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Abstract: This paper describes the usefulness of a Geographical Information 
System (GIS) for autonomous navigation of intelligent vehicles. In many urban 
applications the use of GPS alone is not sufficient and needs to be backed up 
with Dead-Reckoned (DR) sensors, map data and additional sensors like 
cameras or laser scanners. Geographical information can be used in two 
different ways. Firstly, preexisting features of the environment, such as roads, 
can be used as constraints in localisation space. Secondly, the geographical 
information can include landmark locations. The use of these two types of data 
is illustrated by a localisation system for urban areas: a laser scanner detects 
natural landmarks that are characterised during a learning phase. As the amount 
of data can be large, we propose a strategy for grouping the laser landmarks in 
enhanced local maps corresponding to the roads of a GIS layer, through the use 
of an L1 GPS receiver and DR sensors. Real experiments are reported to 
illustrate the performance of this approach. 
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1 Introduction 

Intelligent vehicles are advanced vehicles that can perform driving assistance tasks or 
autonomous navigation in the presence of uncertainty and variability in their 
environment. Cybercars are a particular type of intelligent vehicles that can be used in 
downtown areas as an alternative to private cars for transporting people. This is the 
Cybernetic Transportation System concept (Parent and Gallais, 2002). Several successful 
experiments have demonstrated that they can navigate autonomously by sensing 
dedicated equipment integrated into the urban infrastructure. This equipment includes 
catadioptric beacons, magnets and wires buried in the road (Georgiev and Allen, 2004). 
A challenging issue is giving vehicles sufficient autonomy to navigate in unequipped 
environments using natural landmarks (Kais et al., 2004). One approach to this problem 
is to start from a precise location and then to control the vehicle’s movement with respect 
to a planned trajectory while detecting obstacles (Vasquez et al., 2004). 

Global Navigation Satellite-based Systems (GNSS) like GPS, Glonass and, in the 
near future, Galileo are very interesting candidates for localisation purposes, since Real 
Time Kinematic (RTK) GPS can achieve accuracy to within a few centimetres in real 
time using phase corrections broadcast by base stations. Nevertheless, this technology is 
not adapted to cybercars moving around in urban areas, since the receiver needs to see at 
least five satellites with a good configuration (small Dilution of Precision (DOP)). 
Moreover, after the loss of the RTK mode, the system needs to solve the problem of 
phase ambiguities, which typically requires 30 sec of processing. Since RTK is 
unsuitable, one might consider using differential L1 GPS (pseudo-ranges measurements). 
Unfortunately, the best attainable precision is in the order of 30/50 cm, which is not 
adapted to the navigation needs of a cybercar. 

One solution is to use additional sensors such as video cameras and laser range 
scanners embedded in the vehicle (Wang et al., 2004). Indeed, they are well adapted to 
the sensing of natural landmarks, especially in urban settings where landmarks such as 
buildings and road features are particularly stable. The landmarks are characterised and 
localised in a learning stage during which the vehicle is driven manually. Afterwards, the 
vehicle is able to localise itself and control its movement in the vicinity of the learnt 
trajectory. Recent studies (such as the experiments performed by Royer et al. (2005) 
using computer vision) have proved the validity of such a concept. One of the difficulties 
with this approach is the management and the structuring of the large amount of 
landmark data for online navigation. What is the best way to organise landmark 
information for a cybercar moving within a large area containing many roads? The usual 
answer to this question is to group landmarks together in local maps, a local map being a 
set of landmarks put together because of 
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1 memory constraints arising from the use of embedded systems 

2 the need to download or update a limited amount of data from a distant server 

3 the connections that exist between the landmarks, essential for computing  
a location. 

Localisation with respect to a digital map describing the road network is an essential task 
for cybercars. The user of the vehicle usually specifies its itinerary by indicating the 
address of the destination, which makes the geocoding facility of Geographical 
Information Systems (GIS) very useful for converting an address like ‘10, Albert Road’ 
to a global (x, y) coordinate point. 

The GIS can also be used for the management of the landmarks by making use of 
descriptions of roads in the map database. To achieve this goal, a GNSS receiver is 
needed. This is useful for the georeferencing of the landmarks characterised during the 
learning stage, and it is also useful for the extraction of the landmarks during the 
autonomous navigation stage. For these requirements, the absolute accuracy of GNSS 
positioning is not crucial since the roadmap has a metre-level precision. Therefore, an L1 
(single frequency) GPS receiver backed up by Dead-Reckoned (DR) sensors in order to 
handle satellite outages is sufficient. 

The aim of this paper is to illustrate the use of GIS for autonomous navigation of 
intelligent vehicles. We present a new strategy for the management of natural landmarks 
in enhanced local maps stored in a dedicated GIS layer. The precise localisation used to 
control the vehicle is obtained via a two-level process. First, a coarse localisation uses 
differential-L1 GPS, odometry aided by a gyrometer and a road map. As a result,  
the right local map is extracted from the GIS database and then the second localisation 
stage is performed using natural landmarks detected by a laser scanner in order to 
increase the precision. 

This paper is organised as follows. The following section describes the GIS and the 
natural urban landmarks. Section 3 presents the coarse localisation method whose goal is 
to determine the right road. In Section 4, the geo-referencing of the landmarks and their 
grouping together in local maps is described. In Section 5, the management of landmarks 
during the navigation stage is performed. The final section is devoted to real experiments 
carried out with our experimental vehicle. 

2 Geographical information 

A GIS is a set of tools and methods that manage and handle vectorised or raster 
geographical information. It also provides tools to extract navigation data, such as road 
signs or pedestrian crossings, to be used by cybercars. For an autonomous vehicle that 
navigates in an urban environment, the GIS must be able to handle path planning 
(destination chosen by the user), map matching, attribute extraction and landmark 
management for precise navigation purposes. 

2.1 Road map GIS layer 

A GIS map database is usually a set of digitised roads described by poly-lines  
(see Figure 1) provided by cartographers such as NavTeQ or TeleAtlas. This topological 
information is very useful for navigation tasks like path planning. Indeed, for this 
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purpose, a scanty representation of the road network is sufficient: a road is described by a 
single line corresponding to its central axis. 

The use of this topology is also interesting for the management of landmarks  
(Kim et al., 2000) and consequently of local maps. Once the location of the vehicle 
unambiguously map-matches with a road, the pertinent landmarks are those associated 
with this road. Secondly, if the vehicle is autonomous (i.e. driven by a regulator), it has 
to follow a predefined trajectory described by a set of connected roads. In this case, the 
pertinent landmarks are those associated with this path. Therefore, we propose in this 
work to map-match the landmarks with the road stored in the GIS database. Then, each 
road will logically define a local map. 

Figure 1 Example of roads stored in a GIS layer (NavTeQ database-Benomad rendering) 

 

The road layer information is provided by cartographers for route guidance purposes. 
Road layer information is summarised in Table 1. 

Table 1 Road layer information in a GIS 

Road map layer 

• Fine road connectedness 

• Coarse road geometry 

• Attributes: 

– Driving direction 

– Speed limit 

– Road ID 

– Postal boundaries 

– Date of data acquisition 

• Points of interest 
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2.2 Landmarks for precise localisation 

For precise navigation, exteroceptive landmarks are necessary. There are different kinds 
of landmarks that depend on the particular sensors being used. They can be classified in 
the following categories. 

Active landmarks: active landmarks are beacons that contain active components in 
order to transmit a signal. They mainly rely on the use of radio-frequency signals (GPS 
pseudolites, transponders beneath the road surface, WiFi antennae, etc.). Such landmarks 
are usually distinguishable from each other. In this case, sensors are receivers equipped 
with an antenna. 

Passive landmarks: they are artificial landmarks pertinently located in the 
environment for localisation purposes. Passive landmarks include magnets in the 
pavement and reflectors on roadside posts indicating bends. 

Natural landmarks: natural landmarks are features of the environment detected by 
onboard sensors like video cameras or laser scanners (Howard et al., 2004; Weiss et al., 
2005). They can correspond to characteristic points (edges of windows for instance), 
road markings, roofs of buildings, posts, curbs, sidewalks, etc. 

Let us consider, for instance, visual landmarks with characteristic points  
(3D points – Royer et al., 2005 – or 2D points – Remazeilles et al., 2004) for the 
navigation of a Cycab using a mono-camera at video rate. These landmarks are 
characteristic points in images called Harris points (Harris and Stephens, 1988). Using 
these points it is possible to reconstruct the 3D pose (position and attitude) of the vehicle 
using a sequence of images in which each landmark has been detected at least in two 
images. These landmarks can be managed in a GIS by georeferencing the position of the 
camera (Jabbour et al., 2006). 

Another approach consists in localising the landmarks in the same coordinate frame 
as the road map. These landmarks can be complex features like image-based planes 
(Benhimane and Malis, 2004) or sidewalk edges. Sidewalk edges are considered in the 
following. 

2.3 Sidewalk edge landmarks 

GPS satellite signals are often blocked in urban areas. In such a situation, a localisation 
system can use DR sensors to maintain an estimate of the vehicle’s pose. It is known that 
lateral drift is greater than longitudinal drift (Kelly, 2004). Therefore, the laser scanner 
has to be used to detect as many lateral landmarks as possible. Since the sidewalks and 
the façades of buildings naturally possess this lateral feature in urban areas, we propose 
using a laser scanner installed vertically (see Figure 2). A mirror can be installed to 
reflect the upper part of the beam in order to ensure collision avoidance, for instance.  
The horizontal and inclined setting proposed in Wijesoma et al. (2004) for  
road-boundary detection is an alternative. 

The laser signal is first used to detect a pattern corresponding to a sidewalk edge.  
Our algorithm is based on the detection of the slope variation of successive segments of 
the telemeter frame. The first value of the slope that is higher than a threshold 
corresponds to the edge of the sidewalk. In Wijesoma et al. (2004) an extended Kalman 
filter is used to detect breaks in the laser signal in order to detect and compute the 
distance to the sidewalk edge. A prediction step is performed using the last two distances 
of the laser beam to predict the following one, then, if the innovation between the 
predicted distance and the measure is higher than a threshold, the corresponding point is 
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considered to be the sidewalk edge. In Adams et al. (2004) the same strategy is adopted 
using an Unscented Kalman Filter (UKF). From the real-time implementation point of 
view, a compromise between low-level and high-level computations has to be found.  
We believe that it is better to develop effective low-level methods and to find high-level 
localisation methods that are robust with respect to aberrant data. 

Figure 2 A cybercar equipped with a vertical laser scanner (SICK LMS) 

 

2.4 Enhanced geographical information layer 

In general, an Enhanced Geographical Information Layer (EGIL) contains information 
relative to the environment detected by exteroceptive sensors. In our particular case, the 
EGIL contains sidewalk features detected by the laser scanner. 

Storing all sidewalk landmarks would imply a large amount of data and consequently 
a huge amount of disk-space, which is unrealistic for real-time applications. In addition, 
on future itineraries the vehicle may not detect exactly the same landmarks. Therefore, 
the information has to be segmented, in the same way as for the road maps. To do this, a 
split and merge algorithm similar to the one in Borges and Aldon (2000) can be used  
(see Figure 3). Therefore, the EGIL information contains nodes describing the geometric 
nature of the landmarks and connections describing their topology. 

In robotics, the management of map uncertainties is often important, especially for 
the approaches that follow the SLAM paradigm (Simultaneous Localisation and Map 
Building) (Dissanayake et al., 2001). 

We propose to model the uncertainties of these two components. 
The observation equations of each point I of the sidewalk (see Figure 7) are  

non-linear with respect to the vehicle pose Xv and the laser distance Y to the sidewalk 
point. Given the assumption of uncorrelated measurements, the imprecision in the 
position of the nodes can be obtained by propagating the covariance of the pose 
estimated error using a first-order Taylor expansion: 

( )v ,i

i

x
h X Y

y

⎛ ⎞
=⎜ ⎟⎝ ⎠

 (1) 
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Assuming also that the vectors Xv and Y are uncorrelated, the imprecision can be 
estimated by: 

T T

v
v v

var i
I

i

x h h h h
P P R

y X X Y Y

⎛ ⎞ ∂ ∂ ∂ ∂
= = +⎜ ⎟ ∂ ∂ ∂ ∂⎝ ⎠

 (2) 

where Pv is the car’s covariance matrix and R is the observation covariance. 

Figure 3 Enhanced map with associated imprecision and uncertainty 

55 60 65 70 75 80
99

99.5

100

100.5

101

101.5

102

102.5

103

103.5

x (m)

y 
(m

)

Imprecision 
associated with 

the nodes 

Uncertainty 
associated with 
the connexions 

0.9 

0.93 

 

The likelihood of the topological connections between the nodes also needs to be 
quantified since the sidewalk edge detection can be mistaken. Moreover, an urban 
environment is not a perfectly static environment: cars can be parked between the 
pavement and the cybercar. These vehicles may subsequently be removed, which will 
make the pavement reappear. In order to deal with these problems, a belief value can be 
associated with each segment of the map. The quantification of this uncertainty can rely 
on heuristic considerations as long as the result is in the interval [0, 1] (Jabbour and 
Bonnifait, 2006). Using this formalism, regions without a sidewalk and regions 
containing parked cars are treated alike: a null belief of existence is associated with them. 

3 Coarse localisation 

One way of managing natural landmarks is to have map-matched estimates of the pose of 
the vehicle, even if these estimates are inaccurate. 

In urban areas, GPS suffers from several drawbacks such as multitracks and masking: 
GPS signals are often blocked or reflected by high-rise buildings. Because a vehicle 
cannot be localised continuously by GPS alone, localisation involves merging data from 
an odometer, a gyrometer, GPS and map information. If the signal from GPS satellites is 
blocked by buildings, for example, the evolution model provides a DR estimate, whose 
drift may be corrected using the map information. 

In order to simplify the matching process, which is a difficult task because of the 
offset that always exits between the road map and the GPS frame, we assume that the 
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vehicle follows the precomputed itinerary chosen by the user and obtained from the 
route-planning feature of the GIS. Figure 4 gives an example of a precomputed itinerary 
in an urban area. 

Figure 4 Planned itinerary of the vehicle plotted in bold 

 

The coarse localisation is done by a pose tracking method based on Kalman filtering.  
The DR sensors are used in a prediction stage, which is corrected, by GPS, if it is 
available and coherent (no multitracks), and the map. The fusion is done by Kalman 
Filtering – Extended Kalman Filtering (EKF) here, but it could be UKF, which uses a 
prediction/update mechanism. 

3.1 DR prediction 

The mobile frame is chosen with its origin at the centre of the rear axle. The x-axis is 
aligned with the longitudinal axle of the cybercar. The vehicle’s position is represented 
by (xk, yk), the Cartesian coordinates of M in a global frame (a projection of geographic 
data). The bearing angle is denoted θ k. 

The evolution model of the vehicle is non-linear: 

( )v, 1 v, v, v,, ,k k k k kX f X U γ α+ = +  (3) 

where Xv, k is the vehicle state vector at instant k, composed of (xk, yk, θ k), Uv, k the vector 
of the measured inputs consisting of ( ∆ k, wk), ∆ k and wk being respectively the 
elementary distance covered by the rear wheels and the elementary rotation of the mobile 
frame. α v, k is the process noise and γ k represents the measurement error of the inputs. 

α v, k and γ k are assumed to be uncorrelated and with zero mean noise. 

If the road is perfectly planar and horizontal, and if the motion is locally circular, the 
evolution model can be expressed by: 
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 (4) 

The values of ∆k and wk are computed using the odometer measurements of the rear 
wheels and a fibre optic gyrometer. 

In the prediction step, the cybercar evolves using (2) and the covariance of the error 
is estimated. 

3.2 GPS correction 

When a GPS position is available, a correction of the predicted pose is performed.  
In urban areas, GPS suffers from multitracks and bad satellite constellations (urban 
canyoning) that degrade the position that it delivers. So, when a GPS position is 
available, it is necessary to verify its coherence. To this end the Normalised Innovation 
Squared (NIS) with a chi-square distribution is used: a distance dm is computed between 
the GPS observation and the state vector. 

Let Yv be the GPS observation vector, µv the innovation vector. 

GPS
v v GPS v v GPS

GPS

1 0 0

0 1 0

x
Y X C X

y
β β

⎡ ⎤ ⎡ ⎤
= = + = +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (5) 

GPS
v

GPS

x x

y y
µ

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (6) 

( ) 1 T
m v vd Pµµ µ

−
=  (7) 

where (x, y) is the predicted position and Pµ is the covariance of the innovation. 
If the computed distance dm is smaller than a threshold, for instance χ2(0.05, 3), then 

the GPS measurement is assumed to be correct and a correction of the predicted pose is 
performed. Otherwise, the DR pose provided by the evolution model is retained.  
It should be noted that the GPS noise is not stationary. The GPS measurement error can 
be estimated in real time using the NMEA sentence GST. This information is provided by 
the TRIMBLE AgGPS132 GPS receiver used in the experiments. 

3.3 Map correction 

Before starting the localisation system, an itinerary is computed and we assume that the 
vehicle follows this path faithfully. Each segment in the GIS map has an Identifier (ID). 
This ID will be used in the following stages to perform the geo-referencing of the 
landmarks. 

Let us consider the segment selection problem, which consists in extracting from the 
GIS map the most likely segment using the estimated state vector. The distances between 
the estimate and the nearest segments of the itinerary are computed. The segment that has 
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the smallest distance and whose driving direction corresponds to the orientation of the 
vehicle is taken to be the correct one. As we will see in Section 6, this simple matching 
strategy gives good results since the planned itinerary has no intersections. The matched 
point is obtained by projecting the estimated position onto the selected segment. 

The matched point (see Figure 5) can be used as a map observation (denoted Yvm) in 
order to correct the drift in the DR estimate if GPS is unavailable: 

MAP
vm v MAP v v MAP

MAP

1 0 0

0 1 0

x
Y X C X

y
β β

⎡ ⎤ ⎡ ⎤
= = + = +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (8) 

The covariance βMAP associated with the map observation is taken to be proportional to 
the width of the road, and its major axis is parallel to the selected segment (El Badaoui  
El Najjar and Bonnifait, 2005). Another NIS coherence test is used to verify the map 
observation before fusing it as part of a Kalman filter correction stage. 

Figure 5 Merging a segment with the previous estimated position 
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4 Detecting and geo-referencing landmarks 

Before navigating autonomously, the EGIL of the GIS has to be created and initialised. 
In this stage, the cybercar is driven manually and the sensor measurements are 
timestamped and stored for post-processing. 

The procedure for this modelling stage is as follows: 

• identify where the vehicle must move autonomously 

• compute the itinerary using the route calculation facility of GIS 

• have a map of the road map 

• drive the cybercar manually along this itinerary 
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• compute the coarse localisation 

• build the map of sidewalks with associated uncertainties 

• geo-reference this map in the GIS as an EGIL. 

In subsequent itineraries these landmarks will be extracted each time the vehicle 
navigates in the same area. 

One of the difficulties of this approach is the management and the structuring of the 
large amount of landmark data in the EGIL for online navigation. How may landmark 
information be organised for a cybercar that moves around in a large area containing 
many roads? The usual answer to this question is to group landmarks together in local 
maps, a local map being a set of landmarks put together because of 

1 memory constraints arising from the use of embedded systems 

2 the need to download or update a limited amount of data from a distant server 

3 the connections that exist between the landmarks, essential for computing a 
location. 

Consequently, we propose grouping the detected urban landmarks together in local  
maps to facilitate their management. For this purpose, the use of the ID of the roads 
defined in the GIS road map layer is well adapted for cybercars, since the robot uses  
the planned itinerary computed from the road map. Moreover, a road is a set of  
segments having the same ID, possibly with an intersection at its beginning or/and at its 
end. So, as long as the cybercar is navigating along the same road, it uses the same set  
of landmarks. 

Furthermore, each road can be one-way or two-way (this information is contained in 
the road attributes). For one-way roads, a unique local map is built. It contains all the 
landmarks matched to it. For two-way roads, two maps are built, one for each direction: 
East To West (E2W) or West To East (W2E). If the road is parallel to the y-direction 
(North), the map is denoted E2W. 

Finally, Table 2 describes the information associated with each local map. 

Table 2 Laser landmarks with extended attributes for their management in the GIS 

Local map: map
j
 

• GIS ID 
• Direction (E2W or W2E) 
• Set of I landmarks made up of 

– Coordinates of the segmented data 
– Covariance matrix of the error on the position of the nodes 
– Belief vector 
– Matched position Xmap

j, I
 

– Date of data acquisition 

Figure 6 illustrates the procedure. The dotted points correspond to detected side-walks, 
large blue points to segmented data, black polygons to local maps attached to the roads, 
whose GIS IDs are indicated by the ‘IDxx’ labels. 
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Figure 6 Vectoring and grouping landmark data in local maps 

 

The creation and initialisation of the EGIL can be performed online. While moving, the 
laser scanner data is buffered with the corresponding road ID retrieved during the coarse 
localisation stage (Section 3). In parallel, the sidewalk detection algorithm is applied  
to localise the curb edges with their imprecision using the estimated covariance of the 
state of the vehicle. The beginning and the end of the curb are identified. When a road 
with a different ID is encountered, the buffered data is sent to the segmentation module 
that returns a segment or a set of connected segments with associated imprecision and 
accuracy (as shown in Figure 3). 

5 Autonomous navigation 

We now consider a vehicle navigating in a previously learnt environment. An itinerary 
will have been computed using the GIS road map layer. While the vehicle follows this 
precomputed itinerary, two localisation processes occurs. The first takes place in the road 
map layer using coarse localisation, and the second uses landmarks for a precise 
localisation in order to control the movement of the vehicle as described in Benhimane 
and Malis (2004), Remazeilles et al. (2004) and Royer et al. (2005). 

Landmark management for navigation consists in two parallel tasks: 

• local map extraction 

• landmark selection. 

Once the right landmark has been extracted, the laser scanner data is used to correct the 
estimated pose. 

5.1 Local map selection 

The goal of this task is to obtain a vehicle position with metre-level precision and then to 
find the appropriate local landmark map stored in the GIS landmark layer. The 
localisation algorithm is the same as the one used in the learning stage: it merges GPS, 
DR sensors and road map information corresponding to the computed itinerary. Then, the 
road ID is retrieved and the driving direction (E2W or W2E) is deduced from the motion. 
This information enables the selection of the appropriate local map. If the selected local 
map no longer corresponds to the current local map, new landmarks are loaded into the 
vehicle memory. 



   

 

   

   
 

   

   

 

   

   96 P. Bonnifait, M. Jabbour and V. Cherfaoui    
 

    
 
 

   

   
 

   

   

 

   

       
 

This supervisory task is repeated during the navigation process. It guarantees correct 
transitions between two local maps. 

5.2 Laser landmark extraction 

This part deals with the extraction and use of the segmented laser features (sidewalk 
edges) within the previously selected local map mapj, which comprises a set of laser 
landmarks. 

Let (xpred, ypred, θpred) be the predicted pose. This allows the laser scanner reference 
position (xT,pred, yT,pred) to be estimated. 

The equation for the line D which passes through (xT,pred, yT,pred) and which has  
tan(θpred +  β) as slope can be written as y = sx + k (see Figure 7). We have the function 

( , )h x y s k= − −y x  (9) 

Line D intersects segment [AB] only if 

( ) ( ), , 0A A B Bh x y h x y ≤  (10) 

To be a real sidewalk edge, the associated segment must also have a non-null belief of 
existence (higher than a threshold). If more than one segment satisfies these criteria, the 
nearest one is selected. As we will see in this simple matching strategy gives good 
results. 

Figure 7 Observation model of the laser scanner 

 

5.3 Pose updating using the laser scanner 

If a curb is detected, the laser scanner can be used to correct the pose. Let us suppose 
here that the correct segment [AB] has been selected from the enhanced map.  
The observation is the telemetric distance r to the sidewalk edge. r can be predicted by: 
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( ) ( )2 2

pred T TI Ir x x y y= − + −  (11) 

where (xI, yI) is the predicted intersection point of the laser beam with segment [AB]  
(see Figure 7). 

The predicted distance rpred is written as: 

( )
pred pred

pred 2 1
pred1 cos tan ( ) ( / 2)

ax y b
r

a aθ β π−

− +
=

+ + − −
 (12) 

where a and b are the parameters of the segment passing through points A and B.  
The distance rpred is a non-linear function of the vehicle’s predicted pose and of the 
coordinates of segment [AB]. It can be used in an EKF scheme to correct the estimated 
pose of the cybercar. 

When a valid laser scanner observation is available, it is important to verify its 
coherence. The same NIS test applied on GPS and road map data is used here. 

6 Experimental results 

Real experiments were carried out with our experimental car in the downtown area of 
Compiègne using a KVH fibre optic gyro, an odometer input and an L1 GPS receiver 
(Trimble AgGPS 132) with geostationary differential correction (Satellite Based 
Augmentation System Omnistar). 

A SICK LMS291 Laser Range Scanner at 75 Hz was used. We chose a 1° resolution 
and a range of 8.1 m. In this mode, the laser sends sentences of 181 values, each one 
corresponding to an angle varying from 0° to 180° in the laser range scanner frame.  
The GPS was set to a ‘3D only-mode’ (position fix computable only if four satellites  
are visible). In order to obtain reliable positions the DOP threshold was set to a low value 
and the SNR threshold to a high value. This sort of tuning gives rise to a reliable but 
intermittent positioning in urban areas. The timestamped data was saved in order to 
analyse the results in post-processing and verify the extracted landmarks. The road map 
used was a standard NavTeQ database managed by a GIS developed using Benomad 
SDK (Software Development Kit – Labrousse, 2006). 

In this section, the two localisation processes are studied: metre-level localisation in 
the road map layer using merged GPS and precise (decimetre-level) localisation using 
the laser landmarks. 

6.1 Local map management 

Figure 8 shows local maps associated with each road in the NavTeQ database. Each local 
map has its particular ID (blue squares). The precomputed itinerary is shown in red. 
Other road segments in the road map are plotted in dashed black. The arrows show  
the links between the laser local maps and the digital road database. The offset of the 
NavTeQ database is particularly visible in this experiment. Its value in this part of the 
urban area is 12 m North and 8 m East. 
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Figure 8 Local maps associated with the road database after the learning stage  
(each local map has its own colour; for colours see online version) 

 

Figure 9 shows the local map extraction process at two different points in the same 
navigation stage. The precomputed itinerary of the cybercar is plotted in red in the 
bottom layer corresponding to the road map layer. The other road segments are plotted in 
dashed black. The upper part represents the enhanced maps layer. The green triangle 
indicates the merged vehicle position in the precise map, and the green circle represents 
the map-matched position used to extract the local feature map, which is shown in blue 
in the enhanced layer. It will be remarked that some roads may have no associated local 
map, if there is no sidewalk or if the sidewalk edge has not been detected. This is the 
case in the gyratory area: there is no sidewalk each time there is an exit road. Moreover, 
the detection algorithm has missed two short and curved parts of the gyratory sidewalk, 
as can be seen in the enhanced maps layer of Figure 9. 

Figure 9 Local map extraction at two points in the navigation stage  
(for colours see online version) 
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6.2 Precise localisation using the landmarks 

The geometry of the enhanced maps is more detailed and the localisation therefore  
more precise. A Post Processed Kinematic (PPK) GPS receiver (a Trimble 5700  
dual-frequencies L1/L2) was used to compute estimation errors using an offline software 
package Trimble Total Control (TTC). A test area with good satellite visibility was 
chosen, since a well-functioning PPK needs at least five satellites. One way of evaluating 
the precision of the reference is to study the values of the L1 pseudo-range residuals 
(phase measurements). For the experiments reported in this paper, we verified that the 
pseudo-range residuals were in the order of few centimeters as shown in Figure 10. Other 
than between 09:58 and 10:00, where at least one phase ambiguity was not correctly 
fixed (giving rise to a horizontal error of up to ∼5 cm), the residuals are very small, 
indicating a high level of precision. 

Figure 10 L1 PPK residuals obtained with TTC versus time: the time of the trial is  
indicated by the wide (orange) bar (for colours see online version) 

 

Figure 11 shows lateral localisation errors in a Frenet’s frame. GPS masks were 
artificially introduced by eliminating several parts of the AgGPS 132 data in  
order to reproduce urban canyons. The average duration of the GPS masking was about 
21 sec; with an average covered distance of 170 m during each GPS outage.  
The grey bars show the GPS-L1 outages. The thin line represents the errors (in metres) of 
a localisation algorithm using only GPS coupled with DR sensors, while the  
bold line represents the localisation error of the complete system that fuses  
GPS, DR sensors and extracted segments from local maps. The lateral error  
rarely exceeds 1 m, while the GPS+DR algorithm can drift significantly during  
GPS outages. 

Figure 12 plots x and y errors for both algorithms with 3σ estimated contours  
(thin blue lines). The longitudinal error is consistent with the localisation process, while 
the lateral error is not wholly consistent. The same phenomenon has been observed in 
Castellanos et al. (2004) and is often due to an EKF-Based algorithm that is sensitive to 
large errors because of the linearisation of the equations. 
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Figure 11 Lateral localisation errors with and without the use of the local maps 
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Figure 12 x and y errors with the 3σ estimated bound 
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In order to evaluate more precisely the consistency of the localisation system, the 
Normalised Estimation Error Squared (NEES) was computed using: 

T

ppk ppk2 1

ppk ppk

ˆ ˆ
. .

ˆ ˆxy

x x x x
D P

y y y y
−

− −⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (13) 

Consistency is checked by using a chi-squared test, for instance D2 < χ2(0.05, 2). 
Figure 13 shows the consistency of the estimated vehicle position throughout the test. 

The localisation consistency is 88.4% rather than 95%, since a χ2(0.05, 2) law was  
used. This small difference indicates a good behaviour and a good tuning of the filter. 
Therefore, we believe that the estimated covariance represents correctly the confidence in 
the localisation. A lateral error smaller than the longitudinal error is to be expected, 
owing to the laser scanner installation on board the vehicle: lateral features are used to 
correct the lateral drift. From the control point of view, it is an interesting feature since 
lateral precision is essential for good trajectory tracking. 

Figure 13 Consistency of the estimated vehicle location χ2(0.05, 2) 
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7 Conclusion 

This paper proposes a method for managing a particularly large quantity of landmark 
data in a GIS for precise localisation in urban areas. The example of laser landmarks is 
considered. The method is illustrated with real experiments carried out in the downtown 
area of Compiègne, France. 

Our proposition is to gather landmarks in local enhanced maps characterised by a 
coarse localisation process performed using a road map layer, an L1-GPS receiver and 
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odometry. This localisation process can be interpreted as symbolic localisation, since its 
main output is the ID of the road and the driving direction. In order to simplify the  
map-matching process, an itinerary obtained from the route calculation of the GIS 
software is used. This itinerary has to be strictly followed by the vehicle during the 
learning and navigation stages. In the work presented here, a local map is a set of 
segments representing the sidewalk edges and having the same IDs as the road stored in 
the GIS road map layer. For two-way roads, two maps can be associated with the same 
road, one for each direction. Experimental results indicate that this approach is a good 
candidate for the management of landmarks in urban areas, since landmarks stored in a 
previous passage can be correctly extracted, although a large offset can occur between 
the map and the GPS data. 

Once the local map has been retrieved, a precise localisation is obtained using the 
natural landmarks detected by the laser scanner. As shown by the experiments, the 
absolute lateral precision obtained with our laser scanner installation is better 50 cm.  
We do not believe that this error rules out autonomous navigation, so long as the 
cybercar can follow approximately the same trajectory as in the learning stage. In this 
case, repeatability is more important than precision, and easier to obtain thanks to the use 
of local landmarks. 
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