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1. Short Abstract  

Particle filters, or Sequential Monte Carlo Methods are among the most promising 
candidates to provide solution to the problem of mobile robot localization. This is due to the 
fact that this kind of problem needs to include elements of non-linearity and non-Gaussianity 
in order to model accurately the underlying dynamics of the system. Particle filter methods 
solve the localization problem as a Bayesian filtering problem in order to estimate the 
posterior density of the state using weighted particles.  

In many real applications, information is often imprecise, i.e. biased and noisy. Such an 
imprecision can be easily represented by interval data if the maximum error is known. 
Handling interval data is a new approach successfully applied to different real applications.  

In this paper, we propose an extension of the particle filter algorithm (called box 
particle filter) to deal with interval data by using interval analysis and Constraints Satisfaction 
techniques. In usual particle filtering, particles are punctual states associated with weights 
whose likelihood is defined by a statistical model of the observation error.  In the box particle 
filter, particles are boxes associated with weights whose likelihood is defined by a bounded 
model of the observation error. Simulation and experiments on real data shows the usefulness 
and the efficiency of the proposed approach.  

mailto:Fahed.abdallah@hds.utc.fr


Submission to IntCP2005 F. Abdallah et al. 

2. Introduction 

The Extended Kalman Filter (EKF) is the most popular approach used in sensor fusion 
for nonlinear systems [1]. This approach is based on applying the Kalman Filter (KF) 
algorithm on the linearization of the eventually non-linear state and measurement functions of 
the state model by using a first-order Taylor series expansion. The state distribution, or the 
posterior, can be then approximated by a Gaussian random variable which is propagated 
analytically through the first-order linearization of the nonlinear system.  

Recently, particle filter methods have been the focus of increased interest in the field of 
localization problems [1,2,3,5,7]. A particle filter is a sequential Monte Carlo Bayesian 
estimator which is expected to provide more valuable information of the posterior especially 
if it has a multimodal shape or if the distributions of the noises are non Gaussian.  

Nevertheless, Particle Filter methods suffer from some drawbacks. In fact, in order to 
explore a significant part of the state the space, the number of particles should be very large 
which induces complexity problems not adapted to a real-time implementation. In addition, 
these methods are very sensitive to non consistent measures or high measurement errors.  

Several works try to combine approaches in order to overcome these shortcomings (see 
for example [7] and references therein).  In this paper, we present a particle filter strategy 
which deal with interval data to solve the problem of localization of a mobile robot using dead 
reckoning and absolute sensors. The idea of this work becomes from two possible 
understandings or interpretations of an interval in one dimension: 

1- An interval represents infinity of particles continuously distributed on the interval. 
2- An interval represents a particle imprecisely located in the interval. 

In n dimension, the state of a particle is described by a box. 
 

3. Bayesian filtering for localization 

Given measurements , a process model and an initial guess , the 
goal of estimation is to determine the current state . Usually Y
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kx k is provided by exteroceptive 
or absolute sensors like telemeters or goniometers. The process model may be expressed as 
follows: 
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where and  are two non-linear functions defining the state space model,  and  
are the state and the observation at instant  where and .  
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Vectors kα  and kβ  correspond to additive noises over the state and the measurement 
with probability densities  and  respectively. The parameter  is the input of the 
system which is often measured using proprioceptive sensors like inertial sensors. 
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Within the Bayesian framework, the relevant information about  

conditioned on all measurements 
{ } kiik xX ,,1L==

{ } kiik yY ,,1L==  consists in the posterior 
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distribution )( kk YXp . In a localization process, the objective is to estimate recursively in time 

one of its marginals, which is the filtering density )( kk Yxp .  

 
The Bayesian solution to problem (1) is given by [1,2]: 

)()()( 1−≈ kkkkkk YxpxypYxp      (2) 
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The recursion has to be initialized with )()( 010 xpYxp =− , where  is some 
representation of a prior knowledge, e.g. a uniform distribution over some region of the state 
space. Equation (2) is known as the measurement update and Equation (3) as the time update.  

)( 0xp

4. Box particle Filter (BPF) 

In practice, it is often hard or even impossible to solve Equations (2) and (3) 
analytically. An optimal solution is given by the Kalman Filter when the system is linear with 
Gaussian Noises. In general, when the measurement equations are non-linear or the noise 
distributions are non-Gausian, some form of numerical approximation need to be considered. 
Methods of special interest are the sequential Monte Carlo methods, or particle filters. Particle 
filters use an importance sampling approach to implement the Bayes filter to calculate (2) and 
(3) [3].  

A contribution of this paper is to present a box particle filter which consists in handling 
boxes states and observations and to use constraints satisfaction techniques.  

A real interval is defined as a closed and connected subset of IR, and a box [x] of IRn as a 
Cartesian product of n intervals [ ] ( )[ ] ( )[ ] ( )[ ]nx2x1x x ×××= L .  

The main idea is that, at time k, the state space part under interest is split in N particle boxes 
 instead of “point particles” like in the original particle filter algorithm. Interval 

operations [4, 6, 8] are used in order to propagate each box particle and to update weight for 
each of them. Constraints satisfaction techniques [4, 6] are used to contract consistent particles. 
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Since a box particle is a box [ ])i(x  with an associated scalar weight , the box 

particle filter (BPF) algorithm is described after: 

)i(w
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1. Initialization:  

Set k=0, and for   generate N boxes N,,i L1= [ ]{ } N,,i
)i(x

L10 =  with empty intersection 

in order to explore the state space part under consideration and set the weights 

Nw )i( 1
0 =  

2. Propagation:  

For , predict new boxes using different realizations of the noise by 
applying the evolution model (1): 
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3. Verification of the consistency: 
For , Ni ,,1L=

 Predict measurements [  from each box particle,  ])(
1

i
kz + [ ] [ ]( ) [ ])(

1
)(
1

)(
1

i
k

i
k

i
k xgz +++ += β

Calculate the intersection with the measure: [ ]  for 
 , where p is the dimension of the measure. 
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4. Update of the weight of each box particle: 
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5. Resample the particles. This eliminates particles whose weight is null. 
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~6. Normalization:  
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8. Estimation:  
A minimum mean squared estimate strategy applied on the middle of the boxes 
intervals gives estimates of the state and of the error correvariance matrix 
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We will discuss in the next section how to choose the width of each interval of the box. 
When using the box particle algorithm, similarly problems to those of the original 

particle filter algorithm may occur in practice. In fact, after some iterations, the importance 
weights may become very skewed. Furthermore, if an aberrant measure occurs, few particles 
may be likely, whereas others will be degenerated and have weights close to zero, see figure 
(2). This problem may occur for example in the case of GPS observations when being in 
urban environments. A solution to this problem consists in resampling from the existing 
particles according to their importance weights in order to obtain independent and identically 
distributed samples [3,5]. It’s obvious that samples with high weights are more likely to 
survive and the new resulting samples are dependent since they are resulting from perhaps 
very few ancestors. To decrease the dependency, one can add some artificial noise to the 
particles. A collection of resampling strategies can be found in [1]. 

In some case, resampling cannot answer efficiently the problem of aberrant 
measurements. We suggest here to use a new update of the importance weights. This new 
update gives less confidence in the new measure since it replaces the fourth step in the BPF 
algorithm by: 

  with )i(
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The parameter γ  reflects the influence ratio of new observation to learn the weights. In 
other words, a new measure does not affect totally the weights, but instead,  it tries to keep 
confidence in the previous weights estimation. Fortunately, this strategy to update weights 
does not answer only the problem of aberrant observations and particle degeneracy, but it 
leads to more stability in the particle filter algorithm since the dependency between samples is 
decreased. Furthermore, this idea overcomes problems of computational cost of the particle 
filter algorithm.  
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Likelihood 

Degenerated 
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Fig.1. In the case of “point particles”, and under probability frameworks, the figure 
shows the problem of degeneracy in the case of aberrant observation.  
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Fig.2. This figure shows that the new update  may solve 

the problem of degeneracy of the particles. 
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Fig.3. The figure shows the box particle filter algorithm with a resampling step. 
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5. Application to dynamic localization using GPS, a gyro and an odometer 

The mobile frame attached to a car is represented in figure (4). The position and heading 
angle of the vehicle which is at time k, for the sake of simplicity, 
[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] [ ]kkkkkkk 2x1x 3x2x1x x θ××=××=  are calculated in time by using linear and 
angular velocities by the following discrete representation: 
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where ks,δ and k,θδ  represent respectively the elementary displacement and rotation 
covered by M and calculated using odometer sensors [4].  The quantities ks,δ and k,θδ  are used 
as inputs of the system. Note here that the width of each interval should guarantee maximum 
variation of the variables between two instants. 

The measurement of the position at time  consists here in a Global Position System 
(GPS) solution which is 

k
[ ] ( )[ ] ( )[ ]21 kkk yyy ×=  after a projection onto the local frame. The 

width of this box can be quantified using the standard deviation estimated in real time, by the 
GPS receiver (GST frame). 

 

 
 
 
 
The following figures illustrate the behavior of the algorithm in simulation which allows 

to compute estimation errors since the real poses are known. 
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Fig.4 Mobile frame attached to the mobile robots.  
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Fig. 5 The path followed by the mobile robot 
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Figure (6) shows a simulated path followed by a mobile robot with a variable speed. 

Only 64 box particle was used. Figure (7) and (8) describe the position result errors on x(1) 
and x(2) as a function of time and compared to the initial GPS error on each measure. More 
details will be given in the final paper.  

 

Fig.6. Points are Errors on x(1)  as a function of time. And continuous 
line is the error of GPS measure. 
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Fig.7. Points are Errors on x(2)  as a function of time. And 
continuous line is the error of GPS measure. 

 

6. Conclusion 

A new algorithm for localization based simultaneously on particle filters and interval 
data has been proposed. The main idea is to try to use the interval framework which seems to 
be a good methodology to deal with non-white and biased measurements. Constraint 
Satisfaction techniques are very useful for the correction stage since a key issue in particle 
filtering is to find efficient methods applied to each particle. A modified update of the weights 
has been proposed in this paper. This update gives more stability to the filter and seems to be 
a good solution to the localization in urban environments since the original particle filter 
algorithm fails to process under similar conditions.  

The results indicated that the method is able to filter effectively noisy data using only 
several particles. Future works will compare the method to other exiting algorithms on the 
basis of real experiments.   
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