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Abstract

In recent years particle �lters have been applied to a variety of state estimation problems. A particle �lter is a sequential
Monte Carlo Bayesian estimator of the posterior density of the state using weighted particles. The e¢ ciency and accuracy of
the �lter depend mostly on the number of particles used in the estimation and on the propagation function used to re-allocate
weights to these particles at each iteration. If the imprecision, i.e. bias and noise, in the available information is high, the
number of particles needs to be very large in order to obtain good performances. This may give rise to complexity problems
for a real-time implementation. This kind of imprecision can easily be represented by interval data if the maximum error is
known. Handling interval data is a new approach successfully applied to di¤erent real applications. In this paper, we propose
an extension of the particle �lter algorithm able to handle interval data and using interval analysis and constraint satisfaction
techniques. In standard particle �ltering, particles are punctual states associated with weights whose likelihoods are de�ned
by a statistical model of the observation error. In the box particle �lter, particles are boxes associated with weights whose
likelihood is de�ned by a bounded model of the observation error. Experiments using actual data for global localization of a
vehicle show the usefulness and the e¢ ciency of the proposed approach.

Key words: State �ltering and estimation; sensor fusion; particle �lter; Kalman �lter; interval analysis.

1 INTRODUCTION

In many application areas it is necessary to estimate the
state of a dynamic system using a sequence of noisy sen-
sor measurements. The Extended Kalman Filter (EKF)
is used in sensor fusion for nonlinear systems [?]. This
approach is based on applying the Kalman Filter (KF)
algorithm on the linearization of the possibly nonlinear
state and measurement functions of the state model
using a �rst-order Taylor series expansion. The state
distribution, or the posterior, can be then approximated
by a Gaussian random variable which is propagated
analytically through the �rst-order linearization of the
nonlinear system. Instead of linearizing using Jacobian
matrices, the Unscented Kalman Filter (UKF) uses a
deterministic sampling strategy to capture the mean
and covariance with a small set of carefully selected
points known as sigma points [?]. Both the EKF and
the UKF assume unimodal and Gaussian distributions.
Recently, the particle �lter (PF) has emerged as a useful
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tool for problems requiring dynamic state estimation.
A particle �lter is a sequential Monte Carlo Bayesian
estimator which is expected to provide more valuable
information about the posterior, especially if it has
a multimodal shape or if noise distributions are non-
Gaussian [?] [?] [?]. Nevertheless, particle �lter methods
su¤er from some drawbacks. These methods are very
sensitive to inconsistent measures or high measurement
errors. In fact, the e¢ ciency and accuracy of the �lter
depend mostly on the number of particles used in the
estimation, and on the propagation function used to
re-allocate weights to these particles at each iteration.
If there is a high degree of imprecision as a result of bias
and noise then the number of particles should be very
large in order to explore a signi�cant part of the state
space. This will entail a level of complexity unsuitable
for a real-time implementation. Several works like Un-
scented Particle Filters or Extended Kalman Particle
Filter try to combine approaches in order to overcome
these shortcomings (see for example [?] and refer-
ences therein). Other works, like Particle Filters with
Kullback-Leibler distance, use statistical approaches to
increase the e¢ ciency of particle �lters by adapting the
size of sample sets during the estimation process [?].
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Inmany applications, the interval framework seems to be
a good methodology to deal with non-white and biased
measurements. In this paper, we present a particle �lter
strategy for mobile localization involving interval data.
Using interval data is more e¢ cient in that it requires
a signi�cantly smaller set of particles than the normal
PF algorithm, thereby reducing the computational cost.
The pivotal notion in this work is that there are two
di¤erent ways of looking at an interval in one dimension:

(1) An interval represents in�nitely many particles con-
tinuously distributed throughout the interval.

(2) An interval represents a particle imprecisely located
in the interval.

The article is organized as follows. Section ?? presents
the principle of Bayesian �ltering for nonlinear models.
When certain constraints do not hold, this optimal so-
lution is intractable. Sequential Monte Carlo methods,
that is to say particle �lters introduced in Section ??
are among several di¤erent strategies to approximate
the optimal solution. In Section ??, we brie�y present
interval analysis and we introduce some relevant inter-
val operations usually used in the area of bounded er-
ror approaches. The main contribution of this paper is
presented in Section ??. We propose the Box Particle
Filter (BPF) which involves handling box states, inputs
and observations and using constraint satisfaction tech-
niques. In Section ??, we apply the proposed algorithm
to a dynamic localization using a GPS receiver, a gyro
and an odometer. Finally, in Section ??, we present our
conclusion regarding the BPF.

2 Bayesian �ltering

2.1 Introduction

Consider the following nonlinear system:(
xk+1 = f(xk; uk; vk)

yk = g(xk; wk)
(1)

where f : Rnx � Rnu � Rnv �! Rnx is a possibly non-
linear function de�ning the state at time k+ 1 from the
previous state at time k, the input uk and an indepen-
dent identically distributed (iid) process noise sequence
vk; k 2 N. We denote by nx, nu and nv, respectively,
the dimensions of the state, the input and process noise
vectors. The function g : Rnx � Rnw �! Rny is a pos-
sibly nonlinear function de�ning the relation between
the state and the measurement at time k, wk; k 2 N
is an iid measurement noise sequence. ny, nw are, re-
spectively, dimensions of the measurement and mea-
surement noise vectors. The states and the measure-
ments up to time k will be represented, respectively, by
Xk = fxi; i = 1; � � � ; kg and Yk = fyi; i = 1; � � � ; kg.

From a Bayesian point of view, given the measurements
Yk, everything worth knowing about the state at time k
is given by the conditional probability density p(XkjYk),
known as the posterior density. The posterior constitutes
the complete solution to the sequential estimation prob-
lem. In many real applications, only the �ltering den-
sity p(xkjYk) which is a marginal of the posterior density
p(XkjYk), needs to be estimated. The �ltering density
can be seen as a measure of the belief in the state xk at
time k, taking di¤erent values, given the measurements
Yk = fyi; i = 1; � � � ; kg. Knowing p(xkjYk), various esti-
mates of the system�s state including means, modes and
con�dence intervals can easily be calculated.

2.2 Bayesian solution

If we consider additive noise sequences, the Bayesian
solution to problem (??) is given by [?]:(

p(xkjYk) = 1
�k
pw(yk � g(xk))p(xkjYk�1)

p(xk+1jYk) =
R
pv(xk+1 � f(xk; uk))p(xkjYk)dxk

(2)
where �k is a normalization factor given by �k =R
pw(yk � g(xk))p(xkjYk�1)dxk. The recursion has to

be initialized with p(x0jY�1) = p(x0), where p(x0) is a
representation of prior knowledge, e.g. a uniform dis-
tribution over some region of the state space. The �rst
line in (??) is known as the measurement update, and
the second as the time update. In the case of linear,
Gaussian environments, the Bayesian solution is the
Kalman �lter [?].

2.3 Particle �lters

Statistical and stochastic techniques have been devel-
oped to estimate the state for systems whose parameters
are distributed according to a probability distribution.
Among these methods, sequential Monte Carlo Methods
for Bayesian �ltering, or particle �lter methods, are the
class of simulation �lters which recursively approximate
the �ltering density p(xkjYk) as the cloud of N discrete
particles with a probability mass, or weight, assigned to
each of them. Hence, a possibly continuous probability
density function is approximated by a discrete one.

2.4 Particle �ltering schema

The outline of the particle �ltering algorithm is as fol-
lows [?]. Initially, all particles have equal weights at-
tached to them. To progress to the next time instance,
two steps are performed in sequence. First, at the predic-
tion step, the state of every particle is updated accord-
ing to the motion model. An accurate dynamic model
is essential for robust properties of the algorithm. Next,
during the measurement step, new information that has
become available about the system is used to adjust the
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particle weights. The weight corresponds to the likeli-
hood of each particle state describing the true current
state of the system. This can be computed, via Bayesian
inference, to be proportional to the probability of the ob-
served measurements given the particle state (assuming
all object states are equiprobable). The sample states are
then redistributed to obtain uniform weighting for the
following iteration by resampling them from the com-
puted posterior probability distribution. At any time,
certain characteristics (position, speed etc.) can be di-
rectly computed, if desired, by using the particle set and
weights as an approximation of the true probability den-
sity function.

3 Interval analysis

We brie�y present interval analysis and we describe the
constraint propagation technique which is also known as
consistency technique in the literature.

3.1 Elements of interval analysis

A real interval, denoted [x], is de�ned as a closed and
connected subset ofR, and a box [x] ofRnx as a cartesian
product of nx intervals: [x] = [x1] � [x2] � � � � [xn] =
�nxi=1[xi].

When working with intervals it is necessary to introduce
the inclusion function [f ] of a function f , de�ned such
that the image by [f ] of an interval [x] is an interval
[f ]([x]) [?]. This function has to be calculated such that
the interval enclosing the image set is optimal. Elemen-
tary arithmetical operations including +, -,* and /, and
standard operations between sets of Rn, e.g., �, �, [
and \, also need to be extended to the bounded error
context.

Interval analysis has two main drawbacks, both related
to the necessity of using interval arithmetic. The �rst
is that standard computers are not equipped with ded-
icated interval-arithmetic capabilities, although many
tools are well known to the interval community. The sec-
ond is that the boxes are not particularly suitable for
enclosing any set of solutions of Rn. However, improve-
ments have beenmade to reduce this limitation [?] [?] [?].

Di¤erent algorithms, called contractors, exist in order
to reduce the size of boxes enclosing the solutions. For
the fusion problem considered, we have chosen to use
constraint propagation techniques [?], because of the the
high degree of redundancy of data and equations.

3.2 Constraints Satisfaction Problem (CSP)

Consider a system of m relations fm linking vari-
ables xi of a vector x of Rnx by equations of the
form fj(x1; : : : ; xnx) = 0; j = 1 : : :m, which can be

written more succinctly as f(x) = 0, where f is the
Cartesian product of the fj�s.

De�nition 1 (Constraints Satisfaction Problem)
A Constraints Satisfaction Problem (CSP) H is the
problem which gathers a vector of variables x from an
initial domain D and a set of constraints f linking the
variables xi of x.

Under the interval framework, the imprecision or the
uncertainty on the variable xi of R is modelled by an
interval [xi] which usually corresponds to prior knowl-
edge about the domain of xi. The a priori knowledge
on the domain of x will then be extended to the region
in Rnx de�ned by: [x] = �nxi=1[xi]. The CSP consists of
�nding the values of x 2 [x] which satisfy the equality
constraints f(x) = 0. The solution set of the CSP will
be de�ned as S = fx 2 [x] j f(x) = 0g. Note that S
is not necessarily a box. Under the interval framework,
solving the CSP is equivalent to �nding the minimal box
[x

0
] � [x] such that S � [x0 ].

3.3 Global and local Consistency

In the literature concerning CSPs, there are two key
notions regarding the consistency of a solution. We now
de�ne these notions.

De�nition 2 (Global consistency) A scalar value xi
belonging to the ith component of the box [x] is globally
consistent with a CSP H if it is possible to �nd at least
one vector within [S] having xi as the ith coordinate. Thus
xi is globally consistent if 9

�
x1 2 [x1]; : : : ; xi�1 2

[xi�1]; xi+1 2 [xi+1]; : : : ; xnx 2 [xnx ]
	
= f(x) = 0.

De�nition 3 (Local consistency) A scalar value xi
belonging to the ith component of the box [x] is locally
consistent with a CSP H if it is possible to �nd at least
one vector within all [Sj ]j=1::m taken separately hav-
ing xi as the ith coordinate. Thus xi is locally consis-
tent if 8 fj = j = 1 : : :m; 9

�
x1 2 [x1]; : : : ; xi�1 2

[xi�1]; xi+1 2 [xi+1]; : : : ; xnx 2 [xnx ]
	
= fj(x) = 0.

3.4 Waltz�s Contractor

De�nition 4 (Contractor) A contractor is de�ned as
an operator used to contract the initial domain of the
CSP, and thus to provide a new box [x

0
] � [x] such that

S � [x0 ].

Di¤erent kinds of methods exist for developing contrac-
tors. The method used in this paper is an adaptation
to real intervals of Waltz�s algorithm [?] which is based
on the primitive constraints propagation. A primitive
constraint involves only an arithmetic operator or a
standard function (cos, exp, etc.). The principle of the
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Waltz�s contractor is to contract each constraint, with-
out any a priori order, until the contractor becomes inef-
�cient. The use of this contractor appear to be especially
e¢ cient when there is redundancy of data and equations.
In fact, this is the case for the data used in Section ??.
Note that this method is independent of the nonlineari-
ties and provides locally-consistent contractors [?]. The
principle can be explained using the following example.
Let us consider the constraint z = x: exp(y). At �rst,
this constraint is decomposed into two primitive con-
straints, a = exp(y) and z = x:a, where a is an auxiliary
variable initialized by [a] = [0;+1[. Each primitive
constraint has been obtained by isolating one of the
variables in the initial constraint. Consider an initial do-
main de�ned by [z] = [0; 3], [x] = [1; 7] and [y] = [0; 1].
Using the inclusion functions [exp] and [(exp)�1] = [ln],
constraint propagation works as follows:

� [a] = [a] \ [exp]([y]) = [1; e]
� [z] = [z] \ [x]:[a] = [1; 3]
� [x] = [x] \ ([z]=[a]) = [1=e; 3]
� [a] = [a] \ ([z]=[x]) = [1=3; 3e]
� [y] = [y] \ [ln]([a]) = [0; 1]

and thus the new domain of the variables will be reduced
to [z] = [1; 3], [x] = [1=e; 3] and [y] = [0; 1].

4 From particle to box particle �lters

When making real data measurements, di¤erent results
are usually obtained when the same measurement is re-
peated. This variation is due to stochastic error, and sta-
tistical methods are used to model maximum informa-
tion from the results. In many applications, the interval
framework would appear to be a good methodology for
dealing with non-white, biased measurements, particu-
larly when these measures vary around a central value
within certain bounds. This approach will be used in this
paper to introduce an interval-based multisensor data
fusion approach. Instead of point particles and proba-
bilistic models for the errors and for the inputs, the key
idea in BPF is to use box particles and a bounded error
model. Below we present the analogy between di¤erent
steps in the particle �lter algorithm and the correspond-
ing steps in the box particle �lter. Please notice that in
the following sections particles refers to PF and box par-
ticles to BPF.

4.1 Box particle initialization

For the particle �lter, this stage consists in generating
a set of N point particles fx(i)gNi=1 in a limited region
of the state space. This region is chosen in order to ex-
plore the state space. Generally, all particles have iden-
tical weights attached to them. It is straightforward to
extend this process of initialization to boxes. So, instead
of point particles, the state space region in question can

S[c][c]State at tim e k-1 C[c][c]Constra ints satisfaction
T[c][c]techn iques B[c][c]Weighted Boxes W[c][c]after contraction

R[c][c]Resampling using weights D[c][c]Subdiv ision
P[c][c]Propagation (instant k) St[c][c]State at tim e k M[c][c]Measure

Fig. 1. Scenarios for the Box Particle Filter.

be divided into N boxes f[x(i)]gNi=1 with empty intersec-
tion and equivalent weights can be associated with each
of them. One advantage of this initialization using boxes
is that the number of particles can be reduced.

4.2 Propagation or prediction step

In this step, the state of every particle is updated ac-
cording to the evolution model using di¤erent realiza-
tions of the noise. Knowing the particles fx(i)gNi=1 and
the input fu(k)g at step k, the particles at step k+1 are
built using the following propagation equation: xik+1 =
f(xik; uk; v

i
k), where v

i
k is the noise realization corre-

sponding to the particle xik. In the case of box par-
ticles, thanks to interval analysis tools, it is also pos-
sible to propagate boxes using the same propagation
equations. Knowing the box particles f[x(i)]gNi=1 and the
input f[u(k)]g at step k, the boxes at step k + 1 are
built using the following propagation equation: [xik+1] =
[f ]([xik]; [uk]), where [f ] is an inclusion function for f .
The interesting di¤erence between operations on parti-
cles and operations on box particles in this step is the use
of noise when propagating particles, and the bounded
error form used for propagating box particles without
noise. For particle �lters, the noise allows us to take into
account an error that may occur in the model and the
measured inputs. Fortunately, in the case of box parti-
cles, the model and input errors are directly taken into
account by the bounded error approach.

4.3 Measurement update

In this step, the new measurement is used to adujst the
particle weights and contract the boxes.

4.3.1 Innovation

The innovation for particle �lters consists in a quantity
which depends on the di¤erence between the real and the
predicted measurements for each particle. Using the pre-
diction zik+1 = g(x

i
k+1) and the real measurement yk+1,

the innovation corresponding to the ith of theN particles
will be rik+1 = yk+1 � zik+1. The main di¤erence when
using box particles consists in predicting a value which
can be compared to a real boxmeasurement. The innova-
tion should indicate the proximity between the real and
the predicted values. Thus, in the bounded error frame-
work, it can be evaluated as the intersection between
the two boxes. For all box particles, i = 1 � � �N , we have
to predict box measurements using [zik+1] = [g]([x

i
k+1]),
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where [g] is an inclusion function for g. The innovation
here corresponds to the intersection with the real box
measurement [yk+1]. Thus, we calculate the innovation
as [rik+1] = [z

i
k+1] \ [yk+1]:

4.3.2 Likelihood

Using probabilistic models pw for the measurement noise
w, particle �lters calculate the likelihood for each par-
ticle as: p(yk+1jxik+1) = pw(yk+1 � zik+1) = pw(r

i
k+1).

With the bounded error approach, it is quite obvious
that a box particle for which the predicted box mea-
surement has no intersection with the real box measure-
ment should be penalized, and a box particle for which
the predicted value is included in the real box measure-
ment should be favored. This lead us to construct a
measure of the box likelihood as Ai =

Qp
1 A

i(j), where

Ai(j) =
j[rik+1(j)]j
j[zi

k+1
(j)]j , p is the dimension of the measure-

ment and j[X]j is the width of [X]. In the following sec-
tions we will use only the word likelihood when we speak
about the box likelihood quantity A.

4.3.3 Box particles contraction

This step, used only for box particles, does not feature
in the particle �lter algorithm. In fact, in the particle �l-
ter algorithm, each particle is propagated without any
information about the variance of its position. Note that
the weight of the particle provides no more than an indi-
cation about certainty when using this particle. In con-
trast, the width of each box particle after propagation
is assumed to take into account the imprecision caused
by model errors and input imprecisions. In order to con-
serve a judicious width for each box, contraction algo-
rithms should be used in order to eliminate the non-
consistent part of the box particle with respect to the
box measurement [?], (see Figure ??). This is in fact sim-
ilar to the correction step of the Kalman �lter when the
variance-covariance matrix is corrected using the mea-
surement [?]. Thus, if the innovation [rik+1] is not empty,
the box particle [xik+1] is contracted using the intersec-
tion box [rik+1] and Waltz�s algorithm to obtain a new
box particle [xik+1]

new. Else, [xik+1]
new = [xik+1] and the

box particle stays unchanged.

4.3.4 Weights update

In the particle �lter case the weight for each particle is
updated as !ik+1 = p(yk+1jxik+1)!ik = pw(r

i
k+1)!

i
k. In

the same manner, one can construct an update to the
weights of the box particle by multiplying the previous
weight by each box likelihood as !ik+1 = (

Qp
1 A

i(j))!ik =

Ai!ik.

4.4 Normalization

This step is used in order to handle normalized weights

so that their sum is equal to one: !ik+1  �
!ik+1PN

j=1
!j
k+1

.

4.5 Estimation

At the kth step, the state is usually approximated
empirically, using the weighted particles, as x̂k =PN

i=1 !
i
kx

i
k, [?] [?]. The con�dence of this estimation is

characterized by an estimation of the variance covari-
ance matrix given by P̂k =

PN
i=1 !

i
k(x̂k�xik)(x̂k�xik)T ,

where AT corresponds to the transpose of a matrix A. In
the case of box particles, the state can be estimated as
x̂k =

PN
i=1 !

i
kC

i
k, where C

i
k is the center of the box par-

ticle i. One might also use a maximum weight estimate,
i.e where the state estimate is the center of the box
particle with the larger weight. A pessimistic con�dence
in the estimation will be a very well determined area
consisting of a box containing all the possible weighted
boxes. This can therefore be termed an enclosing box.
Given that the BPF estimation x̂k is calculated using N
vectors Cik, another con�dence in the estimation based
on the con�dence of each Cik can be calculated with
P̂k =

PN
i=1 !

i
kP

i
k, where P

i
k is the partial con�dence

generated when using each box particle center Cik. In
practice, P ik can be taken as the half width of each box

particle. Thus, P̂k =
PN

i=1 !
i
k
j[xik]j
2 .

4.6 Resampling

After some iterations, only a few box particles may be
likely, and the rest may have weights close to or iden-
tical to zero. As for the resampling step in the particle
�ltering, the box particles are resampled according to
their weights. Box particles that have high weights are
more likely to survive, whereas those with lower weights
are less likely. The resampling can be e¢ ciently imple-
mented using a classical algorithm for sampling N or-
dered independent identically distributed variables [?].
The problem with resampling is that the resulting sam-
ples are dependent since there is a high likelihood that
the samples will be drawn from a small number of ances-
tors. In the case of the particle �lter algorithm, instead
of representing the smooth probability density as they
should, particles will be clustered into groups. There-
fore, some arti�cial noise should be added to the resam-
pled particles in order to lessen the dependency. This
step prevents the particle �lter from breaking down. One
can use the same strategy for box particles by adding an
arti�cial noise to the bounds of the box. Moreover, re-
garding the possibilities given by boxes properties, other
techniques of resampling can be considered. For exam-
ple, in order to obtain independent, small boxes around
regions with high likelihoods, it is obvious that we can
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divide each box by the corresponding number of realiza-
tions after sampling, i.e. if a box is resampled n times, we
suggest to replace it by dividing it into n di¤erent sub-
box. Nevertheless, in the bounded error area, the choice
of the number of divisions for each dimension remains
a subject of research [?]. After the resampling step, we
have to assign the same weight for all box particles. Note
that an estimation of the e¤ective sample size Neff is
introduced in [?] and is given byNeff = 1PN

i=1
(!i

k
)2
. The

resampling step can be performed if the e¤ective num-
ber of samples is less than some threshold Nth which is
determined experimentally. A summary of the BPF al-
gorithm is given in Figure ??.

(1)
(2) Initialization

Set k = 0 and generate N boxes fx(i)(k)gNi=1 with empty
intersection and with same width and weights equal to
1
N

(3) FOR i = 1 � � �N
(4) Propagation or prediction

[xik+1] = [f ]([xik]; [uk]).

(5) Measurement update
� Predicted measurement: [zik+1] = [g]([xik+1]).

� Innovation: [rik+1] = [zik+1] \ [yk+1].

� likelihood: Ai =
Qp

1
Ai(j); where Ai(j) =

j[ri
k+1

(j)]j

j[zi
k+1

(j)]j
:

� Box particle contraction: IF [rik+1] 6= ;, THEN,

contract [xik+1] using [rik+1] and Waltz algorithm to

obtain [xik+1]
new, ELSE, [xik+1]

new = [xik+1], ENDIF.

� Weights update: !ik+1 = (
Qp

1
Ai(j))!ik = Ai!ik

ENDFOR.

(6) Weights normalization

FOR i = 1 � � �N, !ik+1  �
!i
k+1PN

j=1
!
j
k+1

, ENDFOR

(7) State estimation
x̂k =

PN

i=1
!ikC

i
k. P̂k =

PN

i=1
!ik

j[xi
k
]j

2 :

(8) Resampling
Neff =

1PN

i=1
(!i
k
)2
. IF Neff < Nth, THEN resample to

create N new particle boxes with the same weights.

(9) k = k + 1, Goto 2 Until k = kend

Fig. 2. BPF algorithm.

5 Application to dynamic localization using
GPS, a gyro and an odometer

Let consider the localization problem of a land vehi-
cle. The mobile frame origin is selected as the center
of the rear axle. The elementary rotation and displace-
ment between two samples can be obtained fairly pre-
cisely using only a �ber optic gyrometer and the two rear
wheels�ABS sensors. Between two sampling instants, el-
ementary rotations of the two rear wheels are integrated
by counters. These values allow the distance travelled

by the rear wheels between two samples to be calcu-
lated. Thus, at instant k, using the mobile frame, the
elementary displacement covered by M , denoted �S;k,
and the elementary rotation, denoted ��;k, are given by
�S;k =

�RR;k+�RL;k
2 and ��;k = �gyro�;k , where �RR;k and

�RL;k denote the measured variables with values ob-
tained between two samples, and �gyro�;k is a measure of
the elementary rotation given by the gyro. To compute
the odometer intervals ([�RR;k] and [�RL;k]), we suppose
that the covered distance error between two instants tk�1
and tk is less than the covered distance corresponding
to one increment of the ABS sensor counter (denoted
�ABS) assuming that the vehicle is not subject to slip-
ping. For gyro interval measurement, thanks to speci�c
static tests, we estimate themaximum of the error, which
is �gyro�;k = 3:10�3 degrees for our experiments. The po-
sition and heading angle of the vehicle which, at time k,
is [Xk] = [xk]� [yk]� [�k] are calculated in time by us-
ing linear and angular velocities thanks to the following
discrete representation:8>><>>:

xk+1 = xk + �S;k cos(�k +
��;k
2 )

yk+1 = yk + �S;k sin(�k +
��;k
2 )

�k+1 = �k + ��;k

(3)

The measurement of the position at time k here
makes use of a Global Position System (GPS) which
is (xGPS ; yGPS). The "longitude, latitude" estimated
point of the GPS is converted to a Cartesian lo-
cal frame and the GPS bounded error measurement
is obtained thanks to the GST NMEA sentence [?].
The width of the GPS box measurement can be
quanti�ed using the standard deviation �GPS esti-
mated in real time by the GPS receiver (GST frame).
Thus, [xGPS ] = [xGPS � 3�GPS ; xGPS + 3�GPS ] and
[yGPS ] = [yGPS � 3�GPS ; yGPS + 3�GPS ]. The GPS
measurement ([xGPS ]; [yGPS ]) is used to initialize the
box state position ([x1]; [y1]) at time t1. Note that we
do not have a direct measurement of the heading angle,
so the heading state of the vehicle should be initialized
as [�1] = [�1;+1]. In order to be able to compute
estimation errors, we have used a Thales Navigation
GPS receiver used in a Post-Processed Kinematic mode
working with a local base (a Trimble 7400). This system
was able to give reference positions with a 1 Hz sam-
pling rate. Since the constellation of the satellites was
su¢ ciently good throughout the trials, all the kinemat-
ics ambiguities were �xed, and an accuracy to within
a few centimeters was attained. The synchronization
between this reference and the outputs of the dynamic
localizers (BPF and PF) was obtained using the GPS
timestamps. We also took into account the position o¤-
sets between the antennas of the two GPS receivers and
the origin of the mobile frame.

Experiments were carried out on a test track in Ver-
sailles (France) with the Laboratory�s experimental ve-
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hicle. The results presented in this paper corresponds to
a drive which lasted about four minutes. The data from
the sensors were time stamped and logged during several
tests. Below we present the analysis of a 4.7-kilometer
trajectory with a mean speed of 50 Km/h using a 3GHz
Pentium 4 and a Matlab implementation. The two �lters
provide outputs at the frequency of the GPS (5Hz).

In this section, we use the available data in order to com-
pare the BPF and the PF. We compare both the accu-
racy of the estimation and the guarantee. In addition,
we make a comparison between the calculation time and
the number of particles and box particles for the two al-
gorithms.

For the resampling step in the particle �lter method, a
basic deterministic algorithm was used [?]. As stated in
section (??), by taking into account the speci�cities of
interval data, di¤erent strategies may be used for the
resampling step in the case of BPF. In this paper, we
will present a strategy, named subdivision resampling
that appears to us to be more e¢ cient than others. A
comparison between PF and BPF, based on the actual
experimental data, will be given.

The idea behind the subdivision resampling derives from
the fact that the manipulation of interval data always
yields a very pessimistic solution as a result of the basic
rules of the interval arithmetic and the wrapping e¤ect
when boxes are propagated via models [?]. Thus, in order
to obtain a more selective and precise solution, one can
divide the pessimistic box into several sub-boxes, thus
making it possible to re�ne the solution for the following
steps. Consequently, the idea consists �rst in sampling
the box particles according to their weights using for ex-
ample a classical deterministic algorithm, and secondly
in dividing each resampled box into as many sub-boxes
as there are realizations resulting from the resampling
algorithm. This type of resampling allows us to re�ne
the solution around regions with high likelihood and to
eliminate boxes with low weights. Nevertheless, as stated
in section (??), one needs to determine the number of
divisions for each dimension. For example, for the state
considered in the case of the model (??), which is a three-
variable state, the box particles will be in R3. If after the
resampling step we conclude that we have to divide a box
particle into four sub-boxes, this will not be a straight-
forward exercise since there are di¤erent ways of doing
it. In our case, we suggest that is preferable to bisect
boxes�heading angles [�] since we do not have a direct
measurement of this variable, but only the elementary
rotation �� of the mobile. This division is performed un-
til the width of the interval on � of the resampled box
is less than a �xed quantity (two degrees for example).
For the choice between the subdivision of intervals on x
or intervals on y, we favor intervals which are wider.

Table ?? shows the mean square errors on x and y for
GPS, PF and BPF. As a conclusion, the BPF and the

GPS PF BPF

mean square error for x(m) 0.134 0.129 0.119

mean square error for y(m) 0.374 0.217 0.242

particle number - 3000 10

one step running time (ms) - 666 149
Table 1

Comparison of PF and BPF. The table shows the mean
square error for GPS, PF and BPF. The particle and box
particle numbers are given for PF and BPF. We also give
the mean of the running time of one step for each algorithm.

PF give equivalent �ltering performances. Nevertheless,
for the running BPF, we use only 10 box particles com-
paring with 3000 particles for the PF. The small num-
ber of box particles explains the slow convergence of the
BPF in the �rst seconds. The number of box particles
is very encouraging inasmuch as the number of parti-
cles can be signi�cantly reduced (for this application,
the factor is about 300). Table ?? gives also the mean of
the execution time of one step for each algorithm. Since
the output frequency of each �lter is 5 HZ, the execu-
tion time for BPF satis�es real time constraints despite
the use of interval arithmetic programs under Matlab
and without code optimization. This is not the case with
PF. Figure ?? shows the interval error for x and y es-
timated for GPS (dashed black), BPF (bold black) and
PF (solid blue). The colored rectangles (yellow) indicate
the DGPS corrections lost. For PF, the interval error is
calculated by using 3� errors bounds around the point
estimate. It can be seen that for this nonlinear problem,
the two �lters are consistent. Note that an interval error
that contains "0" indicates that this interval contains
the PPK�s point.

Figure ?? plots the estimated heading error and the
interval errors, in degrees, for BPF (bold black) and
PF (solid blue). The errors on the heading estimation
angles provided by the BPF and the PF are of the same
magnitude. One can conclude that the BPF is able to
reconstruct a non-directly measured variable. Note that
the reference heading angle was built manually from
the PPK measurements. A movie illustrating the be-
havior of the �lter is accessible on line at the address
http://www.hds.utc.fr/ bonnif/mov/.

Fig. 3. The �gures show the interval error for x and y es-
timated for GPS (dashed black), BPF (bold black) and
PF (solid blue).

Fig. 4. The �gures show the estimated heading error and the
interval errors, in degrees, for BPF (bold black) and PF (solid
blue).
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6 CONCLUSIONS AND FUTURE WORKS

A new algorithm for localization based simultaneously
on particle �lters and interval data has been proposed.
The method is based on the interval framework which
seems to be a good methodology to use in the case of
non-white and biased measurements. The experiments
on real data show the feasibility and the e¤ectiveness of
the method compared to PF. In addition, the new algo-
rithm seems to be well suited to real time applications,
which is not the case for the particle �lter algorithm as
shown in Table ??. As part of future work, we intend
to study other resampling strategies using properties of
the interval framework. We also plan to compare this
approach to other PF alternatives which try to reduce
the number of particles. Another perspective of this re-
search is to adapt the BPF for Map Matching problems
which use map data with rectangular roads. Indeed, in
this case, the boxes are adapted to calculate intersections
with the map and to manage the multiple hypotheses
due to junctions or parallel roads.
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