not stationary.  

If we assume that the GPS position and the map 
observation errors are not correlated, the covariance matrix 
of the complete measurement Y can be separated into two 
parts: 

 Qgps: covariance matrix of the GPS error 
 Qh: covariance matrix of the map observation error.  

It has turned out that a Gaussian ellipse which encloses 
the road works well. This ellipse has its semi-major axis 
very long (for example 1 sigma error about one hundred 
meters) and its semi-minor axis equals to the width of the 
road [5]. 
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The covariance matrix Qk being block-diagonal, the 

GPS and map observations can be used in two separated 
Kalman filter estimation stages. This is an important issue 
for the real time implementation of the filter. 

III. ROAD SELECTION USING MULTI-CRITERIA FUSION 
The goal of the road selection process is to extracted the 

most-likely segments from the Geographical Information 
System (GIS) database knowing the estimate of the pose 
X=(x,y,θ)t, the previous matched road and extra attributes 
like traffic direction. 

In order to take into account the error estimation, a 
Gaussian ellipse is built using the co-variance matrix P of 
the state vector X [7]. On Figure 4, the speed V is the mean 
speed of the rear wheels.  

In order to speed up the treatments (a map contains 
thousands of roads, each one having several segments), a 
first filter selects the n closest road segments {S1,…, Sn} that 
are located within a radius of 100 meters, for example. The 
center of the circle is the estimation of the current position 
(x, y) of the car. A circle has been used since it is a 
functionality of the GIS software Geoconcept that has been 
used in this work. For robustness considerations, the size of 
the circle is kept constant. Indeed, one could reduce the 
search area by having a radius function of the estimated 
covariance. This choice is not robust because, if the 

previous matched road was erroneous, the observer can 
diverge.  
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Fig. 4. Road selection strategy.  

The problem is to select the 'good' segments from the 
subset {S1,…, Sn}: this is the Road Selection Problem, also 
called Road Reduction Filter [12].  

This stage is difficult because, 
 The position is estimated with errors which can be 

increased by multi-path effects, 
 The coordinates of the segments contain errors due 

to inaccurate terrain measurements by 
cartographers and because of numerical 
approximation,  

 The road network of the database does not always 
correspond to reality, i.e. it can contain old roads 
which no longer exist, and newly-built roads might 
not yet be included in the database, 

 The map does not contain all road network details. 
For example, a roundabout can be represented as a 
simple point, 

 The vehicle is moving on a 3D surface whereas the 
map represents a plane sight, 

 The vehicle does not run exactly on the segments 
representing the roads. 

Our road selection method combines several criteria 
using Belief Theory. This approach is very flexible and 
allows partial knowledge to be taken into account. This 
section first presents the concepts of Belief Theory. The 
criteria for selection will then be described, and finally the 
combination of data will be illustrated by a simple example 
and some real experiments. 

A. Criteria notion in the Belief Theory framework 
Belief Theory allows uncertainties to be incorporated 

into calculations and provides a way of combining uncertain 
data. This theory was introduced by Dempster [4] and 
mathematically formalized by Shafer in 1976. It is a 
generalization of Bayes Theory in the treatment of 
uncertainty. Generally, this theory is used in a multi-sensor 
context to merge heterogeneous information in order to 
obtain the best decision. 

The basic entity is a set of all possible answers (also 
called hypotheses) to a specific question. This set is called 
the frame of discernment and is denoted Θ. All the 
hypotheses must be exclusive and exhaustive and each 

Qgps 

Qh 



 

  

subset of the frame of discernment can be a possible answer 
to the question. The degree of belief of each hypothesis is 
represented by a real number in [0, 1] called the mass 
function m(.). It satisfies the following rules: 

∑ =
=

⊆Θ

φ

A
)A(m

)(m
1

0
 (5) 

A mass function is defined for all the different 
evidences. Each evidence A, for which m(A) ≠ 0, is called a 
focal element. 

The two criteria chosen in this article can be formulated 
as follows:  

 The vehicle location is close to a segment of the 
neighborhood. This criterion depends on the error 
ellipse, 

 The segments on which the vehicle can be located 
are those which have an angle approximating to the 
direction of the vehicle. This criterion depends on 
the estimated 3σ bound of the direction and on the 
speed of the car. 

Belief Theory requires the assignment of elementary 
probabilistic masses defined on [0, 1]. The mass assignment 
is computed on the definition referential 2Θ: 

2Θ={∅,H1,H2,…Hn,H1∪H2,…,Hi∪Hj∪Hk∪Hl∪…Hn}. 
This distribution is a function of the knowledge about 

the source. The total mass obtained is called the “basic mass 
assignment”. The sum of these masses is equal to one. Each 
expert - also called source of information - defines a mass 
assignment according to its opinion about the situation. 

In order to build mass assignments, we shall examine 
the inaccuracy of the various information sources (GPS, 
odometer and digital map) and physical observations like, 
for example, a car traveling at 40 m/s cannot be orthogonal 
to the direction of the segment. With this approach, 
information sources (i.e. criteria) are worked out from 
sensors. 

The problem of mass assignment of each criterion can 
be tackled in a global or local way. The global strategy 
involves examining simultaneously all the segments selected 
around an estimated position when assigning masses. The 
local strategy treats each segment separately with respect to 
the criterion under consideration. Both strategies have been 
studied. We have concluded that the local strategy is the 
more effective, especially for a real-time application. 

The frame of discernment that we use is Θ = {Yes, No}, 
corresponding to the answer to the following question: is 
this segment the good one? The definition referential is then 
2Θ = {Yes, No, Perhaps}. In this paper, we use two 
credibilist criteria: proximity criteria and heading and 
velocity criteria [5]. This kind of road selection method is 
an open one for the integration of other criteria. One can 
remark that the use of the road network topology can be 
fruitful. 

B. Criteria Fusion 
To obtain more reliable information from two different 

single sources S1 and S2, a combination of their mass 
assignments can be performed using Demspter-Shafer’s 
rule. Let Ai and Bi be assumptions of the definition 

referential 2Θ. The merging of the knowledge of S1 and S2 is 
given by:  

For all A in 2Θ = {Yes, No, Perhaps} 
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=∩ ABA
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i
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If the rule m(φ)=0 is not satisfied a re-normalization 
step is necessary. The coefficient of re-normalization is 
called kθ and is defined as: 
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It represents the incoherence between the different 
sources. If we set 

θ−θ = kK 1
1 , the normalized expression of 

the combination is given by: 
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This combination rule is independent of the order in 
which evidences are combined, when more than two 
evidences are involved.  

Associated with each basic assignment, belief (Bel) and 
plausibility (Pl) are defined by: 

∑=∑=
≠∩⊆ φABAB

)B(m)A(Pl    )B(m)A(Bel  (9) 

After the combination step, several decision rules can 
be used to obtain the final result. It is then possible to adjust 
a desired behavior. If an optimistic decision is desired, the 
maximum of plausibility has to be used. For a pessimistic 
decision, one can apply the maximum of belief. Many other 
decision rules exist in Belief Theory, especially for non-
exhaustive frames of discernment.  

The decision-making strategy adopted here is to keep 
the most credible segments according the law of ideal 
decision. The likelihood of a singleton assumption is 
characterized by two quantities (belief and plausibility) 
which are calculated using the set of masses. These 
quantities respectively correspond to the minimal 
probability and the maximum probability of that 
assumption’s being true. Consequently, a law of decision 
without ambiguity is when an assumption has a belief 
higher than the plausibility of any other assumption. 

The conflict computed in the Dempster-Shafer fusion 
rule is large when the two criteria are in total confusion. 
Therefore, we eliminate the segments which present a 
significant conflict. Experimentally, we have taken a 
threshold equals to 0.5. 

C. Making use of topology 
It is important to distinguish, on the one hand, road-

matching methods that use known facts about a vehicle 
intended route, and on the other hand methods that do not 
use such information. Knowing the vehicle intended route 
can make the road-matching more easier since the search of 
possible segments is more restricted. For example, matching 
the location of a vehicle along its pre-calculated route is a 
relatively easy task since the vehicle is expected to follow a 
fixed set of segments in a predetermined sequence. 
However, confining the search space to only “expected to 
be traveled” segments is not always a good idea since the 



 

  

vehicle can unintentionally deviate from this itinerary. 
Therefore, in our work, we avoid using route information in 
the Road Selection Stage.  

It is also customary to distinguish road-matching 
methods that use only geometric information [2] from those 
that make use of topological information [6]. When using 
only geometric information, one can only make use of the 
“shape” of the segments and not of the way in which they 
are connected. Topological information makes use of the 
geometry of the arcs as well as the connectivity and the 
contiguity of the segments. This makes the topological 
solution much more reliable. Indeed, considering the 
topological characteristics of the network and the 
progression of the car along this network prevents the 
algorithm from jumping between one road and another. 
More generally, the integration of additional criteria in the 
road selection stage can improve the robustness of a road-
matching algorithm.  

Thus, two binary tests have been added to the two 
credibilist criteria: 
- Test of connectivity to the segment on which the vehicle 

was matched at the previous stage, if this segment 
existed, 

- Test of comparison between traffic direction, stored in 
the database and the estimated heading of the vehicle. 
This criterion is very effective for removing ambiguity 
in case of parallel roads. 

D. Localization Uncertainty Gauge (LUG) 
As described above, our Road Selection method keeps 

only the most credible segment and, therefore, can be 
mistaken. The elaboration of an Uncertainty Gauge 
associated with the road matching results is therefore a key 
point.  For this purpose, we propose to consider all the 
issues that occur in this problem: 
- The imprecision of sensors measurements, the 

imprecision of road network database and the 
imprecision of the EKF pose estimate,  

- The behavior of the decision strategy used in the multi-
criteria fusion process,  

- The geometrical and topological configuration of the 
roads all around the estimated pose.  

Imprecision is naturally taken into account thanks to the 
Kalman formalism: the evolution and the observation errors 
of the state space representation are modeled as zero mean 
additive white noises. Moreover, the pose imprecision acts 
directly on the elaboration of the proximity and heading 
criteria. 

The Road Selection decision method being local (the 
segments are treated one by one) an analysis of the 
neighboring road network has to be done. If an ambiguous 
situation occurs, the credibility of the selected road is in 
doubt. The resulting certainty must be decreased and 
propagated for the next steps. This kind of ambiguous 
situation is frequently met while approaching junctions or 
crossroads.  

In case of “parallel arcs”, the credibility of the selected 
segments must be decreased until the availability of an 
unambiguous map measurement. In this case, the use of the 
connectivity test must be cancelled.  

Therefore, the belief value given by the decision law to 
the selected segments is at the root of the computation of the 
LUG. It naturally takes into account the different 
imprecisions. In order to consider in addition the 
ambiguousness of the topology configuration of the road 
network all around the estimated pose, we propose to 
multiply the belief value given to each selected segment by 
a scalar number which we call TCCRN like Topological 
Coefficient of the Charted Road Network. Its values depend 
on the situation and are described in table I. 

 LUG(S) = Bel(S). TCCRN (11) 
 

 Ambiguousness 

TCCRN Situation Description Nature 

1 1 segment  
 

Non 
ambiguous 

0.9 1 arc of several 
segments 

 
 

Non 
ambiguous 

0.8 2 connected arcs 
 
 
 

Non 
ambiguous 

0.7 

2 parallel one-
ways segments 
with opposite 
driving direction 

 
 
 

Non 
ambiguous 
if direction 
is available 

0.6 Non related 
parallel arcs     

 
 
 

Ambiguous 

0.5  Junction 
 
 
 

Ambiguous 

TABLE I: Topological Coefficient of the Charted Road Network. 

The TTCRN is a weighting factor the range of which 
has been chosen to be in the interval [1 0.5]. In this way, 
while approaching a junction, two segments having locally a 
Belief equals to one will have a LUG equals to 0.5 which 
indicates a totally ambiguous situation.  

IV. EXPERIMENTAL RESULTS 
Three tests have been carried out at Compiègne with our 

experimental car (Fig. 5). We have used a differential 
Trimble AgGPS132 receiver and the ABS sensors of the 
rear wheels of the car.  

Third test 

Second test 

First test 

 
Fig. 5. Top view of the three tests. 

On Figures 6, 7 and 8, the (+) sign represents the DGPS 
position and the (.) sign represents the result of the fusion of 
the GPS, the ABS sensors and the Map. The numerical 
values of the LUG are indicated for a point on 5. 

Since the first situation is very complicated and 
ambiguous, the LUG is often low. As the matter of fact 
there are three parallel roads and the crossing of a 



 

  

crossroads. First, one can remark that the crossroads has not 
effect. This is due to the fact that the orthogonal roads are 
not credible thanks to the heading criterion.  

650 700 750 800 850

640

660

680

700

720

740

760

780

X (m)

Y(
m

)

   LUG=0.599

   LUG=0.599

   LUG=0.599
   LUG=0.995

   LUG=0.541

   LUG=0.599
   LUG=0.599

   LUG=0.999
   LUG=0.889

   LUG=0.598
   LUG=1

   LUG=0.999
   LUG=0.6

   LUG=0.599

 
Fig. 6. Algorithm results obtained during the first test.  

Moreover, we can see that the values of the LUG vary 
between ≈0.6 and ≈1. Indeed, the most credible segment has 
a very high Belief (Bel ≈1) since the estimated position is 
approximately on the road and, sometimes, a segment of the 
nearest parallel road is declared credible which induces a 
“Non related parallel arcs” situation (cf. Table I). 
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Fig. 7. Second test. 
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Fig. 8. Third test. 

Figures 7 and 8 illustrate the approach of more 
ambiguous junctions because the roads are not orthogonal. 
In these cases, the LUG correctly represents the certainty of 
the locations of the map. 

On Fig. 7, one can notice that the map presents an offset 
of several meters after the crossroads: this offset is due to 
cartographers’ errors. Nevertheless, the LUG converges 
towards 1 when the situation becomes unambiguous 
although the error of the chart is significant. Moreover, one 
can notice that the fusion of the GPS and the map data is not 
a simple projection on the road segment. 

Finally, on Fig.8, the GPS points and the map have a 
constant offset which affects a little the LUG. Its numerical 
value logically varies between 0.5 and 1. 

V. CONCLUSION 
This article has presented a road-matching method 

based on a multi-sensor fusion approach and a technique to 
quantify the confidence in a road-matched location which is 
the main contribution of this work. Our methodology relies 
on the use of a map observation in the Kalman filtering 
context and on the use of a road selection method based on 
multi-criteria fusion using Belief Theory.  

The experimental results show the validity of the 
calculation of the LUG which can be an input to many 
robotics applications in which one uses an absolute 
positioning on maps and wants to manage the confidence on 
the estimated locations in order to qualify the trust in the 
system. This is a first step toward integrity. 
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