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Abstract

In order to estimate continuously the dynamic location of a car, dead reckoning and absolute sensors are usually merged. The models used
for this fusion are non-linear and, therefore, classical tools (such as Bayesian estimation) cannot provide a guaranteed estimation. In some
applications, integrity is essential and the ability to guaranty the result is a crucial point. There are bounded-error approaches that are insensitive
to non-linearity. In this context, the random errors are only modeled by their maximum bounds. This paper presents a new technique to merge
the data of redundant sensors with a guaranteed result based on constraints propagation techniques on real intervals. We have thus developed an
approach for the fusion of the two ABS wheel encoders of the rear wheels of a car, a fiber optic gyro and a differential GPS receiver in order
to estimate the absolute location of a car. Experimental results show that the precision that one can obtain is acceptable, with a guaranteed
result, in comparison with an extended Kalman filter. Moreover, constraints propagation techniques are well adapted to a real-time context.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic localization of a car in outdoor environments is
a key issue for many applications (Caltabanio, Muscato, &
Russo, 2001), particularly, for those that need absolute posi-
tioning information. Usually, the localization process involves
dead reckoning sensors (like odometers, gyros, etc.) and ab-
solute sensors (like telemeters, goniometers, vision, GPS, etc.)
and tries to exploit their complementary and their redundancy.
Indeed, the fusion of sensor’s measurements can bring more
precision, availability and integrity. For example, GPS suffers
from satellite masks occurring in forests, cities, tunnels, etc. .
In this case, dead reckoned sensors are able to provide an esti-
mation of the car pose. Moreover, the quality of the positioning
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depends mainly on the visible satellites configuration. By con-
tinuously using dead reckoning sensors in a fusion process, one
can filter the GPS estimates which increase the performances
of the localizer.

With the assumption that the model and measurement errors
are bounded, a class of bounded-error approaches proposes to
fuse the data in such a way that all the results are guaranteed.

Such an approach proposes a different way to treat the local-
ization process in the sense that human beings usually reasons
with points instead of sets like ellipses or boxes. A natural ques-
tion is therefore what is the relevance of bounded estimate? A
first way to answer this question is the fact that an interval can
be compared to a point if its size is small regarding the task
to perform. On the contrary, if the size of the interval is not
negligible, the ambiguity is important and the fact to assimilate
the interval to a point can induce an unexpected behavior. This
point can be crucial for applications which need high integrity
like, for example, a rescue robot or a group of collaborating
robots (Farinelli, Iocchi, & Nardi, 2004).

These concept starts to be accepted since several appli-
cations rely on this approach. For example, in Bouvet and
Garcia (2001), the authors propose to use the set inversion by
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interval analysis (SIVIA) algorithm to find all the possible static
3D locations with an automatic theodolite using indistinguish-
able landmarks. If only one solution is obtained, then an ex-
tended Kalman filter (EKF) is applied. Bounded-error observers
based on a predictor/estimator mechanism have also been pro-
posed (Bouron, Meizel, & Bonnifait, 2001; Jaulin, 2002; Ki-
effer, Jaulin, & Walter, 2002). The same technique has been
used to localize a mobile robot with ultrasonic measurements
(Meizel, Lévêque, Jaulin, & Walter, 2002). These approaches
can reach a high precision with a guaranteed result, but they
are not adapted to a real-time implementation since they are
very slow and since their computation time is not limited, be-
cause of the bisections of the state space used to find the
result.

If the measurements and the equations provide redun-
dancy, propagation techniques on real intervals can be used.
The main idea of such an approach is to eliminate the in-
consistence between variables linked by the state space
equations which provide what one calls “constraints”. An
interesting property of these techniques is that they are very
fast, compared with the bounded-error predictor/estimator
observers. Thus, they are well adapted to a real-time
processing.

Furthermore, prevalent methods used in the fusion stage of-
ten rely on a linear state space representation. Nevertheless,
state space representations considered in localization are usu-
ally non-linear. The usual solution is to linearize the equations
around the previous estimated state and then to apply a linear
technique. This is the principle of the EKF in Gaussian noises
context. The main drawback of such an approach is that the
observer can diverge, which means in this case that the ob-
server can converge towards a local minimum different from
the global solution. Another disadvantage of an EKF is that the
consistence is difficult to obtain. Often, it underestimates the
covariance estimation error, which makes difficult to know the
imprecision.

Another objective considered in this work is to compare a
real-time bounded-error approach based on forward–backward
propagation denoted FBP in the following (Gning & Bon-
nifait, 2004), and an EKF approach in order to determine
the vehicle location on a terrestrial global reference frame
(like WGS84). For this purpose, real experiments have been
carried out. Moreover, the sensors considered provide redun-
dant data since the two rears ABS wheel encoders of a car,
a fiber optic gyro and a differential GPS receiver have been
used.

The paper is organized as follows. In Section 2, the concept
of state estimation is recalled and bounded-error observers are
presented. Section 3 presents the fundamental notions of inter-
val analysis: consistence, constraints propagation and contrac-
tors. Then, the FBP contractor algorithm that has been devel-
oped is described in Section 4. In Section 5, the fusion problem
is decomposed into two stages. For both of them, the solution
implemented for the EKF and FBP approaches are explained.
Finally, Section 6 presents experimental results carried out with
our experimental car with a very precise PPK GPS used for
comparison purposes.

2. State estimation in a bounded-error context

The objective of state estimation is to determine an unknown
state x thanks to a given evolution model and the knowledge of
measurements, with an optimality depending of some desired
criteria.

2.1. Notations

Let yk be the kth measurement at instant k, and yk|k−1 the
predicted measurement knowing the state at instant k. The er-
ror between the measurement and its prediction is: eyk/k−1 =
yk − yy/k−1. This error is due to the fact that the modeling is
always perfectible and the measures suffer from noises or lim-
ited precisions of the sensors.

An interval variable is denoted with brackets: for example
[y] represents a guaranteed interval of variable y.

2.2. Background

Given a state representation with a dynamic evolution model
and measured observations, the original idea of state observa-
tion consists in the ability to reconstitute the initial state x0.
Knowing this state, one can deduce the current state at any in-
stant. In practice, a dynamic state observer is often researched
since it is characterized by a recursive form well adapted to a
real-time implementation.

The usual class of state observers is based on Bayesian filters
such as the well-known Kalman filter (Kalman, 1960). The
main idea of these methods is to use the error eyk|k−1 like a
correction of the prediction in an optimal way, according to
a criterion. In the linear case and with the hypothesis that all
the noises are Gaussian, zero mean and white, the Kalman
filter is optimal in the sense that it exactly satisfies a statistical
criterion: it provides unbiased estimates and minimum error
variance for each step. Unfortunately, the conditions on the
noises are rarely verified in practice. In a non-linear case, many
state estimators are based on an approximated model of a non-
linear system, which is, for example, linearized around the most
recent estimate at each iteration step. The linearization can
lead to a sub-optimal performance and sometimes can induce
a divergence of the filter.

With the only assumption that the model and measurement
errors are bounded, a class of bounded-error approaches pro-
poses to fuse the data in such a way that all results are guaran-
teed. The particularity of these approaches is that they provide
only sets which contain all the possible solutions.

In the bounded-error context, there are two great classes: one
is based on an ellipsoid modeling (Durieu, Polyak, & Walter,
1996; Fogel & Huang, 1982) and is limited to linear cases.
Another one is based on interval analysis which can deal with
non-linearity. The algorithm presented in this paper belongs to
this class.

In the linear case, a Kalman filter solution based on interval
analysis tools has been proposed (Chen, Wang, & Shieh, 1997),
and is called interval Kalman filter (IKF). The idea of this filter
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is to develop an exact and optimal estimation based on an in-
terval condition expectation. It reduces the Gaussian condition
only for the measurement noise and supposes that errors of the
model are bounded. So, the algorithm has the same structure
as the standard Kalman filter with interval variance matrixes.

For state estimation, many bounded-error algorithms are
based on the SIVIA algorithm (Jaulin & Walter, 1993). In short,
the idea of the SIVIA algorithm is to compute the reciprocal
image of a sub-paving by a possibly non-linear function. The
principle is to test for each box of a given sub-paving inside
a search domain, if its image by a function in the observation
model, has an intersection with the measured observation box.
A box for which this condition is not verified is excluded,
otherwise if the box entirely contained in the observation box,
it is memorized. The process is iterated with a bisection of the
remaining boxes of the sub-paving until a pre-specified thresh-
old width is reached. The SIVIA algorithm can be applied in
two interesting ways for a state estimation problem. The first
one implements a natural two-step filter (Jaulin, 2002; Kieffer
et al., 2002; Meizel et al., 2002):

• Prediction: this step consists in calculating the image interval
of the state [xk+1] at instant k + 1, thanks to the model and
the knowledge of both the state [xk] and the input [uk] at
instant k,

• Correction: this step consists in finding the intersection be-
tween the current estimated [xk+1] state and the domain con-
sistent with the box given by the SIVIA and the measured
observation box.

Another application (Ashokaraj, Tsourdos, Silson, & White,
2004) is a fusion of an unscented Kalman filter (UKF) (Julier
& Uhlman, 1997) and the predictor/estimator using the SIVIA
described above. This method is able to ameliorate the con-
vergence of the Kalman filter if a great redundancy of sensors
exists.

In brief, the prevalent method based on interval analysis
adapted to a non-linear equation is the predictor/estimator based
on the SIVIA. Unfortunately, the calculation time can explode
rapidly and a crucial question about pertinent dimension to bi-
sect is not resolved yet (according to the biggest width? in how
many parts? . . .).

For real-time implementation issues, another solution is
based on constraint propagation on intervals. The calculation
time of this method is less explosive than the one based on the
SIVIA. The main condition for this kind of approach is to treat
problems which present redundant equations and/or measure-
ments, like the localization problem considered in this paper.

3. Interval analysis and constraints propagation

3.1. Basic definitions

A real interval, denoted [x], is defined as a closed and con-
nected sub-set of IR, and a box [x] of IRn as a Cartesian product
of n intervals ([x] = ×i=1,...,n[xi]).

The main idea of interval analysis is to provide efficient tools
and different algorithms to guarantee with the least pessimism,
the inclusion of all possible solutions of a given bounded-error
problem to a box. All elementary arithmetic operations like
{+, −, ×, /} are extended to the bounded-error context (Moore,
1966). Extensions are also defined for usual operations between
sets of IRn like {∩, ⊃, ⊂, etc . . .}.

The image of an interval by a function is not necessarily an
interval. Therefore, the inclusion function concept has been de-
veloped to calculate efficiently an interval enclosing the image
set (Malan, Milanese, Taragna, & Garloff, 1992).

3.2. Constraints satisfaction problem

Constraints satisfaction problems (CSPs) were initially de-
fined for discrete domains where the variables xi belong to fi-
nite sets (Dechter, 2003). Later, CSP were extended to contin-
uous domains.

Let consider a box [x] of IRn and m relationships representing
the constraints and linking the components [xi] of [x]:
fi(x1, . . . , xn) = 0, i = 1, . . . , m. (1)

Let f be the Cartesian product of fi . Eq. (1) can be rewritten
in a vectorized form as F(x) = 0.

The problem of finding the minimal [x] box satisfying all
the constraints fi corresponds to a CSP denoted H, which can
be formulated as:

H: (F (x) = 0| x ∈ [x]). (2)

The solution set of H is defined as

S = {x ∈ [x]|F(x) = 0}. (3)

3.3. Consistence

A scalar xi belonging to [xi] is globally consistent with H,
if it is possible to find a vector x within S, and for which xi is
the ith coordinate:

∃ x1 ∈ [x1], . . . , xi−1 ∈ [xi−1], xi+1 ∈ [xi+1], . . . , xn ∈ [xn]|
f (x1, . . . , xi−1, xi, xi+1, . . . , xn) = 0,

xi is locally consistent with H if for such constraint fi (taken
separately), it is possible to find a vector x consistent with fi ,
and for which xi is the ith coordinate:

∀ fi, ∃x1∈[x1], . . . , xi−1∈[xi−1], xi+1∈[xi+1], . . . , xn∈[xn]|
fi(x1, . . . , xn) = 0.

An interval [x] is globally (respectively, locally) consistent
with H if ∀xi ∈ [x], xi is globally (respectively, locally) con-
sistent with H. Global consistence implies local consistence.

3.4. Contractors

To contract H means to substitute the box [x] by a smaller
box [x′] ⊂ [x] containing all the solutions of H i.e. S ⊂ [x′].
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A contractor for H is defined as an operator used to con-
tract H.

There are different kinds of contractors (Jaulin, Kief-
fer, Didrit, & Walter, 2001b) developed in order to reduce
pessimism of returned box, adapted to different classes of
problems. In this paper, a FBP technique based on primi-
tive constraints (Benhamou, Goualard, Granvilliers, & Puget,
1999), is used, because of the great redundancy of data and
equations, and because of the independency of the method to
non-linearities. It is a locally consistent contractor. It consists
in two steps. First, the forward propagation step considers the
direct forms of the equations. Second, the backward stage uses
inversion forms of the functions appearing in the equations.
These two steps can be illustrated by the following example.

Let consider the constraint z = x sin(y). At first, this con-
straint is decomposed into primitive constraints. A primitive
constraint involves only an arithmetic operator or a usual func-
tion (cos, exp, etc.).{

a = sin(y),

z = x.a,
(4)

where a is an auxiliary variable initialized by [a] = [∞,

+∞]. Let [sin] and [sin−1] be inclusion functions for functions
sin and sin−1.

Please, notice that the order of the constraints is impor-
tant. In the considered example, this order is globally optimal
as shown by the graph. For more details, please see (Jaulin,
Kieffer, Braems, & Walter, 2001a).

Suppose that x ∈ [x] = [−1; 2], y ∈ [y] = [0; �/6], z ∈
[z]=[1; 3]. In this case, the FPB contractor gives the following
results:

F1: [a] = [a] ∩ [sin]([y]) = [−∞, +∞] ∩ [sin]([0, �/6])
= [0, 0.5],

F2: [z] = [z] ∩ [x].[a]
= [1, 3] ∩ [−1, 2].[0, 0.5] = [1, 3] ∩ [−0.5 1]
= [1, 1],

B3: [x] = [x] ∩ [z]/[a]
= [−1, 2] ∩ [1, 1]/[0, 0.5] = [−1, 2] ∩ [2, +∞]
= [2, 2],

B4: [a] = [a] ∩ [z]/[x] = [0, 0.5] ∩ [1, 1]/[2, 2]
= [0, 0.5] ∩ [0.5, 0.5] = [0.5, 0.5],

B5: [y] = [y] ∩ [sin−1]([a])
= [0, �/6] ∩ [sin−1]([0.5, 0.5])
= [0, �/6] ∩ [�/6, �/6] = [�/6, �/6].

When there are several redundant constraints, the graph coming
from the elementary constraints decomposition contains cycles.
In that case, the FBP contractor may not reach global consis-
tence. A solution is then to apply the algorithm of Waltz which
provides locally consistent boxes. Its principle is to repeat the
propagation until the intervals do not contract any more (Waltz,
1975).

4. Data fusion using the FBP contractor

4.1. Global model for data fusion process

The data fusion problem is solved as a state observation
problem with redundant measurements: some of them appear in
the evolution model, materialized by the input uk , and the others
appear in the observation equations, materialized by the output
yk . So at any instant k, one tries to reconstitute xk knowing
xk−1 and current measurements which give uk and yk . The
system which describes this process is given by the following
equations:{

xk = f (xk−1, uk, pk, �k, �k)

yk = g(xk, pk, �k),
(5)

where k represents the discretization of time, uk ∈ IRq repre-
sents the measured input vector, yk ∈ IRm represents the mea-
sured output vector, xk ∈ IRn represents the state vector of the
system, pk ∈ IRp is the constant parameters vector, imprecisely
known, �k ∈ IRn represents the model noise, �k ∈ IRq repre-
sents the measurements noise perturbing the input uk , �k ∈ IRm

represents the measurements noise perturbing the output yk .

4.2. Formalization

System (5) can be viewed at any time index like a CSP
Hk: (F (x) = 0|x ∈ [x]) where

x = (xk, . . . , x0, uk, . . . , u0, yk, . . . , y0, pk, . . . , p0) and

F : x → F(x)= (xk −f (xk−1, uk, pk), . . . , x1 −f (x0, u1, p1),

yk − g(xk, pk), . . . , y1 − g(x1, p1)).

The noises �i , �i and �i do not appear explicitly in Hk since
there are integrated to build the intervals [xi], [ui], and [yi],
with the hypothesis that they are additive. For example, if the
bounds of �k are b and b ∈ IRm, one can write

yk ∈ [yk,m − b, yk,m + b]. (6)

Please notice that the parameters pk which are known with
errors are treated as unknown quantities in the FBP.

In order to determine the bounds of the noises, usually sev-
eral approaches depending on sensors can be used: to use con-
structor’s data sheets, to perform tests in comparison with a
reference, or to use an estimated imprecision provided by the
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sensors in realtime. A crucial point associated with the deter-
mination of noises bounds is the incoherencies management.
On the one hand, over-estimation induces pessimist estimation
boxes, and on the other hand, under-estimation can lead inco-
herence between boxes.

The goal of the algorithm is to reduce for each step k the box
[x] of Hk with the FBP algorithm. The first step consists in
decomposing all the constraints of Hk in primitive ones. Then,
FBPs are applied until that the contractions become smaller
than a chosen threshold.

For the CSP Hk to be solved, variable x include all variable
in system (5) from step 0 to k. However, for a real-time imple-
mentation, it is unrealistic to consider all the equations from
step 0 to step k. Therefore, a limited time windows (denoted
“h” for horizon) is used. It represents the number of indices
(from k to k − h + 1) which appear in Hk . In this case, Hk

has the expression:

(F (x) = 0|x ∈ [x]),
where x = (xk, . . . , xk−h+1, uk, . . . , uk−h+1, yk, . . . , yk−h+1)

and F : x → F(x) = (xk − f (xk−1, uk, pk), . . . , xk−h+2 −
f (xk−h+1, uk−h+2, pk−h+2), yk − g(xk, pk), . . . , yk−h+2 −
g(xk−h+2pk−h+2)).

5. Multi-sensor fusion

In this section, the localization of a car is considered as a
multi-sensor fusion problem that can be formalized as a state
estimation problem and solved thanks to the FBP algorithm.

5.1. Global architecture of the localization process

The vehicle frame origin is chosen at the middle of rear axle
and its x-axis is parallel to the longitudinal axle of the car.

Between two sampling instants, elementary rotations of the
two rear wheels are integrated by counters which provide the
distance traveled by each wheel. The elementary displacement
covered by the origin of the frame denoted �s,k and the rotation
denoted ��,k , at instant k, are given by the following equations:⎧⎨
⎩

�s,k = �RR + �RL

2
,

��,k = �RR − �RL

e
,

(7)

where �RL,k, �RR,k denote the measured variables (the values
counted between two samples), �s,k, ��,k are the estimated vari-
ables, L and e are the vehicle parameters (the distance between
the axles and the wheel base).

Moreover, the gyro provides the rotation between two sam-
ples ��,gyro, which gives

��,k = ��,gyro. (8)

The mobile vehicle pose Xk , is calculated, thanks to Xk−1
and thanks to the output (�s,k, ��,k) of the static fusion process:{

xk = xk−1 + �s,k cos(�k−1 + ��,k/2),

yk = yk−1 + �s,k sin(�k−1 + ��,k/2),

�k = �k−1 + ��,k,

(9)

where xk and yk represent the vehicle position, at time tk , in
the reference frame. �k is the heading angle.

The GPS antenna has been installed on the vertical of the
origin frame, so, the observation model is given by the linear
equation:{

xgps = xk,

ygps = yk,
(10)

where xgps and ygps are the GPS measurements.
For a better clearness and more simplicity, let consider two

levels of fusion. The elementary rotation ‘��’ and elementary
displacement ‘�s’ are given by a static fusion stage which uses
the measurements of the ABS sensors of the two rears wheels
of the car and a yaw fiber optic gyro. The redundancy of the in-
formation provided by these sensors should reduce in a signifi-
cant way, the pessimism of the initial box and therefore should
give final boxes for ��,k and �s,k with a good accuracy. The
result of this fusion is the input of a dynamic module which
computes the vehicle location.

5.2. Static fusion

At the static fusion stage, the FBP returns guaranteed inter-
vals ��,k and �s,k solutions of the CSP

Hk: (F (x) = 0| x ∈ [x]),
where x = (�s , �RL, �RR, �q, L, e), �RL, �RR are the traveled
distances of the two rear wheels, �� is the gyro measurement,
F represents the system of equations (7).

With the assumption that the vehicle runs without slipping,
the maximum distance error between two instants tk−1 and tk ,
is less than one top of the ABS sensor (denoted �ABS).

[�] = [�mes − �ABS, �mes + �ABS]. (11)
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Thanks to specific static tests, the bound of the error of the
gyro has been estimated as

��,gyr ≈ 3 × 10−3 degrees (12)

[��] = [��,mes − ��,gyr, ��,mes + ��,gyr]. (13)

Please notice that to consider the equality between ��,k and
��,gyr as a constraint (Eq. (8)) is equivalent to initialize the
variable [��,k] with the interval corresponding to the gyro mea-
surement, as it has been proposed above.

[�S] is not measured and so, initialized with unknown value:
[−∞, +∞], [e] is the wheel base of the vehicle. It is roughly
known that is why, in part, it can be treated as an unknown
quantity in the FBP.

The estimates of [��,k] and [�s,k] are obtained thanks to the
FBP contractor applied to the CSP Hk . Please notice that be-
tween two samples, the CSP Hk and Hk−1 are not connected.
In addition, an originality of the method is that all the variables
of the CSP can be contracted even the measurements and the
parameters used in the model.

5.3. Dynamic fusion

For any time index k, the new CSP to be solved with a chosen
horizon equals to ‘h’, is

Hk: (H(x) = 0|x ∈ [x]),
where x = (xk, . . . , xk−h+1, yk, . . . , yk−h+1, �k, . . . , �k−h+1,,
�S,k, . . . , �S,k−h+1, ��,k, . . . , ��,k−h+1), [�S,i] and [��,i] are
provided by the static fusion stage, the heading angle [�i] =
[−∞, +∞] is not measured, H represents the evolution model
(9).

The GPS measurement (xgps,mes, ygps,mes) is used to initialize
intervals [xk] and [yk]. So, each longitude/latitude estimated
point is converted in a Cartesian local frame (see Fig. 2) and the
GPS bounded-error measurement is obtained thanks to the GST
NMEA sentence. The error bounds are supposed to be equal
to three times the estimated standard deviation �̂ computed in
real time by the GPS receiver:

[xgps] = [xgps,mes − 3�̂x, xgps,mes + 3�̂x],
[ygps] = [ygps,mes − 3�̂y, ygps,mes + 3�̂y]. (14)

For more simplicity and like it has been done for the static fu-
sion, constraints corresponding to equalities between variables
like those given by GPS measurements, are used as a simple
initialization as it has been done for [xk] and [yk] above.

This CSP gives a general solution to the non-linear state
observation for any instant tk .

6. Experimental results

The results presented in this section were obtained by post-
processing real sensor’s measurements acquired thanks to an
experimental car (Fig. 1). Data of the two ABS sensors and of
the fiber optic gyro (a KVH RD100) were sampled at 100 Hz.

Fig. 1. The experimental car with the Ag132 and Thales GPS receivers.
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Fig. 2. Overview of the trial in a local frame.

The differential GPS receiver (a Trimble AgGPS132, L1 only,
working with Omnistar corrections available in Europe) was
used in a synchronized mode at 5 Hz. Using the PPS signal,
all the data were resampled at 5 Hz and the GPS latency has
been compensated. This simplifies the development of the two
fusion methods.

In order to be able to compute estimation errors, a L1/L2
Thales navigation GPS receiver is used in a post-processed
kinematic mode working with a local base (a Trimble MSi
7400). This system was able to give positions of reference with
a 1 Hz sampling rate. Since the constellation of the satellites
was good enough during all the trials (April 2004), all the kine-
matics ambiguities were fixed. Therefore, it is guaranteed that
a few centimeters accuracy was reached. The synchronization
between this reference and the outputs of the dynamic localiz-
ers (FBP and EKF) has been made thanks to the GPS times-
tamps. The position offsets between the antennas of the two
GPS receivers and the origin of the mobile frame (Fig. 1) have
also been taken into account.

Fig. 2 shows a top view of an experiment. It corresponds
to two 10 minutes laps. The conditions of the experiment are
shown on Fig. 3. The mean speed was 50 kmph and reached
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Fig. 3. Speed and standard deviation of the latitude.
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Fig. 4. Illustration of the too great confidence of the EKF.

80 kmph. The standard deviation of the latitude indicates that
the differential corrections of the geostationary satellite Om-
nistar were lost three times because of trees (see Fig. 2). In
this case, the Ag132 still propagates an estimation of the cor-
rection during 30 s. After that it works in a “natural mode” (in
opposite to differential mode) and the precision decreases sig-
nificantly. Thanks to a quality indicator contained in the GST
NMEA sentence, these different modes can be known.

Fig. 4 illustrates the fact that the EKF cannot guarantee a
maximum error bound, since the PPK reference position (de-
noted by the star *) is, at this precise time instant, outside of
the Gaussian estimated 99% ellipse. On the contrary, the box
obtained by FBP contains the PPK reference. Moreover, one
can remark the good contraction of the GPS box provided by
the FBP (the GPS box is in dot and the result of the FBP is in
bold).

Figs. 5 and 6 show the interval error of the EKF and the
FBP, respectively, for the x and y dimensions. In addition to
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Fig. 5. Comparison between bound errors of EKF and FBP for x.
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Fig. 6. Comparison between bound errors of EKF and FBP for y.

the loss of differential correction, two complete GPS masks
of 30 s duration each, had been simulated, at the instants 7
and 270 s. During these masks, the speed was about 50 kmph
(cf. Fig. 3).

It appears from these results that the EKF is more accurate
since its estimated 3� errors bounds are smaller than the guar-
anteed intervals of the FBP. This is due in part to the fact that
the FBP provides locally consistent estimated intervals. Nev-
ertheless, one can notice that the values are of the same order
of magnitude. This proves the feasibility of a bounded-error
approach.

It can be seen that the value “0” is always included in the
FBP estimated intervals, which confirms the fact that the results
are guaranteed: to contain “0” is equivalent to say that the box
contains the PPK’s point. On the contrary, the EKF cannot
guarantee a maximum error and sometimes underestimates its
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error. Indeed, several real points are out of the 3 sigma-bound
as shown by Figs. 5 (time ≈ 250 s) and 6 (time ≈ 120 s,
400 s).

Fig. 7 plots the heading estimated error of the FBP and il-
lustrates the fact that this observer is able to reconstruct a
none directly measured variable. The three times where the
value “0” does not make part of the estimated interval are
due to a noise affecting the reference heading angle since it
has been built manually from the PPK measurements. One
can notice the very good heading estimation provided by the
FBP.

Finally, the processing has never detected any inconsistency
in data used in this trail which indicates a good tuning of the
FBP.

7. Conclusion

This paper has presented a new dynamic localization tech-
nique based on constraints propagation on real intervals.
This approach guarantees that the real pose of the car is in-
cluded in the estimated boxes even if the equations are highly
non-linear. This approach has been compared with the usual
technique based on Kalman filtering which relies on lin-
earization and zero-mean white Gaussian assumptions for the
noises.

In the problem treated in this paper, there is a high redun-
dancy in data and equations since two encoders, a gyro and
a DGPS receiver have been used. Thanks to this redundancy,
contractors alone can be used (i.e. without bisection) since the
consistence of all the data produces rather precise estimates
(i.e. not too pessimistic) as shown by the experimental results.
The contractor presented is based on forward and backward
propagation (FBP). With a 1.8 GHz Pentium 4 and a Matlab
implementation, the FBP treats 10 minutes of data in roughly
150 s which is approximately 10 times the calculation duration

of the EKF. Even if the FBP needs more computations than the
EKF, one can conclude that FBP is well adapted to a real-time
context.

The major implementation problem of such an approach is
to determine correctly the bounds of the noises. Indeed, if
these bounds are underestimated, the contractor may lead to
no solution. On the contrary, if the bounds are overestimated,
the estimated boxes can be very large (the estimates are then
very pessimistic). A methodological way to treat the tuning
of these parameters represents the main perspective of this
research.

Moreover, it turned out that the estimates provided by the
FBP are more pessimist than the one of a Kalman filter, if
we consider the 3� bounds of the filter output. It is quite nat-
ural since a bounded-error approach is always pessimist be-
cause its estimates are guaranteed. Nevertheless, the experi-
mental results indicate that the precision is near to the one
of the Kalman filter. The latter can be mistaken in giving
sometimes too trustful results or can converge toward local
minima.

We think that for applications that need a high level of
integrity, the pessimism of the estimates is not handicap-
ping whereas the fact of obtaining guaranteed results is
essential.
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