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Abstract: This paper describes a method that provides an estimated location of an outdoor 
vehicle relative to a digital road map using Belief Theory and Kalman filtering. Firstly, an 
Extended Kalman Filter combines GPS and odometer measurements to produce an 
approximation of the vehicle pose which is then used to select the most likely segment 
from a road network database. The selection strategy merges several criteria based on 
distance, direction and velocity measurements using Belief Theory and a dedicated fusion 
operator. Thanks to this methodology, a Localization Uncertainty Gauge can be 
computed. This gauge indicates the level of confidence assigned to the selected road by 
the system. Real experimental results illustrate this approach.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

Intelligent Autonomous Vehicles currently hold 
the attention of many researchers because they can 
bring solutions to many applications related to 
transport of passengers in urban environments. An 
example of such a vehicle is a Cycab (Pradalier 02). 
The vehicle needs to initially know its position on 
the road network for navigation needs, but also to 
recover the attributes associated with these data 
bases. Examples of attributes are authorized 
maximum speed, the width of the road, the presence 
of landmarks for precise localization, etc. 
Unfortunately, the precise localization on a map 
cannot be guaranteed because there are always errors 
on the estimate of the position (GPS, proprioceptive 
sensors) and, because the map represents a deformed 
sight of the world (for example, roads are not 
represented). A solution to deal with this problem 
consists in seeking to locate the robot on the road 
network and, at the same time, to calculate an 
indicator of confidence in this positioning which is 
called here Localization Uncertainty Gauge (LUG). 

Outdoor positioning systems often rely on GPS, 
because of its affordability and convenience. 
However, GPS suffers from satellite masks occurring 
in urban environments, under bridges, tunnels or in 
forests. GPS appears then as an intermittently-
available positioning system that needs to be backed 
up by a dead-reckoning system (Abott 99). A usual 
method is based on the use of encoders attached to 
the rear wheels of the vehicle. They measure 
elementary rotations of the wheels. A dead-reckoned 
estimated pose is obtained by integrating these 
elementary rotations starting from a known pose. The 
multisensor fusion of GPS and odometry is 
performed by an Extended Kalman Filter (denoted 
EKF in the following).  

This work deals with absolute localisation on a 
digital map. The objective is to localise the vehicle 
on the frame of map and not on an arc or a segment 

representing the road in the map database. Many 
methods proposed in the last five years (Bernestein 
98, Joshi 02, Greenfeld 02, Kim 01, Quddus 03, Zhao 
03) are arc-matching methods, i.e. the estimated 
position of the vehicle is projected on the arcs 
representing the roads. In this case, the model of the 
world is a set of segments. Arc-matching methods 
therefore induce geometric distortions since the most 
accurate digital maps present a 15 meters absolute 
error and a 1 meter relative error.  

Absolute localization is very useful for the 
following reasons. In several kinds of map database 
like those of the French IGN (Institut Géographique 
National), attributes are not attached to the arcs 
representing the roads but stored in the database like 
point objects with an absolute position.  In reality, 
roads have some width. So, it is imprecise to suppose 
that the trajectory of the vehicle is reduced to a linear 
arc. The distortion induced by such an assumption is 
amplified if the network database is not accurate. 
Moreover, arc-matching methods are not adapted to 
automatic guidance of vehicles since the side 
variation is not observable: only longitudinal control 
is possible using speed values attached to the arcs. 

On the other hand, GIS data contains some 
absolute location information and it is important to 
capture this information. The approach presented in 
this paper consists firstly in the selection of the more 
likely road. Then, its geometry is fused with the 
estimated pose. This provides an absolute location. 

Generally, the road selection involves applying a 
first filter which selects all the segments close to the 
estimated position of the vehicle. The goal is then to 
select the most likely segment(s) from this subset. 
Nowadays, since the geometry of roadmaps is more 
and more detailed, the number of segments 
representing roads is increasing. The road selection 
module is an important stage in the vehicle 
localization process because the robustness of the 
localization depends mainly on it. The road selection 
stage is also important because it reduces the number 
of roads to be processed, which is essential for a real 



  

time implementation. In order to be focused on this 
point, an accurate map Géoroute V2 provided by the 
IGN was used in this work. The selection strategy 
proposed is based on the merging of several criteria 
using distance, direction and velocity measurements 
within the framework of Belief Theory.  

A more accurate location of the robot can be 
obtained by combining the selected segment with the 
pose estimated jointly by GPS and odometry. The 
key idea is to model the fact that the true position of 
the vehicle is located around the centreline of the 
most likely road. This region depends mainly on the 
width of the road, which is an attribute also stored in 
the database. The most likely road is proposed to be 
used in order to build a new Kalman observation 
with its estimated associated error. 

In parallel with the localization process, a way to 
compute the LUG is proposed. The LUG quantifies 
the confidence in the road-matched location. This 
computation is done by taking into account the 
imprecision of the EKF sensor fusion stage and the 
uncertainty of the road selection stage of the method 
detailed in (El Najjar 05). 

The outline of the paper is as follows. Next 
section describes the architecture of the localization 
method. The state space formulation and the 
observation equations are detailed. In section III, the 
road selection problem is discussed and a 
formulation in the framework of Belief Theory is 
exposed. Finally, real data results illustrate the 
performance of such an approach. 

2. SENSOR FUSION FOR THE LOCALIZATION 
PROCESS 

The road-matching problem probably does not 
have an ideal solution. All developed methods have 
their advantages and their disadvantages and are 
optimized for the applications they were designed for 
(Tanaka 90), (Zhao 97). The performances of many 
navigation systems seem to be sufficient. However, 
safety applications or autonomous urban areas 
navigation need a reliable localization on the map. 

In addition, the techniques used to address this 
problem are in permanent evolution. Some problems 
solved today can disappear and other can appear. For 
example, improvements in satellite positioning 
systems have tended to reduce absolute positioning 
errors. On the other hand, making an accurate road 
network increases the number of points describing 
arcs, thus making more complicated the segment 
selection problem. 

The localization method described in this section 
relies on Kalman filtering like in (Krakiwsky 88). 
The proposed approach can be described by Figure 1. 
Firstly, the algorithm combines the ABS 
measurements with a GPS position, if it is available. 
Then, using this estimate, the credible roads are 
selected. If at least one segment is credible, a map 
observation is built and merged with the other data in 
a second Kalman filter estimation stage. It’s 
supposed that the reader is familiar with this 
formalism, so only the state-space representation will 
be detailed, i.e. the state vector, the motion model, 
the observation model and the covariance of the 
errors. 
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Fig. 1. Synoptic of the localization method. 

2.1.  Localization and heading estimation by 
combining odometry and GPS 

Let us consider a car-like vehicle with front-
wheel drive. The mobile frame is chosen with its 
origin M attached to the center of the rear axle. The 
x-axis is aligned with the longitudinal axis of the car 
(see Fig 2). 

The vehicle position is represented by the 
Cartesian co-ordinates (xk,yk) of M in a world frame. 
The heading angle is denoted θk. If the road is 
perfectly planar and horizontal, and if the motion is 
locally circular, the motion model can be expressed 
as (Tanaka 90, Bonnifait 01): 
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Where δs is the length of the circular arc 
followed by M, δθ the elementary rotation of the 
mobile frame. These values are computed using the 
ABS measurements of the rear wheels. 
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Fig. 2. The mobile frame attached to the car. 

2.2. Observation equations: GPS and MAP 

When a GPS position is available, a correction of 
the odometric estimation is performed using an  
EKF. If the GPS satellites signal is blocked by 
buildings or tunnels, for example, the motion model 
provides an odometric pose estimate. 

This pose estimate is used to select the most 
likely segment(s) from the database. These segments 
are then used to build a second observation (this 
approach will be presented in section III). If several 
segments are candidates, they constrain a sub-part of 
the state space (see Fig. 3). 

Estimated 
position  

Fig. 3 Most likely segments extracted from the database. 



  

A way to fuse these segments with the previous 
estimate of the pose is to use them to build “map 
observations” and to apply a second update Kalman 
stage.  

The map observations can be obtained by 
projections onto the segments: if the orthogonal 
projection onto line (AB) does not make part of the 
segment [AB], the closer extremity is kept. 

If several segments are candidates, the 
observation is multi-modal. Two main strategies can 
deal with this multimodality: 
 The management of multi-hypotheses  (Pyo 00) 
 The selection of the most likely segment from the 
segment set. 

The management of multi-hypotheses is 
theoretically the ideal solution. Nevertheless, 
implementation is complicated because of 
combinatorial problems.  

In this paper, the second solution is considered 
because of the simplicity of processing. The major 
drawback of this strategy is that the estimated 
location can be attributed to the wrong road, 
particularly when GPS measurements are not 
available. For this reason, we propose to manage an 
Uncertainty Gauge which indicates the 
ambiguousness of the location of the vehicle relative 
to the map. 

The most likely segment is used to construct a 
map observation, denoted (xh, yh), and its associated 
error. Therefore, the complete observation equation 
becomes linear: 
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Where (xgps, ygps) is the GPS position 
measurement and (xh, yh) is the map observation. 

The GPS measurement error can be estimated in 
real time using the NMEA sentence "GST" provided 
by the Trimble AgGPS132 receiver which has been 
used in the experiments. Therefore, the GPS noise is 
not stationary.  

If it is assumed that the GPS position and the 
map observation errors are not correlated, the 
covariance matrix of the complete measurement Y 
can be separated into two parts: 

Qgps: covariance matrix of the GPS error 
Qh: covariance matrix of the map observation 
       error. 

 

khyhxy

hxyhx

gpsygpsxy

gpsxygpsx

k

Q
Q

Q
Q

Q

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

σ
σ

σ
σ

=

2
,,

,
2

,

2
,,

,
2

,

00
00

00
00

 (3) 

 
Since Qk is diagonal, the GPS and map 

observations can be used in two separated Kalman 
filter estimation stages. This is an important issue for 
the real time implementation of the filter. 

One way of combining the most likely segment 
with the other sensors is to treat it as an observation 
that is a function of the state vector. Much effort has 

been spent on modelling the map observation error in 
a realistic way. It has turned out that a Gaussian 
mixture which encloses the road works well (El 
Najjar 05). 

3. ROAD SELECTION BY USING MULTI-
CRITERIA FUSION 

The road selection process can be described as 
on Figure 4. The multi-sensor fusion gives an 
estimation of the pose X=(x,y,θ)t. In order to take 
account of the estimation error, a Gaussian ellipse is 
built using the co-variance matrix P of the state 
vector X (El Najjar 05). The speed V is the mean 
speed of the rear wheels.  

The question is now to select the most likely 
segment(s) using a Geographical Information System 
(GIS). In order to speed up the treatments (a map 
contains thousands of roads, each one having several 
segments), a first filter selects the n road segments 
{S1,…,Sn} that are located within a radius of 
100 meters, for example. The centre of the circle is 
the estimation of the current position (x, y) of the car. 

The problem is to select the 'good' segments 
from the subset {S1,…, Sn}: this is the road selection 
problem, also called Road Reduction Filter (Taylor 
01).  
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Fig. 4 . Road Selection Problem. 

This stage is difficult because, the position is 
estimated with errors which can be increased by 
multi-path effects. In addition, the transformation 
between the GPS co-ordinates (WGS84 global 
system) and the French Lambert co-ordinates of the 
map introduces errors (<2m), 

The co-ordinates of the segments contain errors 
due to inaccurate terrain measurements by 
cartographers and because of numerical 
approximation,  
 The road network of the database does not always 
correspond to reality, i.e. it can contain old roads 
which no longer exist, and newly-built roads might 
not yet be included in the database, 

 The map does not contain all road network details. 
For example, a roundabout can be represented as a 
simple point, 

 The vehicle is moving on a 3D surface whereas the 
map represents a plane sight, 

 The vehicle does not run exactly on the segments 
representing the roads. 

The proposed road selection method combines 
several criteria using Belief Theory. This approach is 
very flexible and allows partial knowledge to be 
taken into account. This section first presents the 
concepts of Belief Theory. The criteria for selection 

Qgps 

Qh 



  

will then be described, and finally the combination of 
data will be illustrated by a simple example and 
some real experiments. 

3.1. Criteria notion in the Belief Theory framework 

Belief Theory allows uncertainties to be 
incorporated into calculations and provides a way of 
combining uncertain data. This theory was 
introduced by Dempster (Dempster 76) and 
mathematically formalised by Shafer in 1976. It is a 
generalisation of Bayes Theory in the treatment of 
uncertainty. Generally, this theory is used in a multi-
sensor context to merge heterogeneous information 
in order to obtain the best decision. 

The basic entity is a set of all possible answers 
(also called hypotheses) to a specific question. This 
set is called the frame of discernment and is denoted 
Θ. All the hypotheses must be exclusive and 
exhaustive and each subset of the frame of 
discernment can be a possible answer to the question. 
The degree of belief of each hypothesis is 
represented by a real number in [0,1] called the mass 
function m(.). It satisfies the following rules: 
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A mass function is defined for all the different 
evidences. Each evidence A for which m(A) ≠ 0 is 
called a focal element. 

As the application considered is related to road 
safety, only geometrical criteria are used because 
they are not influenced by human errors. This means 
that a criterion such as the speed of the vehicle is in 
accordance with the speed limitation is not 
considered. 

The two criteria chosen in this article can be 
formulated as follows:  
 The vehicle location is close to a segment of the 
neighbourhood. This criterion depends on the error 
ellipse, 

 The segments on which the vehicle can be located 
are those which have an angle approximating to 
the direction of the vehicle. This criterion depends 
on the estimated 3σ bound of the direction and on 
the speed of the car. 

Belief Theory requires the assignment of 
elementary probabilistic masses defined on [0,1]. 
The mass assignment is computed on the definition 
referential 2Θ. 
2Θ={∅,H1,H2,…Hn,H1∪H2,…,Hi∪Hj∪Hk∪Hl∪…Hn} 

This distribution is a function of the knowledge 
about the source. The total mass obtained is called 
the “basic mass assignment”. The sum of these 
masses is equal to one. Each expert - also called 
source of information - defines a mass assignment 
according to its opinion about the situation. 

In order to build mass assignments, the 
inaccuracy of the various information sources (GPS, 
odometer and digital map) should be examined and 
physical observations like, for example, a car 
travelling at 40 m/s cannot be orthogonal to the 
direction of the segment. With this approach, 
information sources (i.e. criteria) are worked out 
from sensors. 

The problem of mass assignment of each 
criterion can be tackled in a global or local way. The 
global strategy involves examining simultaneously 
all the segments selected around an estimated 
position when assigning masses. The local strategy 
treats each segment separately with respect to the 
criterion under consideration. Both strategies have 
been studied. We have concluded that the local 
strategy is the more effective, especially for a real-
time application. 

The used frame of discernment is Θ = {Yes, No}, 
corresponding to the answer to the following 
question: is this segment the good one? The 
definition referential is then 2Θ = {Yes, No, 
Perhaps}.  

In this paper, two credibilist criteria are used, 
proximity criteria and heading and velocity criteria. 
This kind of road selection method is open to the 
integration of other criteria.  

Two binary criteria have been added to the two 
credibilist criteria in order to consider the topological 
characteristics of the network and the progression of 
the car along this network. This can prevent the 
algorithm from jumping between one road to another. 
More generally, the integration of additional criteria 
in the road selection stage can improve the 
robustness of the algorithm. 

3.2. Criteria Fusion 

To obtain more reliable information from two 
different single sources S1 and S2, a combination of 
their mass assignments can be performed using 
Demspter-Shafer’s rule. Let A, Ai and Bi be 
assumptions of the definition referential 2Θ. The 
merging of the knowledge of S1 and S2 is given by:  

For all A in 2Θ = {Yes, No, Perhaps} 
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If conjunctions exist which are not focal 
elements, a re-normalisation step is necessary to 
satisfy the rule that m(φ)=0. The coefficient of re-
normalisation is called kθ and is defined as: 
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It represents the incoherence between the 
different sources. With 

θ
θ kK −= 1
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expression of the combination is given by: 
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This combination rule is independent of the 
order in which evidences are combined, when more 
than two evidences are involved. 

The equations of system (8) introduce a new 
fusion operator proposed to assign masses to 
assumptions in the definition referential 2Θ = {Yes, 
No, Perhaps}. In these equations, m12,i() represent the 
assigned mass for the ith segment after the 
combination of the proximity criterion (m1,i()) and 
heading criterion (m2,i()) to assumptions Yes, No and 
Perhaps (denoted Per in the equations): 
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This operator is pessimistic since, if one 
criterion says “no”, the fusion result is “no” and 
since, if one criterion says “perhaps” and the other 
“yes”, the result is “perhaps”. 

Associated with each basic assignment, belief 
(Bel) and plausibility (Pl) are defined by: 

 ∑=
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These quantities respectively correspond 
respectively to the minimal and maximum 
probabilities of that assumption A being true. 

After the combination step, several decision 
rules can be used to obtain the final result. It is then 
possible to adjust a desired behaviour. If an 
optimistic decision is desired, the maximum of 
plausibility has to be used. For a pessimistic 
decision, one can apply the maximum of belief. 
Many other decision rules exist in Belief Theory, 
especially for non-exhaustive frames of discernment. 

In decision-making, the strategy adopted here 
consists in eliminating the segments which are not 
credible from the point of view of the chosen criteria. 
A decision law to reject non credible segment 
without ambiguity and without conflict generation is 
when the belief of the assumption No is higher than 
the plausibility of other assumptions (Yes and 
Perhaps).  

3.3. Localisation Uncertainty Gauge (LUG) 

As described above, the Road Selection method 
keeps only the most credible segment and, therefore, 
can be mistaken. The elaboration of an Uncertainty 
Gauge associated with the road matching results is 
therefore a key point.  For this purpose, let consider 
all the issues that occur in this problem: 
 The imprecision of the sensors measurements, the 
imprecision of the road network database and the 
imprecision of the EKF pose estimate,  

 The behaviour of the decision strategy used in the 
multi-criteria fusion process,  

 The geometrical and topological configuration of 
the roads all around the estimated pose.  

Imprecision is naturally taken into account 
thanks to the Kalman formalism: the evolution and 
the observation errors of the state space 
representation are modelled as zero mean additive 
white noises. Moreover, the pose imprecision acts 
directly on the elaboration of the proximity and 
heading criteria. 

The Road Selection decision method being local 
(the segments are treated one by one) an analysis of 
the neighbouring road network has to be done. If an 
ambiguous situation occurs, the credibility of the 
selected road is in doubt. The resulting certainty 
must be decreased and propagated for the next steps. 
This kind of ambiguous situation is frequently met 
while approaching junctions or crossroads.  

In case of “parallel arcs”, the credibility of the 
selected segments must be decreased until the 
availability of an unambiguous map measurement. In 
this case, the use of the connectivity test must be 
cancelled. Therefore, the belief value given by the 
decision law to the selected segments is at the root of 
the computation of the LUG. It naturally takes into 
account the different imprecision sources. In order to 
consider in addition the ambiguousness of the 
topology configuration of the road network all 
around the estimated pose, we propose to multiply 
the belief value given to each selected segment by a 
scalar number which we call TCCRN like 
Topological Coefficient of the Charted Road 
Network. Its values depend on the situation and are 
described in table I. 

 LUG = Bel(S).TCCRN (10) 
 

Ambiguousness  
TCCRN  Situation Description Nature 

1 1 segment  
 

Non 
ambiguous 

0.9 1 arc of several 
segments 

 
 

Non 
ambiguous 

0.8 2 connected arcs 
 
 
 

Non 
ambiguous 

0.7 
2 parallel one-
ways segments 
with opposite 

driving direction 

 
 
 

Non 
ambiguous 
if direction 
is available 

0.6 Non related 
parallel arcs     

 
 
 

Ambiguous 

0.5  Junction 
 
 
 

Ambiguou
s 

TABLE I Topological Coefficient of the Charted Road Network 
 
 

4. EXPERIMENTAL RESULTS 

A 20 minutes test has been carried out at 
Compiègne with the laboratory experimental car. A 
Tmble AgGPS132 receiver and the ABS sensors of 
the rear wheels of the car have been used. This 
section focuses on two potentially problematic 
situations presented on Fig. 5. 

On Figures 6 and 8, the (+) sign represents the 
DGPS position and the (.) sign represents the result 
of the fusion of the GPS, the ABS sensors and the 
Map. The numerical values of the LUG are indicated 
for a point on 5. 

Since the first situation is very complicated and 
ambiguous, the LUG is often low. As the matter of 
fact there are three parallel roads and the crossing of 
a crossroads. First, one can remark that the 
crossroads has not effect. This is due to the fact that 
the orthogonal roads are not credible thanks to the 
heading criterion. On Fig. 7, one can notice that the 
map presents an offset of several meters after the 
crossroads: this offset is due to cartographers’ errors. 
Nevertheless, the LUG converges towards 1 when 
the situation becomes unambiguous although the 
error of the chart is significant. Moreover, one can 
notice that the fusion of the GPS and the map data is 
not a simple projection on the road segment. 
 



  

 
Fig. 5 . Top view of the two tests situations. 
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Fig. 6 . Algorithm results obtained during the first test.  

Moreover, the values of the LUG vary between 
≈0.6 and ≈1. Indeed, the most credible segment has a 
very high Belief (Bel ≈1) since the estimated position 
is approximately on the road and, sometimes, a 
segment of the nearest parallel road is declared 
credible which induces a “Non related parallel arcs” 
situation (cf. Table I). 
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Fig. 7 . Second test. 

5. CONCLUSION 

This article has presented a localization method 
based on a multi-sensor fusion approach. The road 
selection stage being of crucial importance, a method 
based on the Belief Theory has been developed and a 
new fusion operator has been proposed. This 
methodology allows quantifying the confidence in 
the localization on the road network by using the 
belief value of the most credible segment and the 
geometry of the network around the estimated 
position. The selected segment is used afterwards to 
apply a new observation stage in the Kalman filtering 

context and to localize more precisely the vehicle on 
the map.  

The experimental results show the validity of the 
calculation of the LUG which can be an input to 
many robotics applications in which one uses an 
absolute positioning on maps and wants to manage 
the confidence on the estimated locations in order to 
qualify the trust in the system. 
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