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Abstract 

 
Abstract – This paper addresses the problem of 
localizing a vehicle in urban environment by using 
natural information provided by exteroceptive 
sensors. For this purpose, sensors need to detect 
landmarks which have been characterized in a 
previous passage. As the amount of data can be 
significantly large, we propose a strategy to manage 
this information in a GIS (Geographical Information 
System). We illustrate our developments using visual 
landmarks made of key images and 3D points that 
are regrouped in local maps that correspond to the 
roads of a GIS layer thanks to the use of GPS data 
and proprioceptive sensors. Real experiments are 
reported to illustrate the performance of this 
approach which is robust to GPS outages due to 
poor satellite visibility in urban areas. 
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1. Introduction 
 
Dynamic localization with respect to a digital map is 
an essential task for advanced assistance systems 
and for intelligent vehicles. As a matter of fact, 
Geographical Information Systems (GIS) can 
provide precious data like signposts, speed limits, or 
hazardous zones like schools, pedestrian crossings, 
etc.  
Positioning systems often rely on the use of a GNSS 
(GPS today, Glonass or Galileo in near future) that 
corrects the drift of a high bandwidth dead-
reckoning system using odometry and inertial 
sensors. In urban areas and tunnels, a satellite based 
localization system suffers from satellite outages and 
multi-tracks which can decrease significantly the 

precision and the availability of the estimated 
positions. Therefore, for continuous, precise and 
reliable localization, the use of complementary 
localization systems that use landmarks is a key 
issue.  
There are different kinds of landmarks that depend 
on the used exteroceptive sensors. They can be 
classified in the following categories: 
- Active landmarks. Actives landmarks are beacons 
that contain active components in order to transmit a 
signal. They mainly rely on the use of radio-
frequency signals (GPS pseudolites, transponders 
stored in the pavement, Wifi antennas, etc.). Such 
landmarks are usually distinguishable from each 
other. In this case, sensors are receivers equipped 
with an antenna. 
- Passive landmarks. They are artificial landmarks 
pertinently located in the environment for 
localization purposes like magnets in the pavement 
or reflectors installed on post in curves for instance. 
- Natural landmarks. Natural landmarks are features 
of the environment detected by on-board sensors like 
cameras or ladars [4],[9]. They can correspond to 
characteristic points (egde of windows for instance), 
road markings, roof of buildings, posts, curbs, etc. 
The management of such landmarks in order to help 
or replace a GNSS receiver is the issue studied in 
this paper.  
It is known that landmarks have to be associated in 
local maps, a local map being a set of landmarks put 
together because of  
- memory constraints arising from the use of 

embedded systems, 
- the need to download or update a limited 

amount of data from a distant server, 
- the connections that exist between the 

landmarks, essential to compute a location. 



Naturally, the use of a GIS has to be studied in order 
to manage a large amount of local maps geo-
referenced in a global frame. 
For intelligent vehicles, a GIS database is usually a 
set of digitalized roads provided by cartographers 
like NavTeQ or TeleAtlas. This topological 
information is very useful for the navigation tasks 
like path planning and route guidance. The use of 
this topology is also interesting for the landmark 
management [5] and consequently the local maps. 
Indeed, once the location of the vehicle and a road 
(described by a poly-line in the map) unambiguously 
map-match, the pertinent landmarks are those 
associated with this road. Secondly, if the vehicle is 
autonomous (ie driven by a regulator), it has to 
follow a predefined trajectory described by a set of 
connected roads. In this case, the pertinent 
landmarks are those attached with this path. 
Therefore, we propose in this work to map-match 
the landmarks with the road stored in the GIS 
database. Then, each road will logically define a 
local map.  
The paper is organized as follows. Next section 
describes the used natural landmarks; section 3 
presents the localization and map-matching method. 
In section 4, the geo-referencing of the landmarks is 
done. In section 5, the management of landmarks 
during navigation stage is performed. Last section is 
dedicated to real experiments with our experimental 
vehicle. 
 
2. Natural Landmarks 
 
In order to illustrate the concept of natural landmark, 
let consider visual landmarks with characteristic 3D 
points as used by Royer et al. [7, 8] for the 
navigation of a Cycab using a mono-camera at video 
rate. These landmarks are characteristic points in 
images called Harris points [3] (cf Fig. 1). Thanks to 
these points, one can rebuild the 3D pose of the 
vehicle using a sequence of images in which each 
landmark has been detected at least in two images. 
Other methods can use complex landmarks [1] or 
only 2D points [6]. 
Let us study how the key points are reference 
between each other in a sequence of images. 

 
Figure 1: Example of detected visual features 
 

First, the method consists in calculating the 
characteristic points in each image. Then, by a 
tracking method, the most relevant points are 
selected. The following stage consists in calculating 
the homogeneous coordinates (x, y, z, t) for each 
point in a common reference frame. This reference 
frame is related to the first image. Then, a projection 
matrix Mp (3x4) is calculated for each image, which 
makes it possible to transform the coordinates (x, y, 
z, t) of the characteristic points into coordinates (u, 
v, t) in a chosen image. Therefore, for an urban area, 
one obtains 3D Harris points, referenced in a local 
frame,(in other words the frame of the local map), 
and a list of key images in which these points were 
detected.  
The online localization process during the 
navigation phase consists in seeking points of 
interest in the current image. Then, an algorithm 
tries to match these points with the ones of the 
nearest key image. Finally, the estimate of the pose 
of the camera is computed using the matched points 
between the current view and the key image. 
We can remark therefore that a visual landmark is, 
in this case, a key image with corresponding 
characteristic points and associated matrices of 
projection. Moreover, as these key images are 
associated with 3D poses expressed in a local frame, 
it is thus not an isolated image which is useful 
during navigation but the whole set of key images, 
in which one finds common characteristic points.  
We propose to gather this whole of images of 
references and the reference frame associated in a 
local map containing the following structure as 
indicated by Table 1. 



Local map with characteristic 3D points  
Set of I landmarks made up of  

- Key Images 
- Projection Matrices associated with each 

key image  
- Characteristic 3D Points localized in the 

frame of the map with arcs specifying the 
images where these points are found. 

Table 1: Landmarks for precise localization. 
 
3. Map-Matched Continuous Localization 
  
In order to collect and store natural landmarks, it is 
necessary to have estimates of the pose of the 
vehicle, even if these estimates are really imprecise. 
In urban areas, GPS suffers from several drawbacks 
such as multi-tracks and masking: GPS signal is 
often blocked or reflected by high-rise buildings. 
Because GPS alone cannot localize continuously the 
vehicle, it is localized by fusing an odometer, a 
gyrometer, GPS data and map information. If the 
GPS satellites signal is blocked by buildings, for 
example, the evolution model provides a dead-
reckoned (DR) estimate the drift of which can be 
corrected using the map information. 
In order to simplify the matching process, we 
assume that the vehicle follows the pre-computed 
itinerary. Figure 4 gives an example of a pre-
computed itinerary obtained thanks to a usual route 
calculation functionality of a GIS.  
The map-matched localization is done by a pose 
tracking method based on Kalman filtering. The DR 
sensor are used in a prediction stage which is 
corrected by the GPS, if it is available and coherent 
(no multi-tracks) and the map. 
Let us consider a car with front-wheel drive. The 
mobile frame is chosen with its origin M attached to 
the centre of the rear axle. The x-axis is aligned with 
the longitudinal axle of the car. The vehicle position 
is represented by (xk,yk), the Cartesian coordinates of 
M in a global frame (a projection of geographic 
data). The bearing angle is denoted θk. 
If the road is perfectly planar and horizontal, and if 
the motion is locally circular, the evolution model 
can be expressed by: 
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Where Xv,k is the vehicle’s state vector at the instant 
k, composed of (xk, yk, θk), Uv,k the vector of the 
measured inputs consisting of (∆k, wk), ∆k and wk 
being respectively the elementary distance covered 
by the rear wheels and the elementary rotation of the 
mobile frame. αv,k is the process noise and γk 
represents the measurement error of the inputs. αv,k 
and γk are assumed to be uncorrelated and zero mean 
noise.  
The values of ∆k and wk are computed using the ABS 
measurements of the rear wheels and a fibre optic 
gyrometer. 
The fusion of GPS, Map information and odometry 
is done by Kalman Filtering (EKF here but it could 
be UKF) which uses the prediction/update 
mechanism. In the prediction step, the car evolves 
using (2) and the covariance of the error is 
estimated.  
When a GPS position is available, a correction of the 
predicted pose is performed. In urban areas, GPS 
suffers from multi-tracks and bad satellite 
constellation (urban canyoning). So, when a GPS 
position is available, it is necessary to verify its 
coherence. For that, the Normalized Innovation 
Squared (NIS) which has a chi-square distribution is 
used: a distance dm is computed between the GPS 
observation and the state vector. 
Let Yv be the observation vector, µv the innovation 
vector. 
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Where Pµ is the covariance of the innovation. 
If the computed distance dm is smaller than a 
threshold, for instance χ2(0.05,3), then the GPS 
measurement is assumed to be reliable and a 



correction of the predicted pose is performed. 
Otherwise, the dead-reckoned pose provided by the 
evolution model is kept. Please, note that the GPS 
noise is not stationary. The GPS measurement error 
can be estimated in real time by using the NMEA 
sentence GST. This information is provided by the 
TRIMBLE AgGPS132 GPS receiver that has been 
used in the experiments. 
Before launching the acquisition system, an itinerary 
has been computed and we assume that the vehicle 
follows exactly this path. Each segment in the GIS 
map has an Identifier (ID). This ID will be used in 
the following stages to perform the geo-referencing 
of the images. 
Let us consider the segment selection problem which 
consists in extracting from the GIS map the most 
likelihood segment using the predicted state vector. 
Let (xpred, ypred, θpred) be the predicted pose. The 
distance between (xpred, ypred) and some segments of 
the itinerary that are near to the last fused pose are 
computed. The segment that has the smallest 
distance to the predicted pose and whose driving 
direction corresponds to the heading of the vehicle is 
considered as the good one. As we will see in 
section  6, this simple matching strategy gives good 
results. The matched point is obtained by projecting 
the estimated position onto the selected segment. 
The matched point can be used as a map observation 
(denoted Yvm) in order to correct the drift the DR 
estimate if the GPS is unavailable: 
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Another NIS coherence test is used to verify the map 
observation coherence before fusing it thanks to a 
Kalman filter correction stage. 
 
4. Geo-Referencing Natural Landmarks 
 
Let consider the use of natural landmarks detected 
by a camera as explained in section  2. 
After a learning stage, the visual features are 
detected and stored in an additional layer of the GIS. 
Then, these features are extracted each time the 
vehicle navigates in the same area.  
In the learning stage, dated images are acquired by 
cameras connected to an acquisition system, along 
with other sensors. This includes dead-reckoning 

sensors (odometers attached on the rear wheel and a 
KVH fiber optic gyrometer) and GPS data.  
Our method map-matches all the images and, 
afterwards, selects the landmarks (key images). 
 
4.1. Map-Matching the Images 
 
In this stage, map-matched coordinates of the fused 
poses of the localization algorithm shown in 
section  3 are associated with the acquired images 
using timestamps in the same reference time 
coordinates.  
While the timestamp of the image to match falls 
between the timestamps of two positions belonging 
to the same road (they have the same ID), the geo-
referencing of the image is done by a linear 
interpolation. 
If the two map-matched positions used to the geo-
referencing have different ID, the nearest is kept and 
the image position is projected onto its segment.  
This simple strategy is well adapted in practice since 
the sampling rate of the matched position is 
significantly high (100 Hz used in the experiments).  
The question is now to estimate the covariance 
matrix of the image. It is well known that 
imprecision is less dynamic than the state to observe. 
Therefore, the covariance error matrix associated 
with each image is considered to be equal to the one 
of the nearest map-matched pose. 
 

4.2. Regrouping the images in local maps 
 
We proposed to regroup the images in local maps to 
facilitate their management. For this purpose, the use 
of ID of the roads is well adapted; two different 
roads have necessarily different IDs. Indeed, a road 
is a set of same ID segments with eventually a 
junction at its beginning or/and at its end. 
Moreover, each road can be one-way or double 
direction (this information is contained in the road 
attributes). 
For one-way roads, a unique local map is built. It 
contains all the images matched to it. For double 
direction roads, two maps are built, one for each 
direction: E2W (East To West) or W2E (West To 
East). Figure 2 shows double direction roads with 
images associated to each direction. 



 
Figure 2 : Associating Images to Road Segments 
 
4.3. Landmarks Characterization 
 
Storing all the acquired images in the GIS database 
requires a huge amount of disk-space, which is 
unrealistic for real-time applications. So, chosen 
landmarks have to be stored. These landmarks are 
key-images associated with 3D points and 
connectivity links, as seen in section  2.  
The characterization of the visual landmarks is done 
by post-processing the stored sequence. The main 
objective is to find enough landmarks for the precise 
localization. It depends mainly on the curvature of 
the trajectory. In a straight line, a key image can be 
characterized every 5 meters while it can be 
necessary to store them every meter, if the vehicle 
does a rotation.  
In order to manage the landmarks, several attributes 
need to be added to the ones of Table 1. They are the 
GIS ID, the direction and, for each landmark, its 
map-matched position, its covariance and its date of 
acquisition (see Table 2). 
 

Local map of index “j” 
 GIS ID 
 Direction (E2W or W2E) 
 Set of I landmarks made up of   

- Key Images 
- Projection Matrices associated with 

each key image  
- Characteristic 3D Points localized in 

the frame of the map with arcs 
specifying the images where these 
points are found 

- Matched position Xmapj,I 
- Covariance of this position Pmapj,I 
- Date of the acquisition 

Table 2: Landmarks with extended attributes for 
their management in a GIS. 
 
5. Landmark Extraction During Navigation 
 
We consider now that the vehicle navigates in the 
environment learned in a previous stage. As did in 
the learning stage, a destination point is chosen and 
an itinerary is computed using the GIS. The vehicle 
follows this pre-computed itinerary.  
 In the navigation phase, the system needs high 
precision for localization. A centimetric precision is 
obtained when the vehicle can use the pertinent 
learned landmarks regarding the observed landmarks 
during navigation. 
The topic of this paragraph concerns extraction and 
selection in the additional layer of GIS of pertinent 
landmarks at each time t of the navigation stage. The 
methods allowing the control the vehicle are 
described in [1],[6],[8]. The landmarks management 
for navigation consists in two parallel tasks:  

 Local map extraction 
 Visual landmarks selection 

 
In what follows these different tasks are developed. 
 
5.1. Find the right local map: map-

matching fused poses 
 
The goal of this task is to obtain a vehicle pose with 
a metric precision and then to find the appropriate 
local landmarks map stored in the GIS built 
landmark layer. 
The localization algorithm is the same one used in 
the learning stage: it fuses GPS, road map 
information with dead reckoning sensors. A first 
pose is thus computed and a map-matching is done 
using the fused pose, then the road ID is retrieved.  
The selected road ID and the heading permit to 
select the adequate local map. If the selected local 
map is a new one, the visual landmarks are then 
loaded in the dynamic system memory.  
This supervisory task is repeated during the 
navigation process. It guaranties correct transitions 
between two local maps.  



5.2. Visual landmarks extraction 
 
The previous task provides a local map mapj 
composed by a set of geo-referenced visual 
landmarks as previously described. To obtain a 
precise localization in order, for instance, to control 
the vehicle, the navigation process needs to use the 
landmark I having the nearest matched position 
Xmapj,I. Two approaches are then possible.  
The first method is classically based on the matching 
of features points (i.e. Harris coin detector) between 
the current image and all key-images of the local 
map. The matching of feature points consists in 
finding corresponding pairs. One example of 
matching algorithm is standard RANSAC-based 
method [7]. The selection of the pertinent landmarks 
depends on matching results. This method is well 
adapted for tracking process when previous correct 
localization has been done. 
We propose to develop a hybrid method which 
consists in using when it is possible the current pose 
of the vehicle in order to select landmarks from the 
local map. The matched pose of the vehicle (on the 
GIS and with the driving direction) is compared with 
the pose of visual landmarks in the GIS. This 
comparison can be implemented using two methods, 
by using the landmarks I of the local map “mapj” 
which has been selected previously. 
 Compute Euclidian distance between positions 

Imapkv j
XXD ,, −=  

Compute Mahalanobis distances tacking into 
account the inaccuracy of positions. 
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Where,  
-Xv,k = [xv,k, yv,k]T is the vehicle position at the time k. 
-Xmapj,I = [xmapj,I, ymapj,I]T is the absolute position of 
the landmark I of mapj. 
-Pk is the covariance matrix of the vehicle position. 
-Pmapj,I is the covariance matrix of the landmark I. 
 
The selection of pertinent landmarks can be obtained 
by applying a threshold. If several landmarks are 
selected, the RANSAC method has to be used to 
solve the ambiguity. 
This second method combines matching poses and 
matching visual features. It is necessary to initialize 

the precise localization process during the 
navigation stage. 
 
6. Experimental Results 
 
Real experiments have been carried out with our 
experimental car (see Fig. 3) in the downtown area 
of Compiègne (see Fig. 4) using a KVH fibre optic 
gyro sampled at 100Hz, an odometer input and a 
Trimble AgGPS 132 running with a geostationary 
differential correction (Omnistar). 
To test different technologies of cameras and various 
configurations, four cameras were connected to the 
acquisition system. Timestamped images were 
logged at the rate of 15 images per second. The used 
cameras were a CMOS fisheye one, a CMOS stereo 
pair (AVT Marlin F-131) and a CCD Sony Firewire 
(DFW-VL500). 

 
Figure 3 : The Real time acquisition system 
 

The GPS has been tuned in a 3-D only-mode to 
deliver reliable positions, by setting the threshold of 
DOP to a low value and the threshold of the SNR to 
a high value. Such tuning induces a reliable but 
intermittent positioning in urban areas. 
Figure 5 shows the vehicle localization result (in 
bold) on the map (thin) in the urban environment. 
This localization results had been used to map-match 
the acquired key-images. The zoomed view shows 
key-images positions associated to road segments. 
Two weeks later, we carried out navigation 
experiments.  In these experimentations, a driver 
controlled the vehicle along a defined itinerary. 



 
Figure 4: Overview of Road Map around the experimental 
field, with the itinerary plotted in bold 
 

Figure 6 shows in bold green the localization result 
and in thin red the segments where visual local maps 
has been previously acquired. 
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Figure 5: Map Matched results in learning stage  
 
To illustrate the visual landmarks management, we 
have extracted at each time (in fact at each new 
image) the best landmarks for localization. For these 
experimentations, we have computed the Euclidian 
distance between the vehicle position and the 
landmarks position. Then, the best landmarks mean 
here the nearest geo-referenced key image. 
A graphical interface allows to follows the way of 
the vehicle during the navigation process. The 
interface displays the map and adds two positions 
icons: the current matched position of vehicle is 
drawn with a blue/yellow arrow and the reference of 
the key-image selected by the algorithm is drawn 
with a red point.  
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Figure 6: Map-matched vehicle position for the navigation 
stage 
 

Two additional windows display the current image 
and the selected key-image. At each position, the 
interface refreshes the current position, the current 
image and the key-image, if it changes. Figure 7 
displays this interface.  

 

-344 -342 -340 -338 -336 -334 -332 -330 -328 -326

-85

-80

-75

-70

-65

-60

-55

-50
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Figure 7: Real time graphical interface. 
 

The time stamped data was saved in order to analyze 
the results in post-processing and verify the 
extracted landmarks regarding to the current image. 
The route was 1.8 km long during 6 mn. At each key 
image selection, the overlapping between key image 
and current image was verified. We have considered 



the selection correct if the overlapping covers the 
half area of images. The results give 98% 
overlapping when local map is available. The main 
errors come from the vehicle rotations at junctions. 
As said in paragraph  4.3, the key-image learning 
strategy can be refined at these points to assume 
visual landmark continuity. Another solution 
consists in using a special optic like fisheye camera. 
 
7. Conclusion 
 
This article has proposed a method to manage a huge 
amount of landmarks data in GIS for precise 
localization in urban areas. The example of visual 
landmarks with 3D points and connectivity links has 
been considered and the method has been illustrated 
with real experiments carried out in the downtown 
area of the city of Compiegne.    
Our proposition is to regroup the landmarks in local 
maps defined by a map-matching process: a local 
map is a set of segments which has the same ID in 
the GIS database. In order to simplify the map-
matching process, we use the route calculation of a 
GIS software to characterize an itinerary which has 
to be strictly followed by the vehicle during the 
learning and navigation stages.  
Experimental results indicate that this approach is a 
good candidate to the management of landmarks in 
urban area since it allows extracting correctly 
landmarks stored in a previous passage. The 
weakness of this strategy appears when the curvature 
of the itinerary is significant, especially when two 
orthogonal roads make part of the route. In such a 
case, selecting only the most probable landmark can 
conduct to a wrong match. For that, the management 
of the imprecision of the landmarks is a crucial 
point. It is the main perspective of this research. 
 
Acknowledgment 
 
This research has been carried out in the framework 
of the project BODEGA supported by the French 
CNRS program ROBEA from Sept. 2003 to Sept 
2005. 
 
 

 
References 
 
[1] S. Benhimane and E. Malis, “Real-time image-

based tracking of planes using efficient second-
order minimization”. IEEE/RSJ Int. Conf. on 
Intelligent Robots Systems, Sendai, Japan, Oct. 
2004. 

[2] A. Georgiev and P. K. Allen, “Localization 
Methods for a Mobile Robot in Urban 
Environments”, IEEE Trans. on Robotics and 
Automation, V. 20, N. 5, pp. 851-864, Oct. 
2004.  

[3] Ch. Harris and M. Stephens, “A Combined 
Corner and Edge Detector” Proceedings of The 
Fourth Alvey Vision Conference, , pp 147-151. 
Manchester, UK. 1988 

[4]  A. Howard, D. Wolf and G. Sukhatme, 
“Towards 3D Mapping in Large Urban 
Environments”, 2004 IEEE/RSJ Int. Conf. on 
Intelligent Robots and Systems Sept. 28 – Oct. 
2, 2004, Sendai, Japan 

[5] Y. Kim, M. Pyeon, Y. Eo, “Development of 
hypermap database for ITS and GIS”, 
Computers, Environment and Urban Systems, 
Vol. 24, pp. 45-60, 2000. 

[6]  A. Remazeilles, F. Chaumette, P. Gros, “Robot 
motion control from a visual memory”. In IEEE 
Int. Conf. on Robotics and Automation, 
ICRA'04, Volume 4, Pages 4695-4700, New 
Orleans, Louisiane, April 2004. 

[7] E. Royer, M. Lhuillier, M. Dhome and T. 
Chateau, “Towards an alternative GPS sensor 
in dense urban environment from visual 
memory”, 15th British Machine Vision 
Conference, Sept. 2004. 

[8]  E. Royer, J. Bom, M. Dhome, B. Thuillot, M. 
Lhuillier, F. Marmoiton, “Outdoor autonomous 
navigation using monocular vision”. IEEE/RSJ 
International Conference on Intelligent Robots 
and Systems, pages 3395-3400, Edmonton, 
Canada, Aug. 2005. 

[9]  Th. Weiss, N. Kaempchen and K. Dietmayer, 
“Precise Ego-Localization in Urban Areas 
using Laserscanner and High Accuracy Feature 
Maps”, IEEE Intelligent Vehicle Symposium, 
Las Vegas, USA, June 6-8, 2005. 

 


	Abstract
	Introduction
	Natural Landmarks
	Map-Matched Continuous Localization
	Geo-Referencing Natural Landmarks
	Map-Matching the Images
	Regrouping the images in local maps
	Landmarks Characterization

	Landmark Extraction During Navigation
	Find the right local map: map-matching fused poses
	Visual landmarks extraction

	Experimental Results
	Conclusion
	Acknowledgment
	References

