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Abstract – Efficient and reliable map matching algorithms 
are essential for Advanced Driver Assistance Systems. While 
most of the existing solutions fail to provide trustworthy 
outputs when the situation is ambiguous (road intersections, 
roundabouts, parallel roads … ), we present in this paper a 
new map-matching method based on a multi-hypothesis road 
tracking that takes advantage of the geographical database 
road connectedness to provide a reliable road-matching 
solution with a confidence indicator. 

Index Terms – GNSS-based Localization, Map-Matching,
Multi-Hypothesis Tracking 

I. INTRODUCTION

Map-matching (MM), using GNSS positioning and 
navigable maps, is a data association problem which 
consists in selecting the most likely road that corresponds to 
the current position of the mobile. Unfortunately, as a result 
of inaccuracies in the map or because of large estimation 
errors, map-matching often has several solutions, i.e. 
several segments are declared candidates with good 
confidence. These segments can belong to the same road or 
to different roads (ambiguous situation). 

To solve this problem, we propose in this paper a 
multi-hypothesis road tracking method that attempts to 
exploit data pertaining to road-connectedness. This 
approach belongs to the class of dynamic state observers, 
and therefore makes use of multisensor fusion capabilities. 

Tracking techniques [7] allow a system to observe and 
follow the state of a mobile target by filtering noisy 
observations. They have very efficient implementations 
since they often rely on first order Markov assumption, 
which means that all the information can be captured in the 
current state estimation. Therefore, it is unnecessary to keep 
in memory a window of data; by using a recursive scheme, 
previous states can be forgotten. 

For localization purposes, tracking the pose (position 
and attitude) of a mobile is very useful since it allows 
fusing sequentially redundant data, once the initial global 
localisation stage has been solved. Indeed, in practice 
model equations are non linear, and an arbitrary 
initialization can conduct to a wrong convergence.
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The spatial road network data can be also used to 
improve the positioning accuracy, for instance when GPS is 
not available. Indeed, the road network can be used to 
constraint the localization space (geometry) and to predict 
the next future (connectivity). Therefore, a problem is to 
integrate such navigable map information in the localization 
tracker.

Map-matching induces unavoidable ambiguity situations 
for instance at junctions or with parallel roads, or when 
GPS suffers from outages. By applying a mono-hypothesis 
approach, the risk is to choose a wrong solution. When the 
system will detect this mistake, it will need time to recover 
the good solution and the tracking will be reset. A multi-
hypotheses approach, on the contrary, will maintain all the 
possible solutions in case of ambiguity; each hypothesis 
lives in its own world ignoring the other ones. Hypotheses 
that become unlikely are removed as time and travelled 
distance evolve. Using a Bayesian framework, it is possible 
to quantify the probability of the hypotheses. So, at each 
step, the most probable hypothesis can be output. The main 
advantage of Multi-Hypotheses Map-Matching (MHMM) 
over a Mono-Hypothesis approach is that the true solution 
is tracked with a high probability: if the current solution is 
declared incorrect, the system can output immediately a 
new solution without any transient phase.  

In general, algorithmic complexity of MHMM is 
exponential since each hypothesis can generate at each step 
new ones. In this paper, we propose to use the road 
connectedness information of the navigable map to solve 
this issue in order to create new hypotheses only when 
necessary. This is one of this paper’s contributions. We 
present a MHMM based on a Gaussian mixture that consists 
in associating a Electronic Horizon (of the global road-map) 
to each hypothesis that performs a Gaussian filter. The 
associate sub-map is a set of two roads that the hypothesis 
is supposed to follow. A weight (called also score) is 
associated to each hypothesis for the management of the 
hypotheses set. It indicates the probability of each 
hypothesis with respect to the others.   

In this paper organized in 4 sections, we present the 
different elements of this strategy and propose finally a new 
Map-Matching integrity criterion that has been tested under 
real conditions using GPS, a gyrometer, an odometer and a 
NavTeQ database. Experimental results illustrate the 
performance of this approach.  
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II. LOCALIZATION USING AN A PRIORI  MAP INFORMATION

Suppose that a map information source is available. 
This map provides a priori information that constraints the 
localization space. For example, a car has a better chance of 
being on a road, and is unlikely to go through a building. 
The cartographic information considered here is a set of 
roads described by nodes connected to each other. Each 
road is made of a begin node and an end node, with several 
intermediate points. 

In this section, we formalize the problem of using a
priori cartographic information in a probabilistic 
localization process. We will show that the map can be used 
as an observation (like any exteroceptive measurement) in a 
state observation process.  

Suppose that sk represents the mobile state vector at 
time k; zk is an exteroceptive sensor observation (a GPS for 
example).  
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The localization problem consists in estimating the 
probability p(sk | zk

 , g, uk), knowing the set of observations
zk = {zk, …, z1}, and the a priori geographical information g.
uk represents the proprioceptive sensors used as input.  

Let’s see how this geographical information can be 
used in order to estimate this probability density. 
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Using Bayes theorem, eq. (2) can be also written like: 
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The denominator p(zk | zk-1 ,g, uk) is independent of 
sk. It can be considered as a normalization term .

Let’s consider now each of the two expressions of this 
product. 

The observation zk at time k is independent of all the 
previous zk-1, the observation noise being a white one. By 
remarking also that the exteroceptive sensor noise is 
independent of the map g, we can write: 
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Let’s consider now the second term of the product and 
let’s make the density a priori p(sk | zk-1 ,g,uk) appear by 
using the total probabilities and Bayes’ theorems: 
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evolution model. It is independent from the observations zk

and under the assumption of a 1st order Markov process, it 
depends only on the current entry uk.
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Let’s substitute (4) and (7) into equation (3): 
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Let’s consider now the term p(sk | sk-1 ,g, uk ) that 
expresses the influence of the a priori information in the 
localization process: it can be used in the prediction step 
[8], [9], or considered as an observation as we proposed. 
Using Bayes’ theorem, one can write: 
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By supposing that the cartographic observation 
depends only on the current pose, we have: 
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To make these two assumptions valid, it is necessary 
that the vehicle moves relatively to the map (sk sk-1). By 
making substitutions in the equation (9), we obtain: 
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By introducing
)g(p

' ,  Eq. (3) can thus be written as: 
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In this expression p(zk | sk ) and p(g | sk) represent 
respectively the likelihood of the exteroceptive observation 
and the one of the map g relatively to the predicted position 
sk. The map thus is well considered here as an observation. 
As an example, let us consider a map made of with one 
segment representing a road on which the vehicle moves. 
This case is represented by Fig. 1 which illustrates p(g | sk),
with g being the map. Let’s consider the line  passing by 
h(sk)  (where h(sk) is the projection of the state sk in 2D map 
observation space) and perpendicular to the segment under 
consideration. Let us suppose that along  the probability 
density function (pdf) p(g | sk) is Gaussian. The likelihood 
is obtained by calculating the innovation  (which is the 
deviation with the road here) and by using it in a Gaussian 
pdf.

One can note that the pdf is not necessarily Gaussian; it 
can have any shape and be multimodal because of several 
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poly-lines close to the prediction. It’s interesting to notice 
that every pdf can be approximated by a mixture of 
Gaussians. Let pA(s) be the approximation of the pdf p(s)
associated with a random vector. pA(s) is defined by: 
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 Where wi are the weights associated to each Gaussian i.
As N increases, pA(s) tends toward p(s). In the multiple 
hypothesis filtering presented in the next section, the road 
tracking will allow to avoiding the use of Gaussian 
mixturing.. 

Fig. 1 Map pdf modelled by a Gaussian pdf. 

III. USING A MAP-MATCHING METHOD BASED ON A MULTI-
HYPOTHESIS APPROACH 

In this section, we define the concept of localization 
hypothesis in relation to MHMM. We show in details the 
management policy of the hypotheses by associating to 
each Gaussian filter an elementary electronic horizon (noted 
EH) made of with 2 roads.  

A. Hypothesis definition 
The EH associated with each Gaussian filter consists of 

two roads: the road from the mother hypothesis (the 
original hypothesis which has generated the current 
hypothesis) and a road that is connected to this hypothesis 
in the travelling direction. The EH has a depth equals to 1. 

 A hypothesis Fi at time k is defined as being composed 
of the elements shown in table 1. 

Fi  : Localization Hypothesis 

 a state: a state vector si,k and its associated  
covariance matrix Pi,k,

 An electronic horizon gi that includes the road of 
the mother-hypothesis Ridm and an upcoming one Ridf,
connected to it gi = {Ridm,i , Ridf,i } 

 A weight (score) wi,k, corresponding to the 
probability of the hypothese with respect to the others 

 An Normalized Innovatin Squared (NIS) vri,k

quantifying to consistence of this hypothesis. 
Table 1. Definition of a localization hypothesis 

B. Hypothesis Creation 
An important issue is to consider an efficient strategy 

when a hypothesis comes to the end of its road.  
Let’s suppose that a hypothesis approaches the end of a 

road-segment, and let’s assume that the current road is 
connected to 2 upcoming roads. A first idea is to duplicate 
the actual hypothesis into two others: each one 
corresponding to one of the upcoming roads. The EH 
associated with each hypothesis includes the actual road 
and one of the two upcoming ones. Please note that at the 
time of duplication the Gaussians have the same weight. 
Another idea is to clone the current hypothesis with 
anticipation. This is essential in order to take into account 
the map and estimation errors. 

More generally, let’s suppose that at a time k, a 
hypothesis i designated by Fi,k (si,k , Pi,k , gi, wi,k, vri,k)
arrives at a distance  from the end of its EH gi. The 
hypothesis Fi,k is divided into a number of new hypotheses. 
The information on the number of roads connected to the 
end of the actual one nc, is stored in the map structure: the 
number of created hypotheses is equal to the number of 
roads connected nc. For j = 1 to nc, each new hypothesis j
gets the same weight as the mother-hypothesis i and the 
same state at the time of creation (ie state vector si,k and 
covariance matrix Pi,k). The new EH gj associated with each 
new hypothesis j contains a road from the EH Ridf,j (roads 
connected to the end of the current segment) and the road 
associated to the mother runway Ridf,i, road on which the 
hypothesis Fi was evolving (One could write Ridm,,j = Ridf,i).
Please, note that the new hypotheses don’t keep the road 
Ridm,i of their mother hypothesis because the size of each 
EH gj would then increase endlessly. After transmitting its 
characteristics to the new created hypotheses, the mother 
hypothesis Fi,k is eliminated. A normalizing step for the 
weights wk is then carried out.

To illustrate the EH management associated with the 
hypotheses, consider the case of a simple intersection of 3 
roads as shown on Fig. 2. Let’s consider that the hypothesis 
Fi,, associated with the EH {ID0, ID1} has reached the 
threshold distance  to the end of road ID1. Two hypotheses
Fm and Fn as created from the properties of Fi. The EH 
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associated with Fm and Fn, will be respectively composed of 
{ID1 ID2} and {ID1 ID3}. Fi is right after eliminated. 

Fig. 2 Illustration of a 3 roads junction situation 

The weights wi, the NIS vri, and the filters’ estimates 
are updated by 2 exteroceptive sources: an hybridized GPS 
location (loosely coupled, noted h-GPS) and a map 
observation. The weights of the filters are updated by the h-
GPS. The weight of the wrong hypotheses will decrease 
step after step. The NIS will increase but more rapidly than 
the weights (which are cumulative normalized 
probabilities). The NIS (eq. 15) can be interpreted as an 
indicator of the overall consistency of the system, since 
they correspond to a priori normalized residual quantities. 
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Where Rk is the covariance matrix of the observation 
error k and Hk the Jacobian relating the observation zk to sk.

C. Hypothesis Deletion 
As soon as a hypothesis’ weight falls below a fixed 

deletion threshold el, we consider that it is no more 
credible and is eliminated. To avoid the deletion of a 
credible hypothesis Fi whose instant likelihood vri,k may 
decrease excessively at time k, because of an inappropriate 
observation, for example, that will make its weight wi,k falls 
below the deletion threshold el, we propose to filter the 
computing weight wi,k:

1,1,,, .. kimemkikiki wLwvrw  (16) 

Where Lmem is a forget factor that quantifies the part of the 
former wk-1 that is injected in wk. Lmem must verify 0<Lmem<1
(typically Lmem = 0.1). Please note that threshold el is a 
parameter that is tuned respectively to the map offset.  

D.  Detecting the tracking divergence 
The tracking divergence can occur when all hypotheses 

are mistaken and become far away from the observations 
that update these hypotheses. 

In usual conditions, if a hypothesis Fi moves away from 
the updating observations, its NIS vri will decrease in the 
update stage, and thus its weight wi will also decrease. In 

the case where all the hypotheses move away from the 
updating observations, their weights will decrease, but as a 
normalizing step follows, the weights diminution will be no 
longer effective.  

So, in order to detect a system divergence, a non-
normalized sum of weights over a t time interval must be 
done, and the decision of the system detection divergence 
must be undertaken based on this computed sum. If the 
non-normalized computed sum stays below a fixed 
threshold div during t, a re-initialization of the system is 
undertaken with the first valid GPS data. Please note that 
the system re-initialisation is a case that occurs rarely. It can 
be due to significant offsets of the digital maps in some 
places or connectedness errors. 

E. Estimating the vehicle location from the 
different hypotheses 

Several solutions can be proposed to achieve the 
estimated map-matching from the different hypotheses at 
time k. We propose to select a set of credible hypotheses as 
output: The ratio of the weight wj,k with respect to the 
maximum of the weights is the metric that is compared to a 
threshold imp to characterize the probable output 
hypotheses. 
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The threshold imp must be chosen in some optimal 
way. If imp is too small, an important number of hypotheses 
(including unlikely ones) will be proposed as outputs. On 
the contrary, a high imp will reduce the number of likely 
hypotheses, to zero, one or two. In the particle filters 
literature, the notion of “effective particles” is often used to 
trig a new process of particles resampling. In [3], the 
number of effective particles is defined as: 
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[3] proposes that if NEff becomes less than two-thirds of the 
total number of particles N, then the particles must be 
resampled. Using this idea, we linked the imp with NEff:

imp =1/(2.NEff)  (19) 

F. Update step 
We have 2 separate sources of exteroceptive 

observations: the GPS and the map observations. To 
compute efficiently the weights, the update steps are 
serialized. So, in the update step, the hypotheses’ state is 
corrected by each observation (here GPS and map), and 
thus the weight of each hypothesis wi,k is also updated and 
normalized as many times as there are observations. 
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We prefer using a hybridized GPS instead of a 
standalone GPS to overcome the problems of GPS jumps 
and especially to the low availability of GPS in urban areas. 
If there is a masking and thanks to the navigation using the 
dead-reckoning prediction, h-GPS continues to provide 
exteroceptive observation to the MHMM system and the 
different hypotheses continue to be updated in terms of 
weight and state. It’s important to note that the map data of 
the EH is always coherent with its hypothesis. However, a 
hypothesis can rapidly become inconsistent with the h-GPS 
(simply because it’s a wrong hypothesis). Thus, we 
implemented a Chi-2 test with the h-GPS before correcting 
the hypothesis pose in case of any inconsistency with the 
GPS. Nevertheless, the weights are always updated. 

Suppose now that the system is running under normal 
tracking operation (after the initialization stage). If we keep 
all the hypotheses, their number will increase without 
bound, given that, at the end of each road-segment, each 
hypothesis will be divided into at least two. So, we set a 
maximum allowed number of hypotheses (denoted Npmax).

G. Segment selection 
Each hypothesis has its EH composed of 2 roads. The 

road-matching method consists in selecting the nearest 
segment the direction of which is coherent with the vehicle 
heading. The orthogonal projection is considered as the 
map-matched position and used as an exteroceptive 
observation by the corresponding hypothesis filter. 

H. Integrity Monitoring 
Integrity of a localization system is the measure of 

confidence that can be accorded to the exactitude of the 
positioning delivered by this system. MM Integrity is a sub-
product of MHMM. When the outputs of a localization 
system contain the true (but unknown) solution, the 
integrity of the system is reached. Therefore, since MHMM 
is able in theory to explore all the hypotheses, the true 
solution makes part of this set (under the hypothesis that the 
map contains all the roads). In this paper, our proposal is to 
declare the MM confident when the number of hypotheses 
equals one, and when a Chi-2 test on the NIS  of the most 
likely hypothesis is passed. The Chi-2 test is done between 
the h-GPS and the most likely hypothesis, on the distance 
and heading variables. 

IV. EXPERIMENTS

  Experiments have been performed in Compiègne 
using a KVH fibre optic gyro, an odometer input and a 
Trimble AgGPS 132 (L1-only receiver). The GIS used by 
the map-matching module is based on a Software 
Development Kit (SDK) developed by BeNomad [6].

A. Results 
To illustrate the MHMM mechanism at intersections, Fig. 3 
shows a real case. An initial hypothesis (dotted, light blue 

lines) arrives at the threshold distance  (here =7m) from 
the end of the road. This road-end is connected to 2 
different roads. The initial hypothesis is therefore divided 
into 2 new ones (one is shown in dark blue ‘x’ and the other 
in green ‘ ’). The h-GPS is shown in green ‘*’. The 
evolution of the weight w and the NIS of the two created 
hypotheses vr are shown respectively in the curves on the 
lower left and lower right. 

Fig. 3. Hypothesis creation at a road-intersection
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Fig. 4. Hypotheses and the most likely one during an on-road trial

Fig. 4 shows, on the left part, all the hypotheses during 
an on-road test in Compiègne. The travelled distance in this 
test is 5.7 Km. On the right, the most likely hypothesis is 
shown at each moment of this trial. The percentage that the 
most likely hypothesis corresponds effectively to the real 
position of the vehicle obtained during this test is 97% of 
good matches. We checked that the wrong matches 
correspond to ambiguous situations correctly detected by 
the MHMM. 

Fig. 5 shows the result of the number of efficient 
hypotheses NEff during an acquisition test. Different values 
of NEff have been matched up with the driving situations: 
NEff = 1 is often obtained for the case where the vehicle is 
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running on segment, far from an intersection, with the 
associated runway having a fairly large weight. NEff = 2, 3, 
4 is generally obtained when approaching an intersection, 
with, respectively, 2, 3, 4 roads in the upcoming 
intersection. 

Fig. 5. Number of effective filter during the road test 
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Fig. 6 Most likely hypothesis, integrity and hybrid GPS 

Fig. 6 shows the integrity computation result on the 
most difficult part of the trial (upper part of Fig. 4). The 
most likely hypothesis (denoted by MLH) is shown in blue, 
the h-GPS in magenta. We can clearly see that the map 
offset with respect to the GPS. When the MLH is shown in 
bold red, it means that it is considered confident. The 
integrity indicator is here the bold red. Please look at the 
ambiguous situation pointed by the circle. Because of the 
map offset, the MLH is not the appropriate one. 
Nevertheless, the confidence indicator clearly indicates that 
the output is not likely. This correctly corresponds to 
ground truth. 

V. CONCLUSION

This paper has presented a map-matching method that 
relies on multi-hypothesis tracking for on-road vehicles. 
This method fuses proprioceptive sensors with GPS and 
map information. The main idea behind this approach is to 
associate a hypothesis to each newly encountered road after 
an intersection or a roundabout. The likelihood of each 
available hypothesis is evaluated by computing a recursive 
weight or score through an instantaneous likelihood that 
updates the hypotheses’ weight. An integrity indicator is 
also calculated on the most likely hypothesis to determine 
whether this choice is a coherent one. The decision rule we 
proposed considers the estimated location consistency with 
the map and the probability of the hypotheses with respect 
to the others to handle ambiguity zones. Real tests were 
undertaken on road and results showed the validity of this 
approach.
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