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Road Selection Using Multicriteria Fusion
for the Road-Matching Problem

Maan El Badaoui El Najjar and Philippe Bonnifait, Member, IEEE

Abstract—This paper presents a road selection strategy for
novel road-matching methods that are designed to support real-
time navigational features within Advanced Driving-Assistance
Systems (ADAS). Selecting the most likely segment(s) is a cru-
cial issue for the road-matching problem. The selection strategy
merges several criteria using Belief theory. Particular attention is
given to the development of belief functions from measurements
and estimations of relative distances, headings, and velocities. Ex-
perimental results using data from antilock brake system sensors,
the differential Global Positioning System receiver, and the accu-
rate digital roadmap illustrate the performances of this approach,
particularly in ambiguous situations.

Index Terms—Belief theory, Geographical Information Sys-
tem (GIS), Global Positioning System (GPS), localization, sensor
fusion.

I. INTRODUCTION

INTELLIGENT autonomous vehicles currently hold the at-
tention of many researchers because they can provide solu-

tions in many applications related to intelligent transportation
systems. One example of such a system is the transport of
passengers in urban environments using a CyCab [16]. For
navigational needs, the vehicle first needs to know its position
on the road network and then to retrieve attributes from the
appropriate databases. Examples of attributes are maximum
authorized speed, width of the road, presence of landmarks for
precise localization, etc. Unfortunately, the precise localization
on a map cannot be guaranteed because there will often be
errors in the estimation of position arising from sensor impreci-
sion and because the map represents a deformed view of the real
world: Roads are represented by points—nodes and shaping
points—that describe the geometry of the center line.

Vehicle localization on a map has two meanings in the liter-
ature of this domain. In many works [2], [11], [13], [18], [19],
[25], it refers to the projection of the absolute position estimate
onto a segment of the road network stored in the database. In
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this case, the vehicle is localized when the curvilinear abscissa
along the segment is known from the starting node. These “arc-
matching” methods therefore introduce geometric distortions
since the model of the world is a set of segments, usually with
a 10-m absolute error and a 1-m relative error. Alternatively,
vehicle localization can refer to absolute localization in the map
reference frame. In this case, the localization of the vehicle does
not need a projection onto the segments representing the road
in the database. Absolute localization can be very useful for
the following reasons: In several kinds of databases, including
those of the National French Institute of Geography (IGN),
attributes, instead of being attached to the arcs representing the
roads, can be stored in the database as point objects with an
absolute position. Moreover, it is imprecise to suppose that the
real trajectory of the vehicle can be modeled by linear arcs.
The distortion introduced by such an assumption is amplified
if the network database is not accurate. In reality, roads have
a nonnegligible width and define areas (and not lines) within
which the vehicle can navigate. Furthermore, arc-matching
methods are not adapted to the automatic guidance control of
vehicles since lateral variation is not observable: Only lon-
gitudinal control is possible using speed values attached to
the arcs.

The approach presented in this paper is an absolute local-
ization method. The global positions provided by a Global
Positioning System (GPS) receiver are converted into the map
frame and not projected onto the segments. Therefore, the
key issue is the selection of the most likely road from the
database, which hereafter is referred to as “road matching.”
The fusion of the selected segment with the estimated pose
is not detailed in this paper. It can be performed recursively
by using Kalman filtering, as done in [8], when there is
no ambiguity.

Generally, road selection first involves applying a filter that
selects all the segments close to the estimated position of the
vehicle. The goal is then to select the most likely segment(s)
from this subset. Nowadays, since the geometry of roadmaps is
more and more detailed, the number of segments representing
roads is increasing. The road selection module is an important
stage in the vehicle localization process because the robustness
of the localization depends mainly on this stage. The road
selection stage is also important because it reduces the number
of roads to be processed, which is essential for a real-time
implementation. To be focused on this point, an accurate map
(Géoroute V2) that was provided by the IGN was used in this
paper. Its absolute precision is estimated to be several meters in
detailed city format. The selection strategy proposed is based
on the merging of several criteria using distance, direction,
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and velocity measurements within the framework of Belief
theory.

To develop such an approach, it is important to estimate
continuously the pose—position and heading—of the vehicle
in the frame of the map using GPS because of its affordability
and convenience. However, GPS suffers from satellite outages
occurring in urban environments, under bridges, through tun-
nels, or in forests. GPS can thus be seen as an intermittently
available positioning system that needs to be backed up by a
dead-reckoning system [1]. In this paper, a low-cost odometric
method based on the use of encoders attached to the rear wheels
is proposed. A dead-reckoned estimated pose is obtained by
integrating the elementary rotations of the wheels starting from
a given pose. The multisensor fusion of GPS and odometry
is performed by an extended Kalman filter (EKF). This kind
of formalism is also useful in quantifying the imprecision
associated with each estimated pose. As we show in this paper,
this information is of particular relevance when quantifying the
selection criteria.

The outline is as follows: In Section II, the EKF formalism
that is used in performing the sensor fusion of differential
GPS (DGPS) and odometry is described. The fusion provides
a continuous estimation of the heading of the vehicle and
quantifies the estimation error regarding the pose: These two
quantities are key parameters for the road selection problem.
Next, the architecture of a usual roadmap-matching algorithm
is laid out. The road selection method is presented in Section III.
The proposed strategy fuses two criteria using Belief theory
with a fuzzy representation of sensor information. The final
section is the experimental analysis of several tests that are
carried out with our experimental car.

II. ARCHITECTURE OF THE ROAD-MATCHING STRATEGY

At present, there would seem to be no ideal solution to
the road-matching problem. All the methods that have been
developed have their advantages and drawbacks, and they were
optimized for the particular application for which they were
designed [22], [25]. For the needs of turn-by-turn navigation
systems, many of them would appear adequate. However, safety
applications that are dedicated to Advanced Driving-Assistance
Systems (ADAS) require the ability to estimate the confidence
in the road-matched positions. If the confidence is too low, the
information that is retrieved from the Geographical Information
System (GIS) will not be used.

Arc-matching methods consist of localizing the vehicle on
the road network modeled by linear arcs. Several approaches
have been proposed in the literature. Geometric approaches [2],
[9], [11], [13] rely on the correlation of the estimated trajectory
with the shape of the road network. Fuzzy techniques [14],
[21] use models and rules to take into account map and sensor
errors. These techniques are able to detect off-road situations.
In the framework of Bayesian filtering, Kalman approaches
[3], [15], [26] and particle filter [10] techniques have been
developed. The matching relies in this case on a map pose-
tracking paradigm in which the map data are treated as an
observation. The ability to characterize several solutions in
ambiguous situations is a new preoccupation that can be formu-

Fig. 1. Schematic diagram of the proposed road-matching algorithm.

lated with a multihypothesis scheme [17] or with a multimodal
density probability [10].

In this paper, we propose a new formulation to solve the
problem. Given an estimated absolute localization with high
availability in the frame of the map, the road matching is
reduced to the selection of the most likely segment of the
database. According to this approach, there is no projection on
the segments representing the roads. If a projection is needed
to retrieve the attributes that are attached to the segment, this
projection is performed afterward. The key issue is to have a
good estimate of the pose error for the fusion process. Obvi-
ously, the better the estimation of the pose, the less ambiguous
the selection process.

The road selection process can be described as in Fig. 1,
where v denotes the mean speed of the rear wheels. Multisensor
fusion gives an estimation of the pose X = (x, y, θ)t with
its associated covariance matrix P . The question is then to
select the most likely segment(s) using a GIS. To accelerate
processing (a map contains thousands of roads, each made up
of several segments), an initial filter selects the n road segments
{S1, . . . , Sn} that are located within an interest window that is
chosen for consideration of real time or reliability. The center
of the circle is the estimation of the current position (x, y)
of the car. This initial filter can be applied at low frequency
and interpreted as a cache memory as in [27]. Next, the road
selection stage selects the credible segments. If necessary, the
location on the segment can be done by projection. This final
stage is usually called map matching.

A. Road Selection

This problem consists of selecting the “good” segments from
the subset {S1, . . . , Sn}. This is also called the road reduction
filter problem in [8] and [23].
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Fig. 2. Mobile frame attached to the car.

This stage is difficult because of several factors.
• The position is estimated with errors that can be magnified

by multipath effects. In addition, the transformation be-
tween the GPS coordinates (World Geodetic System 1984
reference system) and the projection frame of the map
[here, the French Nouvelle Triangulation Française (NTF)
Lambert coordinate system] can induce errors.

• The coordinates of the segments are falsified by errors due
to terrain measurements that are carried out by cartogra-
phers as well as due to numerical approximation.

• The road network in the database does not always corre-
spond to reality, i.e., it can contain old roads that no longer
exist or new roads that are not yet in the database.

• The map does not contain all road network details. For
example, a roundabout can be represented as a simple
point.

• The vehicle is moving on a 3-D surface, whereas the map
represents a planar view.

• The vehicle does not travel exactly on the segments repre-
senting the roads.

Section III will present a strategy using Belief theory.

B. GPS and Antilock Brake System (ABS) Fusion

High availability positioning is a basic necessity in the road-
matching process. As GPS is subject to satellite outages, we
propose to use the ABS sensors of the rear wheels of a car
to provide a continuous positioning. As most modern cars
have an ABS system, it is a very cheap solution that does not
require additional sensors. In this section, the fusion of GPS and
odometry with an EKF is described.

Here, we consider a car-like vehicle with front-wheel drive.
The mobile frame is chosen with its origin M attached to
the center of the rear axle. The x-axis is aligned with the
longitudinal axis of the car (see Fig. 2).

At time index tk, the vehicle position is represented by the
(xk, yk) Cartesian coordinates of M in a world frame. The
heading angle is denoted as θk. If the road is perfectly planar
and horizontal and if the motion is locally circular, the evolution
model is expressed as [4]




xk+1 = xk + ∆k · cos
(
θk + ωk

2

)
yk+1 = yk + ∆k · sin (

θk + ωk

2

)
θk+1 = θk + ωk

(1)

where ∆k is the length of the circular arc that is followed by M ,
and ωk is the elementary rotation of the mobile frame. These
values are computed using the ABS measurements of the rear
wheels. In this formulation, the values of the scale factors of
the ABS sensors are supposed to be precisely known after a
calibration stage.

Let us denote uk = [∆k, ωk]t and Xk = [xk, yk, θk]t, αk, γk

as the model noise and the ABS noise, respectively. Equation
(1) can be rewritten as

Xk+1 = f(Xk, uk, γk) + αk. (2)

When a GPS fix is available, it is first converted from
geographical coordinates into Cartesian coordinates Yk by a
projection in the frame of the map (here, French Lambert I).
Then, a correction of the odometric estimate is performed using
an EKF, due to the following observation model:

Yk =
[
xgps,k

ygps,k

]
=

(
1 0 0
0 1 0

) 
xk

yk

θk


 + βk. (3)

βk denotes the GPS measurement noise. The covariance
matrix Qβ can be estimated in real time using the National
Marine Electronics Association sentence “GNSS error STatis-
tics (GST),” which was provided by the Trimble AgGPS132 re-
ceiver that was used in the experiments. Therefore, the noise βk

is not stationary. It will be noticed that a DGPS receiver (whose
precision is well adapted to the use of a precise roadmap) was
used.

This architecture can be seen as a “loosely coupled fusion
system.” The heading θ is not directly measured since the GPS
is used as a position sensor. Let us study its observability.

From (1), we have

xk+1 = xk + ∆k · cos
(
θk +

ωk

2

)
and θk+1 = θk + ωk.

(4)

Then

θk = θk+1 − ωk and xk+1 = xk + ∆k · cos
(
θk+1 − ωk

2

)
.

(5)

By making a change of index, the heading θk can be ex-
pressed as

θk = arcos
(

xk − xk−1

∆k−1

)
+

ωk−1

2
. (6)

Therefore, the heading is expressed as a combination of
(xk, xk−1,∆k−1, ωk−1). Since x is observable (directly mea-
sured by the GPS), θ is also observable. Nevertheless, the
mathematical expression is not defined when the speed is zero,
which demonstrates that the heading is observable when the
vehicle is moving. When the vehicle is motionless, the heading
is not observable and does not need to be estimated.

The EKF follows a predictor/estimator paradigm at a fre-
quency of 1 Hz using the pulse-per-second signal. The predic-
tion stage is computed using the ABS measurements if there
is a displacement of the vehicle. This guarantees that the EKF
correctly reconstructs the heading angle since its observable.
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Fig. 3. Top view of the experimental run (in black).

Then, in the estimation stage, the GPS corrects the drift of
the dead-reckoned pose. To use good GPS fixes with a good
precision, the GPS receiver has to be tuned with very selective
masks (dilution of precision, elevation, and signal/noise ratio).
For this reason, the GPS data are intermittent, but one can give
a high belief in this information when it is present.

The equations are not described here, but details can be found
in [8]. Hereafter, we report the results of a test performed over
a 4.5-km route (see Fig. 3).

The behavior of the filter can be characterized by examining
the x and y innovations (differences between the DGPS mea-
surements and the predicted measurements). It can be seen from
Fig. 4 that the x innovation is zero mean. This figure also shows
the probability distribution of the x innovation errors, which
confirms its zero-mean behavior. Moreover, the autocorrelation
is close to white noise since the sampling period equals 1 s. This
global behavior indicates that the filter is correctly tuned.

In the framework of the Action de Recherche pour une
COnduite Sécurisée (ARCOS) French research program, this
system was validated in relation to a centimeter-level accuracy
postprocessed kinematic GPS system. The horizontal precision
is on the order of 2 m (1 − σ) when the GPS employs a
differential pseudorange correction [12].

Finally, using the odometric model, the EKF estimates con-
tinuously the X vector and the covariance matrix P of the
estimated error, even when the satellite signal is blocked by
bridges, tunnels, buildings, etc. In such a situation, the pose
is predicted due to (1) and the ABS sensors. In this case, the
drift depends only on the traveled distance and not on time. It
has been estimated to 10% of the traveled distance, which is
sufficient for short GPS outages. Fig. 5 illustrates the lateral
drift during small GPS outages. The 3σ bound proves the
consistency of the filter.

III. ROAD SELECTION USING MULTICRITERIA FUSION

Intuitively, taking many factors into consideration makes it
possible to avoid matching errors that easily result from a single

point-of-view selection. Therefore, to improve map-matching
methods, different information sources have to be merged to
provide better selection criteria for deciding the best match.
For example, Quddus et al. [18] have used the “GPS position
relative to the road link” and an “intersection relation between
the GPS trace and the road links.” Syed and Cannon [21] have
used the “average distance traveled on current link” and the
“large distance traveled on current road link.” In addition, if
the base road network contains detailed road attributes (speed
limits, one-way lanes, etc.) that potentially restrict a certain
routing behavior, they can potentially be utilized to further filter
inappropriate road links.

Current trends in map-matching development have begun
to incorporate probabilistic and fuzzy elements that are more
tolerant with uncertainty (confidence in given information),
imprecision (noises), and model approximations. Uncertainty
typically exists in the database street map.

Several approaches can be followed to fuse multidimen-
sional selection criteria. The commonly used one combines
selection factors with a weighting scheme. The weighting
factors are typically derived empirically from data testing or
from adaptive-fuzzy-network-based training [14]. A different
approach can be implemented in the framework of Belief
theory, which allows partial knowledge to be taken into account.
The Dempster–Shafer rule can be used to fuse the criteria.
Moreover, because of its commutativity and associativity, it is
possible to incorporate any criterion and to fuse it in any order.
Belief theory also facilitates the estimation of the degree of
belief in a selected road. The detection of off-road travels, for
instance, is characterized by the fact that all the segments have
a low belief.

The following first presents the concepts used in Belief
theory. The selection criteria will next be described, and fi-
nally, the fusion of these criteria will be illustrated by a real
example.

A. Belief Theory Concepts

Belief theory admits uncertainty into the reasoning process
and suggests a way for combining uncertain data. This theory
was introduced by Dempster [5] and mathematically formalized
by Shafer in 1976 [20]. It is the generalization of Bayesian
theory in the treatment of uncertainty. Generally, this theory is
used in a multisensor context to fuse heterogeneous information
to obtain the best decision.

The basic entity is a set of all possible answers (also called
hypotheses) to a specific question. This set is called the frame
of discernment and is denoted as Θ. All the hypotheses must
be exclusive and exhaustive, and each subset of the frame of
discernment can be a possible answer to the question. The
degree of belief of each hypothesis is represented by a real
number in [0, 1] that is called mass function m(·). It satisfies
the following rules:

m(φ) = 0∑
A⊆Θ

m(A) = 1. (7)
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Fig. 4. Autocorrelation and distribution of the x innovation of the EKF.

Fig. 5. Drift of ABS-only localization during small GPS outages.

A mass function is defined for each different piece of
evidence. Each piece of evidence A, for which m(A) �= 0, is
called a focal element. The notion of mass is very close to the
notion of probabilistic mass, except that it is not limited to a
single hypothesis, but it is possible to attribute a mass for a
union of hypotheses: This is the main difference with respect to
Bayesian theory.

Belief theory requires the affectation of elementary proba-
bilistic masses that are defined on [0, 1]. The mass assignment
is computed on the definition referential 2Θ, i.e.,

2Θ = {�,H1,H2, . . . Hn,H1 ∪H2, . . . ,

Hi ∪Hj ∪Hk ∪Hl ∪ . . . Hn}. (8)

This distribution is a function of the knowledge about the
source. The whole mass that is obtained is called “basic
mass assignment.” The sum of the component masses is equal
to 1. Each expert—also called source of information—defines
a mass assignment according to its opinion about the
situation.

Associated with each basic assignment, belief Bel and plau-
sibility Pl are defined as follows:

Bel(A) =
∑
B⊆A

m(B)

Pl(A) =
∑

B∩A �=φ

m(B). (9)

Belief and plausibility are bound by the following
relationship:

Pl(A) = 1 −Bel(A) (10)

where A denotes the complement of A.

B. Application to the Road Selection

We consider ADAS applications that are related to road
safety, for instance, curve warning systems that inform the
driver that he is going too fast while approaching a curve.
Therefore, only geometrical criteria are used because they are
not influenced by human errors. This means that a criterion such
as the speed of the vehicle is in accordance with the speed limit
is not considered.

The two criteria that are chosen in this paper can be formu-
lated as follows.

1) The vehicle location is close to a segment of the neigh-
borhood. This criterion depends on the error ellipse.

2) The segments on which the vehicle can be located are
those that have an angle close to the heading of the
vehicle. This criterion depends on the estimated 3σ bound
of the heading and on the speed of the car.

To build mass assignments, the inaccuracy of the various
information sources (GPS, odometer, and digital map) is con-
sidered, and certain physical observations, for instance, that a
car with a speed of 40 m/s cannot be orthogonal to the direction
of the segment, are modeled. With this approach, information
sources (i.e., criteria) are worked out from sensor data.

The problem of mass assignment for each criterion can be
tackled in a global or a local way. The global strategy involves
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Fig. 6. Case of a noncredible segment.

the simultaneous inspection of all the segments that are selected
around an estimated position when affecting the masses. The
local strategy treats each segment separately with respect to
the criterion under consideration. Both strategies have been
studied. We have concluded that the local strategy is more
effective, particularly for a real-time application.

The frame of discernment that we use is Θ = {Y es,No},
corresponding to the answer to the following question: Is
this segment the good one? The definition referential is then
2Θ = {Y es,No, Perhaps}.
1) Proximity Criterion: The proximity criterion is based on

the measurement of the Euclidean distance between the esti-
mated position and each segment in the road database. To take
into account the estimation error on the position, a Gaussian
ellipse is built using the covariance matrix P of the state
vector X [8]. The probability that a given state Xs is included
in a 40% ellipse that is centered on the estimate X is ex-
pressed as

p(Xs) = (2π)−n/2 · P−1/2

· exp
(
−1

2
(Xs−X)TP−1(Xs−X)

)
. (11)

The equiprobable states Xs that characterize a k% ellipse are
given as follows:

(Xs−X)TP−1(Xs−X) = k2. (12)

The value of k defines the percentage of probability. In two
dimensions

p(Xs) = 1 − exp
(
−k2

2

)
. (13)

For example, k = 1 implies a 40% probability that the real
position is effectively in the ellipse error. Conversely, given
a chosen probability, the corresponding value of k can be
computed. This value allows the semiminor and semimajor axes
of the ellipse to be determined. For the proximity criterion, the
estimated error of the position is quantified by an ellipse of 99%
equiprobability that is produced by the EKF (drawn in dark
gray in Fig. 6). The estimated position E is at the center of
the ellipse.

To allot a mass to a candidate segment [AB], we proceed
as follows: Let d denote the distance between the segment and
point E.

Fig. 7. Mass assignment of the proximity criterion.

Point S ′ falls at the intersection between the segment [ES]
and the ellipse. The distance dES ′ depends on angle β, which
forms segment [ES ′] in the ellipse coordinates system. In
the zone d < dES ′, with a fuzzy modeling obtained by a
probability–possibility transformation [6], [24], the degree of
membership is quantified. The first curve presented in Fig. 7
assigns a mass to the Y es assumption.

In complementing the mass of the Y es hypothesis, the mass
to the Perhaps hypothesis is allotted. The mass of Perhaps
remains constant (equals to 1) for dES ′ < d < dES ′ + e to
consider the errors e on the segment coordinates of the data-
base. Finally, the mass of the No assumption is a step function
starting from the distance d = dES ′ + e.

In conclusion, the mass assignment of the proximity criterion
depends on two variables:

1) the distance d between the center of the ellipse and the
segment;

2) the angle β between the distance support and the major
axis of the ellipse.

The problem becomes more complicated when considering
the width of the road. We propose modeling the road by a
rectangle that is centered on the segment, the length of which
is equal to the length of the segment. The exact influence
of the width of the road l is difficult to take into account
in the computations of the criterion because l modifies the
values of β and d. To simplify, we have chosen the following
strategies:

1) if the orthogonal projection of E exists inside segment
[AB], d = dortho− l [Fig. 8(a)];

2) if the orthogonal projection of E does not exist inside
segment [AB], d = min(d1, d2, d3) [Fig. 8(b)].

2) Angular Criterion: In this section, a mass-assignment
function is proposed to reflect the fact that the most credible
segments are those that have an angle close to the heading of
the vehicle.

Fig. 9 presents the fuzzy modeling of the absolute value
of the difference between the heading of the vehicle (denoted
as θ) and the heading of the candidate segment (denoted
as α), i.e.,

∆Heading = min (|α− θ|, |α− θ + π|) with θ ∈ [0, π].
(14)
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Fig. 8. Computation of the distance d with a rectangle rendering the road.

Fig. 9. Mass assignment of the Y es hypothesis for the angular criterion. On
the left, S represents a candidate segment.

This curve is adaptive and depends on the speed of the
vehicle and the standard deviation of the estimation error of the
heading angle.

Let m be the maximum belief that can be assigned to the
Y es hypothesis (see Fig. 9). m varies according to σθ that is
estimated by the EKF, i.e.,

m(σθ) = max
{

1 − 6
π
σθ, 0

}
. (15)

This strategy has been developed to model the fact that an
uncertain heading will not induce an important mass to the
Y es hypothesis. Let suppose that 3σθ = π/2 represents the
situation of the total lack of knowledge on the estimation of
the heading. In other words, the real heading is in the interval
[θ̂ − (π/2), θ̂ + (π/2)]. In this case, the heading criterion must
be reduced to the maximum: In (15), the mass assignment to
the Y es hypothesis equals 0.

The scalar value B fixes the angular limit that is tolerated at
a given velocity v, i.e.,

B(v) = π/2 − λ · v (16)

where λ = (90◦ − 10◦) · π/(Vmax · 180◦), and Vmax is the
maximum speed of the vehicle.

Equation (16) is a heuristic model that indicates that if the
speed of the vehicle is high, the difference between the heading
and the segment direction should be small.

The Perhaps mass assignment is determined by computing
the complement of the mass of Y es. The mass of No starts
from the limit angle that is tolerated for a given speed B(v) and
reaches 1 when the angle is equal to 90◦ (Fig. 10).
3) Criteria Fusion: To improve the information that is ob-

tained from two different single sources S1 and S2, a combina-
tion of their mass assignments can be performed according to
the Dempster–Shafer rule. Let A, Ai, and Bi be assumptions of
the reference frame. The merging of the knowledge of S1 and
S2 is given by

mΘ(A) =
∑

Ai∩Bj=A

mS1
Θ (Ai) ·mS2

Θ (Bj). (17)

If there are some conjunctions that are not focal ele-
ments, a renormalization step is necessary to satisfy the rule
m(φ) = 0. The coefficient of renormalization is called kθ and
defined as

kθ =
∑

Ai∩Bj=φ

mS1
Θ (Ai)mS2

Θ (Bj) (18)

which represents the incoherence between the different sources.
If we set Kθ = 1/(1 − kθ), the normalized expression of the
combination is given by

mΘ(A) = Kθ ·
∑

Ai∩Bj=A

mS1
Θ (Ai) ·mS2

Θ (Bj). (19)

This combination rule is independent of the order in which
pieces of evidence are combined when more than two pieces of
evidence are involved.

After the combination step, several decision rules can be
used to obtain the final result. It is then possible to adjust
a desired behavior. If an optimistic decision is desired, the
maximum of plausibility should be used, and conversely, the
maximum of belief should be used for a pessimistic decision.
Many other decision rules exist in Belief theory, particularly for
nonexhaustive frames of discernment. More information about
them can be found in [7].

The decision-making strategy adopted here is to retain the
most credible segments according the law of ideal decision.
The likelihood of a singleton assumption is characterized by
its belief and its plausibility, which are calculated using the
set of masses. These quantities correspond respectively to the
minimum probability and the maximum probability that an
assumption is true. Consequently, a law of decision without
ambiguity is when an assumption has a belief higher than the
plausibility of any other assumption.

The conflict computed in the Dempster–Shafer fusion rule is
large when the two criteria are in total confusion. Therefore, we
eliminate the segments that present a significant conflict. In our
experiments, we used a threshold of 0.5.
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Fig. 10. Examples of mass assignment at a given velocity. (a) σθ = 0. (b) σθ = π/2

Fig. 11. Estimated position and heading of the vehicle and three candidate
segments.

In the following, a segment that satisfies the law of ideal
decision with small conflict will be called a credible segment.

C. Illustrative Example: Approaching a Junction

Let us take a real case study to illustrate the method. In
Fig. 11, the vehicle is traveling on the road that is represented by
segments 1 and 3, at a speed of 80 km/h. Estimation errors and
digital map errors give rise to an erroneous estimated position
that is closer to segment 2 than to the others. In the following,
the mass attribution, the fusion, and the decision stages are
described for each segment.

Figs. 12–14 show the mass assignments that are generated
by the belief functions. It will be noticed that for segments 1
and 3, the proximity and the heading criteria are in agreement
since both of them assign a high degree of belief to the Y es
hypothesis, a low degree of belief to the Perhaps hypothesis,
and nothing to the No hypothesis. Conversely, segment 2
presents a total conflict between the two criteria.

Fig. 15 shows the results of the fusion of the criteria with
the Dempster–Shafer rule without normalization. Notice that
segment 2 presents a clear conflict. The fusion of the criteria
concerning segments 1 and 3, however, indicates a strong belief
on the Y es hypothesis.

Fig. 12. Mass assignment for segment 1.

Fig. 13. Mass assignment for segment 2.

To decide if a segment is a good candidate, the conflict
generated by the fusion stage is first considered. As it is impor-
tant for segment 2, this segment is eliminated. Next, the ideal
decision law is applied after normalization of the masses. This
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Fig. 14. Mass assignment for segment 3.

Fig. 15. Fusion results without normalization.

law simply means here that if the belief in the Y es hypothesis
is greater than the sum of the No and Perhaps hypotheses, the
segment in question is credible. Fig. 16 shows that segments 1
and 3 are selected. This result corresponds to the real situation.

IV. EXPERIMENTAL RESULTS

The algorithm works in real-time conditions with a frequency
of 1 Hz.1 The GPS receiver that was used was a Trimble
AgGPS132, L1-only, working with geostationary broadcasted
pseudorange corrections (Omnistar).

Fig. 17 presents an overhead view of an experimental test that
is performed in Compiègne. The map database is managed and
interfaced by the “Geoconcept” GIS software.

To illustrate the road selection method, we will examine how
it deals with ambiguous situations. The first situation involves
a motorway exit (Fig. 18). This situation is very ambiguous
because the angles of three segments (the motorway, the exit

1Using an Intel Pentium III 700-MHz processor.

Fig. 16. Fusion results with normalization.

Fig. 17. Experimental situation on the “IGN Géoroute” (estimated positions
are dotted).

ramp, and the entrance ramp) are close to the heading of the
car. Moreover, they have a common point that is very close to
the estimated position.

At the beginning, three segments are selected (in bold in
Fig. 18). Two of them correspond to the motorway and one to
the exit ramp. As we should expect, the entrance ramp (located
on the opposite side of the road) is not selected, owing to the
angular criterion. Afterward, the situation is still ambiguous
(Fig. 19) until the difference between the car’s heading and the
angles of the motorway segments becomes significant. Then,
the system is able to assert that the car is on the exit ramp
(Fig. 20).

To provide a complete view of the evolution of beliefs
with respect to the exit ramp, Fig. 21 shows the evolution of
belief in selected segments for about ten positions. One can
notice that the evolution of belief represents reality well. When
several segments are credible, at a given moment, the road
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Fig. 18. Car exiting the motorway (local frame).

Fig. 19. Car on the exit ramp.

Fig. 20. Car on the exit ramp.

selection is ambiguous. The level of ambiguity depends if the
selected segments make part of the same road. For example,
segments S3 and S4 are credible at time index 96. Obviously,

Fig. 21. Belief versus time.

Fig. 22. Overhead view of the test trajectory.

this situation is less ambiguous than the one of time 91, during
which three segments of two roads are credible.

Let us analyze the behavior of the method in another
potentially ambiguous situation. In Fig. 22, two critical
situations occur. The first one corresponds to a junction of
three roads: Two present the same heading, whereas the third
road has a 45◦ angle. In the second situation, three roads have
the same heading and are very close to each other (< 10 m).
The speed of the vehicle is about 70 km/h.

Fig. 23 shows how the system deals with the first critical
situation: Several credible roads are good candidates. First,
it will be remarked that only the segments that represent
the parallel road are selected. Moreover, as these segments
belong to two different roads, the situation is ambiguous.
If the application that uses the road-matching method can
tolerate errors, the most credible segment can be output. In this
particular case, the most credible segment corresponds to the
right road, but this is purely fortuitous.

Fig. 24 shows the result processing of the second critical sit-
uation. In this situation, the vehicle is traveling on a wide road,
which is represented by two arcs. A secondary road is parallel
and very close to the main road. The road selection method
extracts four segments. Once again, the situation is ambiguous
because the segments belong to three different roads.

Finally, we have tested the road selection algorithm on the
4.5-km route that is presented in Section II-B (see Fig. 3). In
Fig. 25, the dotted path represents the DGPS position that is
provided by the Trimble receiver that is converted into the
2-D frame of the map. Each point of the second plot (plotted
with “+”) corresponds to the nearest point of the most credible
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Fig. 23. Credible segments are in bold, and the most credible is in large bold
(French Lambert coordinates).

Fig. 24. Credible segments are in bold, and the most credible is in large bold
(French Lambert coordinates).

segment to the estimated position that is provided by the EKF
fusion of GPS and odometry. The origin of Fig. 25 has been
translated to facilitate the readability of the scales of the axes.
Even if all the credible segments are not indicated in this

Fig. 25. GPS points (·) and nearest points of the candidate roads (+).

Fig. 26. Distance between DGPS path and candidate roads.

figure, it has been verified that the right segment is always on
the list of the credible segments that are provided by the road
selection method. One can notice that sometimes, the most
credible segment can be incorrect, particularly in roundabouts,
like the point surrounded by a circle. Since the road selection
method is static (i.e., not recurrent), an incorrect selection has
no effect on the next selection stage. This indicates robustness
to fault matching if the most credible segment is considered
as the matched segment. Nevertheless, we think that in case
of ambiguity (i.e., the selected segments belong to different
roads), a multihypothesis matching is preferable.

In Fig. 26, the distance from the DGPS position to the most
credible road is plotted. It illustrates the good performance of
the road selection method since this distance is on the order
of several meters. We think that this is mainly due to an offset
between the map and the GPS navigation solution, which is
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clearly visible in the figure. The two large values (index ∼150
and index ∼300) correspond to wrong selections, the second
one being that of Fig. 25. It is important to notice that the
success of a map-matching algorithm that is based uniquely on
the selection of the most credible segment is contingent on the
availability of accurate navigation solution and small offsets of
the map.

V. CONCLUSION

This paper has presented a multicriteria fusion technique for
the selection of roads from a road network database, which is a
key issue in road matching. The main contributions of this paper
are the formalization of this problem using the framework of
Belief theory, the development of assignment functions (called
criteria), and an experimental validation with real data using a
DGPS and the ABS sensors. Two criteria have been proposed
and developed. They use an estimated pose (position and head-
ing) of the car that is obtained due to the fusion of GPS and ABS
using an EKF. These criteria take into account the estimation
error as well as geographical errors. It is interesting to note that
in Belief theory, the lack of knowledge concerning a criterion
can be quantified (in this particular case, it is the Perhaps
hypothesis) and managed in the fusion process. Moreover, as
different decision laws can be applied, different behaviors can
be obtained. If a reliable behavior is desired, the ideal decision
law needs to be used, as used in this paper.

The main advantage of this strategy is that it is possible
to detect an ambiguous situation, where different sources of
error have led to several roads becoming indistinguishable. This
method can, however, detect the fact that the vehicle is not on
a road stored in the database. This situation can be encountered
if the roadmap is not exhaustive.

This approach is flexible and modular in the sense that it
can easily integrate other criteria. The result of the fusion of
two criteria can be fused with the masses assigned by a third
criterion, and so on. It is therefore possible, using the same
framework, to build and fuse other criteria testing, for example,
the connectivity or the direction of the segments. This feature is
interesting because adding other criteria is a way of increasing
the robustness of the road selection.

As the segments are dealt with one by one, the size of the
frame of discernment is small, and therefore, the method is
well adapted to real-time conditions. For example, it takes, on
average, 50 ms to process ten segments with an Intel Pentium
III 700-MHz computer.

Finally, this method can be considered to be an excellent
tool for improving positioning reliability since it is possible
to quantify the ambiguity of a situation and, therefore, the
confidence in a road-matched segment. This information is
crucial for the development of fusion techniques that use the
selected segments to improve the localization process.
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