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1. INTRODUCTION

Dynamic localization is a key issue for intelligent vehicles
performing driving assistance tasks or autonomous naviga-
tion in the presence of uncertainty and variability in their
external environment.

Global navigation satellite-based systems (GNSS) such as
GPS, Glonass and, in the near future, Galileo are interesting
key components in localization. Unfortunately, when high
integrity and high availability are required, a GNSS receiver
alone is not sufficient for intelligent vehicles, since satellites
can be masked, and since the propagation of the signal can
suffer from multitracks. One way of overcoming this prob-
lem is to use dead-reckoned (DR) sensors or inertial units.
These can be sufficient when outages are brief, but they can-
not cope with certain situations, such as in urban areas when
navigating in an urban canyon. In such cases, the drift of DR
localization can be too large for the needs of the task. This
problem can be addressed through the use of extra exterocep-
tive sensors like video cameras or laser scanners. A number
of studies have demonstrated the feasibility of this approach.
For instance, Royer et al. [1] have developed a navigation sys-
tem for a Cycab that can control the trajectory of the vehicle
with respect to a learned trajectory, using only a monocu-
lar vision system. The principle is as follows: in the learning
stage, the vehicle extracts and localizes characteristic features

of the environment; while navigating, it matches the features
it is detecting in the current view with those that have been
learned. A precise localization is subsequently computed us-
ing a Ransac method.

An ideal localization system is an embedded system that
is able to deal with all of the following technologies: GNSS,
DR sensors, and exteroceptive sensors detecting natural land-
marks.

When implementing such a system, a key issue is the
management of the landmarks that have been characterized
and localized previously. The question is now how to or-
ganize the landmark information for an intelligent vehicle
moving in a large area containing many roads. The usual
answer to this question is to group landmarks within local
maps, a local map being a set of landmarks considered as a
monolithic entity because of (i) memory constraints arising
from the use of embedded systems, (ii) the need to download
or update a limited amount of data from a remote server, and
(iii) the connections that exist between the landmarks, essen-
tial to compute a location.

Localization with respect to a digital map describing the
road network is an essential task for intelligent vehicles [2, 3].
The user of a vehicle usually specifies its itinerary by indicat-
ing the destination address. In this case, the geocoding facil-
ity of the GIS is very useful when converting an address like
“10, Albert Road” into global (x, y) coordinates.
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The GIS can also be used for the management of land-
marks by making use of the road descriptions stored in the
map database. An efficient technique is to group the land-
marks in local maps corresponding to the different roads [4].
Indeed, the local maps can have the same identification num-
bers (hereafter denoted as ID) as the roads. From a real-time
point of view, this is essential since the local maps can be
stored in a look aside database (LADB) and easily be retrieved
and loaded into the vehicle’s memory for localization pur-
poses.

This paper focuses on absolute localization and the ID
retrieval problem. In particular, it deals with real-time con-
straints and positioning integrity. The implementation of the
precise localizer is not considered here. Unlike many indus-
trial prototypes that have mainly low frequency (often 1 Hz),
this work also deals with the development of high-frequency
systems. Moreover, we consider a matching strategy that does
not rely on the use of a precomputed route, since our system
is not limited to applications dealing only with navigation.

We consider a vehicle equipped with an odometer (we
use the ABS sensors of the rear wheels), a fiber-optic gy-
rometer, an L1 (single-frequency) differential GPS receiver,
and embedded GIS software managing a standard road map
database (NavTeQ in this particular case [2, 3]).

During the first stage, the DR sensors are merged with
the GPS fixes using a loosely coupled Kalman filter approach.
Thanks to the predictor/estimator mechanism in the pose
tracking process, GPS latency is eliminated. The second stage
involves fusion with the map data. A request is sent to the
GIS server (embedded or remote) that returns the roads con-
tained in a box whose center and size have been instantiated
in the request. Then, a road selection method (also called
map matching) is used to select the most likely segment and
finally this segment is merged with the state estimate. The
management of a road cache memory is an important issue.
If it is too small, the road selection can fail. If it is too large,
the selection will be uselessly time-consuming. In addition,
the management of the map has to be done spatially and just
when necessary.

The paper is organized as follows. In Section 2, the local-
ization method fusing GPS and DR sensors is described and
the method for compensating the GPS latency is introduced.
The fusion of the map data is then presented in Section 3,
and the complete algorithm, the map representation, and the
road selection strategy are described. We look at the man-
agement of the road map’s cache memory and show that the
right road is always present in the cache, while the worst-case
execution time is respected and inaccuracies are taken into
account. Finally, Section 4 is devoted to real experiments that
illustrate the performance of the fusion process, the latency,
and cache management.

2. GPS AND DR SENSORS FUSION

Localization using DR sensors and GPS data can be achieved
via a multisensor fusion approach, that is, an approach that
explicitly takes into account inaccuracies to handle redun-
dancy and complementarity.

From the real-time point of view, efficient methods are
those that rely on state observation because of the pre-
dictor/estimator mechanism that can be implemented as a
recurrent task (termed complex task by Kopetz [5]) that only
needs to keep in memory the state vector between two sam-
pling times.

Let us first consider the fusion of DR sensors with GPS.
The GPS fixes are projected in a local frame tangential to the
surface of the earth.

This fusion problem can be expressed by a discrete state-
space representation, sampled with respect to time:
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where

(i) tk = t0 + k · Te;
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heading) of the vehicle in the projected frame;
(iii) the evolution model corresponds to the DR model;
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traveled distance and elementary rotation measured by
the DR sensors;
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tor after projection.
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If the GPS antenna is located at the origin of the mobile
frame, then the observation equation becomes

Yg
(
tk
) =

[
1 0 0
0 1 0

]

· X(tk
)
. (3)

A very popular approach for fusing localization data is the
Bayesian framework. An extended Kalman filter (EKF) is of-
ten used. Unscented Kalman filtering (UKF) [6] is a new ap-
proach, very popular currently, because it can more precisely
estimate the error covariance than an EKF, especially if this
covariance is large with respect to the nonlinearity. In this
paper, the equations of the filters are not detailed. For more
information, the reader can see [7].

In order to implement a Kalman state observer, we pro-
pose to choose the maximum sampling period for two rea-
sons:

(a) reduction of processing workload,
(b) it is well adapted to handle GPS latency.

Tessier et al. [8] have proposed an architecture for the fu-
sion of delayed observations using data buffers: each piece
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of data being timestamped and buffered together with the
filter estimations. Once a new piece of data appears, the fu-
sion is computed in the past and the current estimation is re-
computed from the buffered data. We propose a strategy that
compensates for the GPS latency by using an xPPS (xpulses
per second) signal, a GPS receiver running in synchronized
mode, and a predictor implementation of the state observer.
This strategy is more efficient than Tessier’s, but works only
for small delays. It consists in delaying to the maximum the
use of the GPS data in the algorithm in order to leave for it
enough time to compute and transmit its results. If the sam-
pling period is higher than the worst-case GPS latency, one
solution is to perform the GPS estimation stage first with
each new sample (see Figure 1). By this way, the first step at
time tk is to correct the pose X(tk−1) using Yg(tk−1). Once
this has been done, the prediction stage provides an estimate
of state X(tk) using the DR sensors. This is the output of the
filter that works as a one-sample DR predictor.

It should be noted that a good initialization of the
Kalman filter, especially of the heading, accelerates signifi-
cantly its convergence. Moreover, in order to filter GPS jumps
due to multitracks (especially in urban areas), a coherence
test based on a Mahalanobis distance is applied in the correc-
tion stage of the filter [4].

The strategy we have chosen can be expressed as follows.
When few GPS fixes are inconsistent with the DR predictions,
we suppose that it is the GPS that is faulty. Otherwise, that
is, when GPS and DR prediction are inconsistent for a long
time, the localizer is reinitialized as shown in Figure 2. The
initialization consists in waiting for a new GPS fix. The track-
ing is done by an EKF, the implementation of which follows
the chronogram of Figure 1.

This strategy is also robust when initializing or reinitial-
izing the system with bad GPS data. Let us study the system
behavior when this case happens. Two cases can occur with
a bad reinitialization, depending on the validity of the infor-
mation contained in the GST NMEA sentence.

Case 1. The position is bad and the confidence ellipsoid is
large. If a new good GPS fix arrives, it will be considered con-
sistent, and therefore used to correct the previous estimate.

Case 2. The position is bad and the confidence ellipsoid is
small (inconsistent data). The filter will not be able to detect
this at once, since the initial covariance is small. When good
GPS fixes are restored, the filter will consider them as bad
data until a new reinitialization occurs. It should be noted
that multitracks are often very short for a moving receivers.
So, the probability of the filter being reinitialized in this case
remains low.

To obtain a high positioning frequency (e.g., a video ap-
plication client working at 60 Hz and requiring position-
ing data at the same rate), a client-server mechanism can
be implemented. Between two low-rate pose computations,
the positioning server extrapolates the previously computed
pose using the known linear and rotational speeds (cf. (2)).
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Figure 1: Chronogram of the state observer for GPS latency com-
pensation. Because of the synchronized mode of the GPS receiver,
it takes its pseudorange measurements at the xPPS instant but pro-
vides a solution when it has completed its computation.
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Figure 2: Synopsis of the states of the localizer.

This mechanism also allows the transmission of position-
ing data to different clients at different request rates, using
the same position computations.

If the vehicle is motionless, the heading is not observable.
In this case, to avoid error, the previously computed pose
is maintained, and no prediction or updating is performed
until the vehicle starts to move again. In practice, we check
that the odometers’ counters have changed since the previ-
ous step. This corresponds to a spatial sampling condition
equal to the sensor’s resolution, which is here about 2 cm.

3. GPS, GIS DATA, AND DR SENSORS FUSION

Because of GPS outages occurring in urban areas for in-
stance, an effective means of correcting DR localization drift
is to use map data as an observation in the filtering process.
This can be done by serializing the two correction stages, as
shown in Figure 3. The GPS correction stage is carried out at
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Figure 4: Road selection and segment selection.

the end in order to apply the same GPS latency management
strategy as before.

Localization on a map is a problem that can have several
solutions, for instance while approaching junctions, when
the quality of GPS positioning is poor, or given a map with
a poor absolute precision. Particle filtering has shown inter-
esting characteristics in relation to this problem, particularly
because of its ability to manage several hypotheses [9]. Nev-
ertheless, its real-time implementation [10] is time consum-
ing and its convergence with a small number of particles is
not guaranteed because of the degeneracy problem that can
occur. An alternative would be doing a pose tracking with the
most likely road. To illustrate this, let us explore the concepts
of roads and segments.

A road map is usually a set of digitized roads described
by polylines represented by their centerline. Their topolog-
ical information is very good, while their geometry is often
rough. Each junction is represented by a node. Shape points
are used to enhance the geometry description. By definition,
a road is a polyline linking two nodes. A segment is defined
as the linear interpolation between two points being either
nodes or shape points (see Figure 4).

3.1. GIS data fusion

For real-time computation purposes, we adopt a monohy-
pothesis approach: one road only is used in the tracking pro-
cess. If the filter should select the wrong road, this error is
detected thanks to the GPS, and the filter is reinitialized.

An important characteristic of map matching is its spa-
tial nature. A time-triggered approach is not well adapted
for this problem since it is not elapsed time but traveled dis-
tance (also called abscissa curvilinear) that is important for
the convergence. Moreover, many approaches rely on data
fusion approaches that suppose independence of the errors.
If the vehicle is motionless, then the same map data can be
used several times, violating the independence hypothesis.
For these reasons, map matching can be formulated by a
space-triggered state-space description.

Let suppose first that a candidate segment has been se-
lected:
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where

(i) li = l0 + i·Le is ith sample of the traveled distance from
the beginning, Le the sampling distance;

(ii) X(li) = [x(li) y(li) θ(li)]T is the pose of the vehicle in
the frame of the map;

(iii) the evolution model is the DR navigation model;
(iv) U(li) = [δ(li) ω(li)]T is the vector of the elementary

traveled distance and elementary rotation measured by
the DR sensors;

(v) Ym(li) = [xm(li) ym(li)]T is a point (which we term
map measurement) that corresponds to the projection
of the estimated position onto the most likely segment
(see (5) and Figure 5):
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The fusion of the estimate with the map is performed during
a Kalman estimation stage. The covariance associated with
the map observation is modeled by an ellipsoid around the
selected segment as shown in Figure 5 [11]. The center of the
ellipsoid is Ym, the orthogonal projection on the segment of
the last estimated location. In the frame associated with the
segment, the longitudinal inaccuracy is far greater than the
lateral inaccuracy. Theoretically, the longitudinal inaccuracy
can be chosen as large as possible, even infinite for a long
segment. In practice, we consider a one-sigma value in the
order of the length of the segment.

Before doing the correction stage, a consistency test is ap-
plied to check if the selected road is correct. If not, a road
selection stage or a segment selection stage is carried out.

3.2. Road and segment selections

In order to fuse the road information with the estimated po-
sition, the system needs to know the most likely segment.
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Figure 5: Fusion of the estimate with the selected segment.

The following situations can arise:

(a) there is no selected road (initialization);
(b) the system needs to select the most likely segment of

the current road;
(c) the vehicle is approaching the end of a road.

Cases (a) and (c) are road-selection problems, while (b)
is a segment-selection issue.

A number of solutions for solving case (a) exist in the lit-
erature [11]. Where a high level of integrity is required, the
process may be particularly sophisticated, although in this
paper, where our concern is efficiency, we propose a simple
approach. First, the road segments whose orientation is com-
patible with the vehicle heading are selected. The heading in-
formation stored in the road map structure is used here to
accelerate this processing (Section 3.5). Then, in this set, the
segment with the smallest distance from the estimated posi-
tion is chosen.

Now, let us suppose that the selected road is consistent
with the current pose. The goal is to select the most likely
segment of the road (if the road is a polyline with at least two
segments). The most likely segment is simply the closest one.

Finally, suppose that the vehicle is approaching the end
of the road. This road selection consists in selecting the most
likely road connected to the previously selected road. This
connectivity information is once again contained in the ar-
ray of road IDs connected to the road origin and endpoint,
in the road map structure. An efficient strategy is to select the
road whose direction corresponds most closely to the head-
ing estimation.

Given that the risk of selecting the wrong road is high
when the vehicle’s estimated location is close to a node (am-
biguity area), we use a careful strategy: the map correction is
not computed and the connected road selection is not per-
formed until the vehicle leaves the ambiguity area. This helps
to reduce erroneous matches, especially when the map con-
tains large errors.

(A) Initialization(·)
Wait4GPS(·)
Heading initialization(·)
Δ4MF = 0 //Distance for map fusion
road = select new road(xk , map cache)
Counter=0 //GPS outliers

(B) Tracking loop trigged at each xPPS
Δk=Get traveled distance(); δk = Δk − Δk−1

Ωk=Get heading rotation(); ωk = Ωk −Ωk−1

If δk /=0 //the vehicle is moving
Then
(xk−1, Counter) = correction(xk−1, y gpsk−1)
If (Counter > threshold) Then Initialization(); break;

End
xk=prediction(xk−1, δk , ωk)
If (Δk − Δ4MF>Le)
Δ4MF=Δk

(Seg, matched pt) = select seg(xk , road)
TH = Map error + HE; //ambiguity zone size
If (get dist to road node(matched pt)>TH) Then

(xk , Inconsistency)=fusion(xk , Seg)
If (Inconsistency is bad) then

road = select new road(xk , map cache)End
Else //zone of ambiguity

road = select connected road(Xk , road)
End

End
End
Function new road = select connected road(Xk ,
current road)
Selects the road which is connected to road and is most
consistent with Xk , Eventually, returns current road

Function road = select new road(xk , map cache)
Selects the most consistent road with Xk

Function seg = select seg(xk , current road)
Selects the most likely segment of the current road

Function dist=get dist to road node(matched pt)
Returns the distance to the current matched point

Algorithm 1

3.3. Algorithm

The global fusion algorithm is spatial- and time-triggered. It
uses the serial fusion strategy shown in Figure 3, implements
the GPS latency management described in Section 2, and has
the same running modes as the GPS and DR fusion algorithm
(Figure 2). We now consider its pose tracking strategy (see
stage B Algorithm 1). The fundamental trigger is the xPPS
signal obtained from the GPS receiver (the xPPs is assumed
always to be available, even during long outages).

The traveled distance and heading rotation are first
obtained from the DR sensors. If the vehicle is mov-
ing, the correction of the previous prediction is computed
using the previous GPS fix. Using a Mahalanobis test, an
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incoherence counter (see Counter) is incremented (when
bad GPS data is detected) or reinitialized (each time a co-
herent GPS data is received). The predicted state is com-
puted. If the traveled distance since the last fusion with
the map is higher than Le (spatial sampling period), a seg-
ment selection is performed. The Kalman correction stage
with respect to the selected segment is performed only if
the vehicle is not in the zone of ambiguity (see function
get dist to road node(matched pt)>TH). The zone of ambi-
guity, defined by the threshold TH, includes an estimation of
the map error (assumed to be known, e.g., 10 meters) and an
estimation of the accuracy of the estimated position (termed
HE, i.e., horizontal error). HE is defined to be the 1-sigma
error circle, that is, the maximum eigenvalue of the position
covariance matrix. If the fusion of the segment is not con-
sistent (see (xk, Inconsistency) = fusion(xk, Seg)), then a new
road selection stage occurs. While the vehicle is located in
the zone of ambiguity, a connected road is sought (see se-
lect connected road(Xk, roa)).

It will be noticed that the tracking mode of the localizer
depends only on the coherence of the GPS points with re-
spect to the state estimate. By reinitializing the localizer, this
mechanism solves map-matching mistakes.

One should also note that the GPS bad data and the map-
matching errors are not handled in the same way, since the
GPS outliers can come from a change in satellite constella-
tion, multitracks, and are rather brief, while the matching er-
rors are derived from an erroneous segment-selection mech-
anism.

3.4. Integrity and behavior analysis of the algorithm

Integrity can be defined as the confidence which can be
placed in the correctness of the information supplied by the
whole system. The most robust way to ensure that the posi-
tioning information is valid is to have a multilayer series of
checks [12]. It is important to have integrity checking at the
end-user level because this is the only place where all infor-
mation used to form the position solution are present. For a
road vehicle, real-time integrity estimation is very challeng-
ing because it has to take into account the degradation of the
satellite visibility due to the environment of the vehicle and
map errors.

Here, there are several problems to tackle:

(i) convergence of the method,
(ii) tracking divergence detection due to map and posi-

tioning errors,
(iii) bad GPS fixes arising from multitracks for instance,
(iv) map cache management which means here to keep the

estimate in the cache with a guaranty zone.

The last point is studied in Section 3.6.

3.4.1. Nonobservable situation

If the vehicle is motionless, the heading is not observable. In
this case, thanks to the spatial triggering, no computation is
done. This prevents any drift.

3.4.2. Road tracking

For simplicity, let us suppose that the road is described by
an infinite polyline that corresponds to the right road. If the
GPS is available and is coherent with the DR sensors, then
the positioning is good and the map matching is trivial. If
there is no GPS, the map observation is only able to correct
the transversal DR drift [13]. It is well known [14] that lateral
drift exceeds longitudinal drift. So, the map observation that
we have proposed models correctly this phenomenon, since
the map ellipsoid has a small lateral standard deviation and a
large longitudinal.

3.4.3. Convergence in case of a bad road selection

Suppose now that the filter has been initialized with an incor-
rect road (because of a bad road selection in a zone of ambi-
guity, or because of bad GPS fixes). The only property that
can be proved is that if a bad choice occurs, the system is able
to detect it after a bounded duration or traveled distance.

There are two cases.

(a) The GPS is good and coherent: if the location is inside
a zone of ambiguity, the fusion with the map is not per-
formed and the road-selection error is undetectable.
As soon as the vehicle leaves this zone, the fusion with
the map will be incoherent and a new road selection is
done (select new road()).

(b) The GPS is poor: as soon as good GPS is restored, the
filter will consider it as a bad data and after several
steps (counter > threshold), the filter will be reinitial-
ized.

3.4.4. Robustness in relation to GPS outliers

Suppose now that the GPS receiver suffers from multitracks.
If this phenomenon is short, then the incoherent fixes will be
rejected (counter < threshold). Please note that the map can
help in detecting GPS errors. If not, the filter will be reinitial-
ized with bad GPS fixes and remains in that state until good
GPS is restored.

3.4.5. Robustness in relation to bad map data

Let us consider the case where the map is very bad (e.g., in in-
tertown situations). In this case, there will never be any map
fusion and the system will continuously carry out new road
selections without making any map fusion.

3.5. Map representation

In order to facilitate the road selection and fusion pro-
cesses, the map representation is enhanced. Let us consider
its structure.

The extracted map is a vector of road structures; each
road structure element contains the following:

(i) road or street name,
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(ii) ID, that is, a unique identifier for each road: this is
indispensable for navigation and map-matching pur-
poses,

(iii) speed limit,

(iv) driving direction information: this indicates whether
the road is a one-way segment (from east to west or
west to east) or a two-way road. This field also indi-
cates if the road is restricted to pedestrians or cars,

(v) number of shape points that describe the geometry of
the road,

(vi) shape points coordinates array,

(vii) heading angles of the segments defined by the shape
points,

(viii) number of connected segments to the road origin
pointn,

(ix) IDs array of the connected segments to the road origin
point,

(x) number of connected segments to the road endpoint,

(xi) IDs array of connected segments to the road endpoint.

The connectedness is described by the arrays containing
the segments IDs.

3.6. Map cache memory management

Let us suppose that we have a GIS server, which can be either
embedded or remote. For an efficient map management, let
us consider a map cache memory corresponding to an area
whose shape is a square. Such a geographical zone is easy to
extract since no distance has to be computed: roads are ex-
tracted using only tests on the road segment coordinates. The
management of the cache memory is a parallel task with the
filter computations.

The center c and the semilength r of the side of the square
have to be specified in the request made by the fusion client.
When a request is received, all the roads partially or com-
pletely included within the square of center c and side length
2r are extracted.

For an intelligent map cache memory management, two
problems have to be dealt with: center and semilength man-
agement.

Since the vehicle continues to move while the map cache
requests are made, a predicted request center has to be
computed to take into account the worst-case server pro-
cess and transmission delay (denoted as TGIS = TExtraction +
TTransmission). The map extraction therefore involves anticipa-
tion: we use the vehicle’s estimated heading and speed.

Let us denote by Xc = [xc yc]T the coordinates of the
center of the cache memory. Once the vehicle is close to the
limit of the current cache (see Figure 6), a request is sent to
the server.

The condition of the request is given by (6) where the
distance between the current vehicle position and the center
of the cache is compared to semilength of the cache. λ is a
parameter necessary for managing the request to the server
in realtime. It corresponds to the proportion of r from which

θ

Figure 6: Extrapolation of the cache center while approaching the
limit of the current cache (the gray zone corresponds to parameter
Δ).

a request has to be made before leaving the area of the current
cache:
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If the request condition is verified, the new center position is
computed using a nominal speed v, for instance 50 Km/h in
urban areas:
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While the request is being processed, the vehicle does not re-
main stationary. The risk is that it might leave the current
cache area. A security zone is characterized by the following
condition on the traveled distance:

TGIS · v ≤ (1− λ) · r. (8)

This leads to the following condition:

λ ≤ 1− v ·
(
Ttransmission(r) + Textraction(r)

)

r
. (9)

An interesting value is the distance (denoted as Δ) before
leaving the region of interest:

Δ = (1− λ) · r,

Δ > v · TGIS(r).
(10)

Suppose now that the maximum map inaccuracy (denoted
as EM) is known and the localization inaccuracy (denoted as
EL) is estimated in real time by the Kalman filter. In order to
have a reliable road selection, Δ must verify

Δ > EM + EL + v · TGIS(r). (11)



8 EURASIP Journal on Embedded Systems

Odometers

Gyrometer

GPS

Computing
target

Analog connection
Digital connection

Hardware component

2

1

3

4

Figure 7: Architecture diagram of the hardware components.

The management of the semilength of the square is the sec-
ond most important issue in cache management. If r is too
small, then the road selection can fail due to localization and
map errors. Otherwise, if r is too large, then

(i) the memory cache retrieval can be long (especially if
the GIS server is remote);

(ii) the size of the cache can exceed the maximum size of
the target’s RAM;

(iii) the road-selection procedure can be uselessly time-
consuming.

In summary, the cache memory management depends
mainly on parameters Δ and r, which have to be determined
regarding the implementation. A case study will be presented
in the next section.

4. EXPERIMENTS

4.1. Embedded real-time platform

In this section, we describe the different hardware and soft-
ware components used to test and validate our localization
system.

The hardware components are separated into two cat-
egories: sensors and computing resources. The architecture
diagram in Figure 7 shows the interaction between these
components.

The components of Figure 7 are as follows.

(i) A computing target (4): a Shoebox PC with a low elec-
trical power consumption processor (Intel Pentium M
1.5 GHz, 512 MB RAM), with a 12 V power supply and
running Windows XP.

(ii) A GPS receiver (1): a Trimble AG132 DGPS with EG-
NOS/RTCM corrections. It is connected to the com-
puter via a serial RS232 link at 38400 bauds.

(iii) A gyrometer 2: a fiber-optic KVH ECore2000 con-
nected via a serial RS232 link at 9600 bauds.

Figure 8: Map rendering using BeNomad SDK.

(iv) Two odometers whose values are obtained thanks to
the ABS sensors of the rear wheels of the car. The sinu-
soidal signal generated by the rotation of each wheel is
applied to a national instruments 16-bit counter. This
provides measurements of the distances covered by the
two wheels (1 top corresponds to 2 centimeters).

The interfacing programs were developed in C++, and all
the data are timestamped and stored in a binary format for
rapid prototyping purposes. Our goal is to have timestamps
as close as possible to the sensor measurements in order to
fit the model. To obtain the data via the serial link, we used
an asynchronous driver which enables the data to be times-
tamped upon their arrival at the port and eliminates the de-
coding time. For the GPS, two kinds of data are received:

(a) on the Rx pin, NMEA0183 frames which contain the
navigation data;

(b) an xPPS signal on the ring indicator pin.

The GIS used by the map-matching module is based on a
software development kit (SDK) provided by BeNomad [15],
see Figure 8. This SDK is completely object-oriented and
cross-platform (Windows, Linux). It is also available for em-
bedded targets such as PDAs or smart phones running Win-
dows CE and Windows Mobile. The maps are size-optimized
and provided in the SVS (scalable vector system) file format.
For our prototype, we used a NavteQ geographical database
converted to SVS format. The SVS format is very compact:
the file size for the whole of the town of Compiegne is only
68 KB, and that for the entire OISE department is only 3 MB.

4.2. GPS latency experiments

Real-time experiments were carried out on a specialized
test track in Versailles using one of our experimental cars
(Figure 9).

In order to compute estimation errors, a L1/L2 Thales
Navigation GPS receiver was used in a post-processed
kinematic mode working with a local base (a Trimble
MSi 7400). This system was able to give reference po-
sitions with a 1 Hz sampling rate. Since the constella-
tion of the satellites was sufficiently good throughout the
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Figure 9: Used experimental car and experimental test track.
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Figure 10: Filter output errors (maximum speed 90 Km/h).

trials, all the kinematic ambiguities were fixed. Accuracy
was therefore guaranteed to within a few centimeters.
The synchronization between this reference and the out-
puts of the localizer was achieved using the GPS times-
tamps.

Before implementing the filter, we measured the latency
of the Ag132 receiver using an oscilloscope. We observed
a 180 millisecond maximum latency corresponding to the
worst case, that is, with 8 satellites used in the computa-
tion. Therefore, in order to implement the GPS latency man-
agement of Section 2, the receiver was tuned to 5 Hz, which
guarantees that the GPS data are available before the next
xPPS signal.
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Figure 11: GPS output errors on the same trial.

Figures 10 and 11 are courtesy of Kais et al. [16], featuring
the output of our localizer and the rough GPS files. Theses
plots correspond to the longitudinal and lateral errors in a
Frenet’s frame.

Itcan be seen in Figure 11 that the longitudinal GPS er-
ror can be as high as 3 meters because of its latency, while
this error is significantly reduced by the filter thanks to the
predictor and the synchronization strategies used. Moreover,
it is important to notice the efficient filtering of the multisen-
sor localizer while the vehicle is motionless.

4.3. Map cache experiments

As a source digital map, we used a NavteQ database. In this
map, coordinates are integers in centimeters, in the French
Lambert 93 coordinate system.

We took a position in a downtown area (city hall of
Compiègne). This position is the center of the GIS request.
The semilength r of the square search has been instantiated
from 10 m to 1 Km with a 1 m step.

Figure 12 shows the map-extraction time-consuming
process and the road-selection time-consuming process ver-
sus the client request radius. For each plot, a second-order
approximation was made, plotted in bold blue for each sub-
plot. As a matter of fact, theses processes are dependent on
the size of the area of interest, proportional to r2.

We note that the two processes are very efficient and also
that the road selection time is relatively small when com-
pared to the map extraction time. Even if r is large, the road
selection duration never exceeds 0.5 millisecond, which con-
firms that it is negligible compared to the sampling period of
tracking process (Te = 200 milliseconds).

Figure 13 plots the size of the extracted map cache re-
garding the request radius. Once again, an expansion of the
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Figure 12: Map-extraction and road-selection time consuming for an urban area.
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Figure 13: Map cache size regarding the size r of the request.

search area implies a four-fold increase in the size of the map
cache. Moreover, we can see that for a maximum radius of
1000 m, the cache size does not exceed 50 KB, which is not a
constraint for the real-time target under consideration.

These results indicate that neither the size nor the com-
putation times (extraction and road selection) are hard con-
straints for the cache management. r can be set very high.

Let us consider now the computation of Δ.
Suppose that the maximum map inaccuracy is EM =

15 m and the localization inaccuracy is EL = 5 m (as indi-
cated by the experiments described in Section 4.2).

First of all, let us assume that the GIS server is embedded
in the target and provides its data by using a shared memory
or the middleware SCOOT-R [17] for instance. We choose
r = 1000 m.

On our target, the local transmission time between the
server and the client was measured Ttransmission(1000 m) =
745 microseconds, and Tmap extraction = 41 milliseconds (from
Figure 12). Suppose that the vehicle speed equals 30 m/s =
108 km/h. Thanks to (11), we can compute that the request
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Figure 14: Δ versus r in the case of a remote server: in bold black
3G com link and in thin blue GPRS link.

has to be sent at a distance Δ = 15+5+(745·10−6+41·10−3)·
30 = 21 · 25 m only before leaving the cache area. Therefore,
the map cache management is mainly constrained by the lo-
calization and map errors.

Let us suppose now that the GIS server is remote and
let us consider 2 kinds of network: 3G (3rd generation) and
GPRS (general packet radio service) connection [18]. For
realistic considerations, we took the half of the maximum
bandwidth: for GPRS, we took the half of 115.2 Kb/s, and for
3G, the half of 384 Kb/s.

Figure 14 shows Δ versus r that gives the distance to the
cache limit that it is necessary to respect in order to obtain
reliable road selection. This plot was estimated numerically
by using (11) where Textraction(r) was the second-order ap-
proximate of the time extraction process in function of r,
and Ttransmission(r) was the transmission delay of the extracted
map within the network. This delay depends on the size of
the map and on the bandwidth of the network.

In summary, the methodology for cache memory man-
agement is as follows.
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(i) Estimate the road selection duration versus r.
(ii) Choose a value of r such that the duration is compati-

ble with

(a) the sampling period of the localizer,
(b) RAM size of the target,
(c) the map error,
(d) the localizer error.

(iii) Compute Δ corresponding to the implantation of the
GIS server.

In our case, the road selection routine not being very time
consuming, and the size of the cache memory not being a
limitation, we suggest using a large cache area (r in the order
of 1 km) in order to obtain a reliable behavior.

5. CONCLUSION

This paper has considered the real-time implementation of a
localization system that uses DR sensors, GPS, and GIS data
following a loosely coupled paradigm. Such a system is a key
component for intelligent vehicles since it can constitute the
basis for precise localization or the development of advanced
driving assistance systems. Its main outputs are the pose of
the vehicle in the projected frame of the map and the ID of
the most likely road in case of successful map matching (oth-
erwise an off-road situation is detected).

An efficient implementation relies on pose tracking using
Kalman filtering, after a good initialization. Because of the
GPS latency, we have proposed a strategy that involves delay-
ing the GPS correction stage until last, the filter outputting
DR predictions with small latency.

The multisensor data fusion problem has been modeled
as a space-time problem with two pose trackers. Because of
the GPS receiver, a time-triggered approach is necessary. The
trigger is the xPPS signal. For the road-selection problem, the
spatial nature is essential. Therefore, a mechanism for trig-
gering the filter according to the vehicle displacement has
been developed. At each fusion step, a coherence test is ap-
plied. If the GPS is incoherent for several samples, the local-
izer is reinitialized. This guarantees that wrong map matches
can be corrected.

A key aspect of this system is the map representation for
an efficient road selection. We have seen that our proposed
representation is very pertinent to this consideration. An-
other issue is the map cache memory management that is
performed in parallel by considering spatial, rather than tem-
poral, conditions. This is essential for an embedded system,
since such a strategy gives rise to computations only when
necessary. Two aspects have to be dealt with: the center and
the semilength of the square search area. They are linked to-
gether and we have identified the key points. The first step
consists in evaluating the duration of the road selection with
respect to the size of the area. Then a compromise has to
be found between map-matching integrity and workload (in
case the GIS server is embedded) or workload and commu-
nication (if the GIS server is remote).

This prototype is currently used for the management of
visual landmarks memory. Thanks to the use of the filter, it is

possible to send requests to the positioning server at a video
rate.

One perspective of this work is to use an electronic hori-
zon to manage the cache memory. An electronic horizon is a
graph of the accessible roads from the current pose.
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