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ABSTRACT

Robust Set Inversion via Interval Analysis methods in a
bounded error frame is used in this paper to compute
three-dimensional location zones in real time, at a given
confidence level. This approach differs significantly from
the usual Gaussian error model paradigm since the satel-
lite positions and the pseudo-ranges measurements are
represented by intervals enclosing the true value with a
particular confidence. The method computes a location
zone recursively, using contraction and bisections of an
arbitrarily big initial location box. Such an approach also
enables to consider the presence of an arbitrary number of
erroneous measurements using a q-relaxed solver, and al-
lows integration of geographic and cartographic information
such as digital elevation models or 3-dimensional maps.
With enough data redundancy, inconsistent measurements
can be detected and even rejected.The integrity risk of the
location zone is only brought by the measurement bounds
settings, since the solver is guaranteed. A way to set
these bounds for a particular location zone confidence is
proposed. An experimental validation using real L1 code

measurements and a digital elevation model is also reported
to illustrate the performance on the method with real data.

INTRODUCTION

When leading to safety decisions, positioning services not
only need to provide an estimate of the user location, but
also confidence indicators. This information enables the
user to know if the position estimate is usable in a given
context.

In practice, an upper bound on the positioning error,
linked to an integrity risk, is required to determine if a
navigation system is usable for a given task.

At the receiver level, standard approaches do Fault
Detection (FD) to ensure the integrity of the position
solution. This is known as Receiver Autonomous Integrity
Monitoring (RAIM) (Brown and Chin, 1997; Walter and
Enge, 1995). RAIM uses statistical consistency tests when
measurements redundancy exists. In this process, FD
characterizes the presence of pseudorange measurement
errors that could lead to compute hazardous and misleading
information of position.

The monitoring system has also to provide Horizontal
and Vertical Protection Levels (HPL/VPL), which are upper
bounds of the position error that must not be violated
without being detected with a given integrity risk and in
a given time to alert. A protection level is defined by
two probabilities: the probability of missed detection and
the probability of false alert. A false alert arises when a
position failure is declared although there is no failure. A
missed detection is the non indication of an alert when an
unacceptable error occurs. These two parameters are set
to meet the RNP requirements on integrity and availability.
The protection level reflects the error detection capability of
FD, given the current geometrical configuration (user posi-
tion and satellite positions) and the expected measurement
error characteristics. It is thus computed without the actual
measurement values, as a mean to know if the positioning
system is able to ensure the RNP in the given situation –
i.e. if a position error greater than the alert limit could be
detected. This way, RAIM is declared to be unavailable if
the protection level exceeds the alert limit.

An estimate of the actual position error is based on
the current measurements. It is often called Uncertainty
Level (UL). UL describes the contribution of two kinds of
disturbances: noise and missed detections. Usually, it is
supposed that there is only one fault at a time. The minimal



detection bias is then applied to the measurement that affects
the position error in the worst case, by a mechanism called
Max Slope in the literature (Feng et al., 2006).

Localization can thus be considered as a set-theoretic
(also called set-membership) problem that consists in com-
puting a zone in which the user is located with a given
confidence or risk, instead of just the coordinates of a point
that should be near to the actual location. Indeed, an
upper bound of the resulting position error is essential to
decide if the navigation system can be used for a dedicated
task. Avionics GPS receivers computes currently protection
and uncertainty levels that characterize the position error;
these are then compared to alert limits to decide of GPS
availability as a primary navigation mean.

Set-theoretic methods are well suited to address local-
ization problems, especially when dealing with uncertainty
of position (Lévêque, 1998; Jaulin et al., 2002; Meizel et al.,
2002). Some of them have shown interesting properties
like guaranteed convergence and guaranteed characteriza-
tion of every location hypothesis in a given search zone
(multimodal ability). The main drawbacks of this kind
of approach are of two kinds. First, they are often very
conservative (or pessimistic) because of the measurement
bounds that can be chosen excessively large and because
of the wrapping effect (Jaulin et al., 2001b). Second, they
are very sensitive to faults or outliers which can induce
an empty set solution. This paper addresses those issues
by using a technique that uses non guaranteed intervals
and outliers: if a risk has been taken when setting error
bounds, the risk of the solution set not including the true
position can be bounded. From a practical point of view,
the computed location zone (eventually the several ones) is
not guaranteed, but an integrity risk is specified, depending
upon the application. To achieve high integrity levels with
good accuracy, a lot of data redundancy may be needed;
otherwise, the location zone may become very large.

The paper is organized as follows. We first introduce
set-membership localization with a simple pedagogical
example. Then, guaranteed solvers for the set inver-
sion localization problem, based on interval analysis and
constraint propagation are presented. A robust solver is
also introduced, and a method to set measurement error
bounds according to a specified risk is explained. Finally,
experimental results using real L1 GPS pseudo-ranges
measurements are presented and analyzed, external altitude
information is integrated to improve the solutions thanks to
a digital elevation model.

SET-MEMBERSHIP POSITIONING

Pedagogical example with static beacons

Let’s consider a time of flight positioning example having
similarities with GNSS navigation. In a planar world, a
robot and three beacons communicate altogether via a radio
link. The robot can emit ultrasonic waves, while the beacons
feature a receptor. To range itself to the beacons, the robot
simultaneously emits a radio message and an ultrasound
at time te. Beacons start timing, and stop when they
receive the ultrasound at tr. Since radio propagation time

is negligible compared to sound travel time, the time of
flight measurement is tr− te. Knowing the speed of sound
cs, distance measurements to each beacon can easily be
determined di = cs · (t

i
r− te).

To perform set-membership positioning, each mea-
surement has to be represented as the set of possible values,
taking uncertainty into account. Intervals are commonly
used to express measurement inaccuracy. In the case of time
of flight measurements based on ultrasound transducers,
a proportional error is expected, due to the variation of
the speed of sound. Measurements can be represented as
intervals

[di] = [(1−α) ·di
, (1+α) ·di] (1)

Each measurement acts as a constraint on the robot
location, setting bounds on the distance between the robot
and the beacon. Thus, we have the membership relation:

√

(xR− xBi)2 +(yR− yBi)2 ∈ [di] (2)

Given equation 2, each measurement constrains the robot
location inside a ring, whose inner and outer radii are
respectively the lower and outer bounds of the measurement
interval [di].

As there are three beacons, the measurement equation
has to be verified for the three measurements. The robot is
thus located in the intersection of the three rings (the black
area in Fig. 1a).

It is important to keep in mind that as long as the
measurement error is consistent with the chosen bounded
error model, the true user location is inside the solution set.

Influence of wrong measurements

Measurement systems are often prone to errors, so that a
measurement may be inconsistent with the error-bounds.
This kind of measurement is often called “outlier” or
“fault”. There are two possible consequences:

• The solution is the empty set (Fig. 1b). This case
happens when the wrong measurement is inconsistent
with the other measurements, so that there is no
common intersection. On can thus conclude that there
is something wrong with the measurements or the
model.

• The solution is not empty, but does not contain the
actual robot location (Fig. 1c and 1d). The set-
membership method is then unable to detect the pres-
ence of an erroneous measurement, and the solution set
is inconsistent with the truth.

To deal with erroneous measurements, a robust set-
membership method has to be used. This is done by
relaxing the number of constraints to be satisfied. In this
example, allowing the presence of at most one erroneous
measurement is achieved by considering the set of solutions
compatible with at least two measurements (the gray and
black surfaces in Fig. 1). In the general case, an arbitrary
number q of erroneous measurements can be tolerated,
using the q-relaxed intersection of the constraints (Jaulin,
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Figure 1: Localization using 3 beacons. Solution set in black. 1-relaxed solution set in black and grey. The actual solution is

shown as a red cross.

2009). Tolerating erroneous measurements leads to larger
solution sets. A good balance between the error model
tolerance and the number of tolerated outliers has to be
found, in order to keep the solution set narrow. One should
also ensure that the number of active constraints remains
sufficient to compute a finite solution-set.

Another robust scheme called Guaranteed Minimum

Outlier Number Estimator (Kieffer et al., 2000) (GOMNE)
consists in adaptively relaxing the number of constraints:
the strategy is to first compute a solution set considering
all the constraints, then to iteratively relax the number of
constraints to be satisfied until a non-empty solution set is
obtained. The good point of GOMNE is to keep the solution
set narrow as long as measurements are not incompatible.
However, there is no guarantee that the true value will be
located inside the solution returned by GOMNE, since a
wrong measurement is not necessarily inconsistent with the
other measurements (Fig. 1d).

SET INVERSION VIA INTERVAL ANALYSIS

In the previous example, the solution sets for each constraint
were easy to represent as rings, and we supposed the ability
to compute with exact representations of arbitrary sets. In
real localization problems, the constraints are given by the
measurements and an observation function, which can lead
to arbitrary sets of solutions. We will thereby use interval
analysis to perform a guaranteed set inversion.

Interval analysis

Exact representation of arbitrary sets is not tractable. An
efficient representation is to consider intervals, and their
multidimensional extension: interval vectors also called
boxes. Let IR be the set of real intervals, and IR

n the set
of n-dimensional boxes.

The classical real arithmetic operations
(+,−,× and ÷) can be extended to intervals. The
interval extension of an operator returns the smallest
interval containing all the results of the operation when the
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Figure 2: Inclusion functions. [f] is an inclusion function

for f. [f]∗ is the minimal inclusion function for f.

two operands cover their respective intervals. With a binary
operator ⋄, we have

[x]⋄ [y] = [{x⋄ y ∈ R|x ∈ [x],y ∈ [y]}].

In the same way, elementary functions such as
tan,sin,exp . . . extend to intervals. Given a function f : R→
R, its interval extension [ f ] is given by

[ f ]([x]) = [{ f (x)|x ∈ [x]}].

Let’s consider a function f from R
n to R

m. The interval
function [f] from IR

n to IR
m is an inclusion function (Fig. 2)

for f if the image of [x] by [f] includes the image of [x] by f

∀[x] ∈ IR
n
, f([x])⊂ [f]([x]).

The minimal inclusion function for f, [f]∗ returns the
smallest box that contains f([x]) — i.e., the interval hull of
f([x]).

If a function f : R
n → R can be expressed as a

finite composition of operators +,−,×,÷ and elementary
functions (sin, cos, sqr...), an inclusion function [ f ] for f

is obtained by replacing each variable and each operator
or function by their interval counterparts. This inclusion
function is called the natural inclusion function of f . If
f only involves continuous operators and functions, and
if moreover each variable appears at most once in the
expression of f , then the natural inclusion function is
minimal.

The natural inclusion function for a vector function f

is obtained by taking natural inclusion functions for each of
its coordinate functions fi.

To approximate compact sets in a guaranteed way,
subpavings will be used. A subpaving of a box [x] is the
union of non-empty and non-overlapping subboxes of [x]. A
guaranteed approximation of a compact set X can be done
by bracketing it between an inner subpaving X and an outer
subpaving X such as X⊂ X⊂ X (Fig. 3).

Set inversion

The set inversion problem consists in determining the set X

such as f(X) = Y when Y is known.
A box [x] of IR

n will be said feasible if [x] ⊂ X

(all elements of the box are solutions of the problem)
and unfeasible if [x]∩X = /0 (all elements of the box are
not solutions of the problem), otherwise [x] is ambiguous.

Figure 3: Bracketing of the hatched set between two
subpavings. Red boxes: inner subpaving, Red and yellow:

outer subpaving

Using an inclusion function [f] of the function f to be
inverted, we can identify feasibility of boxes:

• If [f]([x])⊂ Y then [x] is feasible

• If [f]([x])∩Y = /0 then [x] is unfeasible

• Else [x] is indeterminate, meaning it can be feasible,
unfeasible or ambiguous.

Starting from an arbitrarily big prior searching box [x0],
the Set Inversion Via Interval Analysis (Jaulin and Walter,
1993) algorithm (SIVIA) works by testing feasibility of
boxes. If a box is feasible, it is added to the inner subpaving
X of solution. If a box is unfeasible, it is discarded,
since it is proven that it contains no solution. Finally, an
indeterminate box is bisected into two sub-boxes, which are
enqueued in the list L of boxes waiting to be examined.
Indeterminate boxes whose width is too small (less than ε)
are added to the subpaving of indeterminate boxes ∆X. Thus
the outer subpaving is X = X∪∆X.

Algorithm 1 SIVIA(in: [x0],Y; out: X, ∆X)

1: push([x0],L)
2: while L 6= /0 do

3: [x] = pull(L)
4: if [f]([x])⊂ Y then

5: X = X∪ [x]
6: else if [f]([x])∩Y = /0 then

7: discard [x]
8: else if w([x]) < ε then

9: ∆X = ∆X∪ [x]
10: else

11: ([x1], [x2]) = bisect([x])
12: push([x1],L); push([x2],L)
13: end if

14: end while

There are several ways to implement the list of boxes
L used in the algorithm. Implementing L as a stack provides
a minimal memory occupation that can be bounded as a
function of n and ε . It is a depth first search, requiring
the end of computation to get a usable result. By setting
L as a queue, search over the state space is done breadth
first, allowing an homogeneous width of subpaving over



the whole solution set. This enables the computation to be
stopped at any time to get a result, thus being compatible
with real time applications. The main drawback is memory
occupation, which is a lot larger than when using a stack.

SIVIA is described in algorithm 1, where the push and
pull functions are respectively used to add and extract a box
from the list.

The number of needed bisections gets exponentially
bigger as the dimension of the problem increases, and
the computational burden quickly becomes intractable. To
counteract this effect, contractors have to be used. A
contractor is a fonction that shrinks a box without loosing
any solution. It allows to speed-up computation without
loosing guarantee of the solution. A simple way to build
a contractor is using a constraint propagation algorithm
(Jaulin et al., 2001b).

With contractors, the generated subpavings are no
longer regular, and size of boxes is unpredictable. A
sorted list implementation of the list of boxes may be
used, to bisect the largest boxes first, thus leading to rather
homogeneous box sizes.

q-relaxed set inversion

Adding robustness can be done by relaxing a given number
q of constraints. The solver will then compute a sub-
paving of the state space consistent with at least m−q mea-
surements. The Robust Set Inverter via Interval Analysis

(RSIVIA) solver(Jaulin et al., 2001b) enables guaranteed
computation of a q-relaxed solution set.

The component functions fi of f are considered inde-
pendently, with their inclusion functions [ fi]. If feasibility
of [x] is achieved with at least m− q components of Y via
component inclusion functions [ fi], [x] will be considered
as feasible. Else, if infeasibility of [x] is concluded for more
than q components, [x] will be unfeasible. Otherwise, [x]
will be indeterminate.

Fig. 4 shows the main steps of RSIVIA, applied
to a fixed beacon localization problem. The prior box
is first contracted independently with each measurement
to get three boxes approximating the intersection of each
constraint with the prior box (Fig. 4a). The grayed zones
in Fig. 4b represents the 1-relaxed intersection of the three
boxes. The hatched box, which is the box union of the
grayed boxes, becomes a new initial box. We have thus
contracted the initial box, without loosing any solution.
Contraction with each measurement is done again, starting
with the new box (Fig. 4c). Then, the initial box is
reduced again so as to enclose the q-relaxed intersection of
contracted boxes. These steps are repeated (Fig. 4d and 4e)
until no more contraction can be performed (Fig. 4f). A
bisection is then done, and the contraction process is applied
to the two sub-boxes (Fig. 4g).

A fast contractor for the q-relaxed intersection can
be implemented using axis projection of constraints. Each
dimension is considered separately. Constraint propagation
is applied to the input box, thus obtaining a smaller box
constrained by only one measurement. The obtained upper
and lower bounds for the considered axis are added to

a list of bounds and associated values. Each opening
bracket (lower bound) is associated with the +1 value
while each upper bound is associated with the −1 value.
Such a list of bounds is constructed for each dimension,
and populated by applying constraint propagation of each
available measurements to the input box.

For each axis, bounds are sorted in ascending order
and a counter is set to 0. Then, the bounds associated to the
axis are examined from the lowest to the highest. Each time
a bound is encountered, its associated value is added to the
counter. The first bound that makes the counter hit m− q

is set as the axis’ lower bound. The last bound that makes
the counter fall below m−q is set a the upper bound for the
considered axis. The contracted box is the Cartesian product
of the contracted intervals obtained on each dimension. The
contraction process is iterated until no more reduction of the
box size is obtained.

This contractor is not optimal – i.e it does not reach
the interval hull of the q-relaxed solution set in the general
case – but its complexity is low. After contraction, the box
is bisected and enqueued so as to be further processed to get
a thinner result.

Setting measurement error bounds as a function of a

given confidence

When using a q-relaxed guaranteed solver such as RSIVIA,
the probability of the true solution being inside the com-
puted solution set can be computed, given a prior measure-
ment error distribution and a maximum number of outliers
(denoted q) (Drevelle and Bonnifait, 2009).

Knowing the probability density function fey of the
measurement error ey and the error bounds [a,b], a measure-
ment ymeas is represented by the interval [ymeas] = [ymeas +
a,ymeas + b]. One can compute the probability p = P(y ∈
[ymeas]) of the true y being inside [ymeas].

p = P(y ∈ [ymeas]) =

ˆ b

a

fey(α)dα (3)

Let nok be the number of measurements that respect
the error bounds. The probability of having exactly k good
measurements out of m is given by binomial law:

P(nok = k) =
m!

k!(m− k)!
pk(1− p)m−k (4)

Thus, by summing equation 4 over successive k

values, the probability of having at least m − q good
measurements is

P(nok ≥ m−q) =
m

∑
k=m−q

m!
k!(m− k)!

pk(1− p)m−k (5)

A guaranteed algorithm like RSIVIA computes a con-
servative approximation X of the solution set X. Moreover,
if the hypotheses made on the measurements are verified,
the solution set is consistent with the truth. This way,

nok ≥ m−q⇒ x ∈ X⇒ x ∈ X

which leads to

P(x ∈ X)≥ P(x ∈ X)≥ P(nok ≥ m−q) (6)
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Figure 4: Steps of RSIVIA on a 3 beacon localization problem

Setting P(nok ≥m−q) to a confidence level Pcon f will
ensure at least this confidence level for the computed solu-
tion. Since the number of measurements m and the number
of tolerated outliers q are known, p can be determined from
Eq. 5 for a given P(nok ≥ m−q). Measurement bounds can
then be chosen so as to verify Eq. 3.

There is one degree of freedom left to choose the lower
and upper bounds a and b of the measurement error interval.
One can thus decide to choose them so as to minimize the
width of [a,b] – i.e. to minimize a−b.

In the case of a centered Gaussian measurement
error ey ∼ N (0,σy), with Φ representing the cumulative
distribution function of the standard normal distribution, the
measurement interval should be set to

[ymeas] = [ymeas−Kσy,ymeas +Kσy] (7)

In this case, K is simply given by

K =−Φ−1
(

1− p

2

)

(8)

COMPUTATION OF GPS LOCATION ZONES

Set-membership GPS localization

GPS localization using pseudoranges is a four-dimensional
problem: along with space coordinates (x,y,z) of the user,
the user clock offset dtu has to be estimated. With ρi being

the corrected pseudo-ranges, the GPS code observation
model is :











ρ1
ρ2
...

ρm











=















√

(x− xs
1)

2 +(y− ys
1)

2 +(z− zs
1)

2 + cdtu
√

(x− xs
2)

2 +(y− ys
2)

2 +(z− zs
2)

2 + cdtu

...
√

(x− xs
m)2 +(y− ys

m)2 +(z− zs
m)2 + cdtu















Satellite positions (xs
i ,y

s
i ,z

s
i ) are known with uncer-

tainty due to the inaccuracy of the broadcast ephemeris
information. For each satellite, we consider a box [xs

i ] =
([xs

i ], [y
s
i ], [z

s
i ]) whose bounds are chosen to contain the true

satellite position at a given confidence level.
Measured pseudo-ranges are compensated from rela-

tivistic effects, ionosphere and troposphere propagation de-
lays using EGNOS to get corrected pseudoranges ρi. These
corrections are imprecise due to model and parameters
errors. Moreover, the receiver makes also measurement er-
rors. Therefore, we model the pseudo-range measurements
as intervals [ρi] whose bounds will be determined given an
integrity risk.

The location zone computation consists in charac-
terizing the set X of all locations compatible with the



measurements and the satellite positions intervals:

X =
{

(x,y,z,cdtu) ∈ R
4
,∀i = 1 . . .m,

∃ρi ∈ [ρi],∃(x
s
i ,y

s
i ,z

s
i ) ∈ [xs

i ],

ρi =
√

(x− xs
i )

2 +(y− ys
i )

2 +(x− ys
i )

2 + cdtu

}

The solution set is the set of locations for which a
pseudorange and a satellite position can be found inside
the measurement and satellite position intervals for every
satellite.

To add robustness, we will compute a location zone
compatible with at least m− 1 measurements. RSIVIA is
used to solve the relaxed set inversion problem. By recur-
sively contracting and bisecting an arbitrarily big initial box,
this algorithm returns a subpaving of the state-space (user
position and clock offset) guaranteed to include the solution
set — i.e., an outer approximation of the solution set by a
set of boxes. As long as the initial hypothesis is valid, i.e.

as long as only at most one measurement exceeds the error
bounds, the true receiver position is guaranteed to be inside
the computed localization zone. The bounds are chosen so
that the risk of more than one wrong measurement (i.e. the
risk that at least two measurements don’t respect the error
bounds) is of 10−7.

The constraint induced by the ith pseudorange mesure-
ment is represented by the natural inclusion function for the
observation function:

[ fi]([x]) =
√

([x]− [xs
i ])

2 +([y]− [ys
i ])

2 +([z]− [zs
i ])

2 + c[dtu]

(9)
The square and square root functions are replaced by their
interval extensions. Since each variable appears only one
time in the expression of fi, the natural inclusion function
obtained by replacing each operator of fi by its interval
counterpart is the minimal inclusion function for fi.

A contractor can be built using constraint propagation.
Since the decomposition in elementary constraints contains
no cycle (Fig. 5), an improvement of the Waltz constraint
propagation algorithm (Waltz, 1972) can be used: the FALL-
CLIMB algorithm (Jaulin et al., 2001a), witch allows to
propagate constraints in an optimal order. The input and
output variables (shown in red in Fig. 5) are set to their
initial interval values. Unknown intermediate values are
set to [−∞,+∞]. A forward propagation is done, falling
from the leafs down to the root of the tree. Then backward
propagation is done, climbing the tree from the root up to
the leafs. When a binary operator is encounterd, contration
is done on its two operands.

Using the + operator as an example, let us contract the
[a]+ [b] = [c] constraint:

• forward:
[c]← ([a]+ [b])∩ [c]

• backward:

[a]← ([c]− [b])∩ [a]

[b]← ([c]− [a])∩ [b]

ρ

+

sqrt

+

sqr

+

x –

xs

+

sqr

+

y –

ys

sqr

+

z –

zs

cdtu

Figure 5: Elementary constraints decomposition of pseudo-
range measurement inclusion function

Figure 6: Our experimental vehicles: CARMEN and
STRADA

We use a real-time oriented implementation of the set-
inversion algorithm, based on an sorted list, that gives
usable results even if computation time is bounded. This
allows to get a good characterization of the localization zone
in less than one second.

GPS only location zone computation

Test data were recorded using a Septentrio PolaRx receiver
and the experimental vehicle Strada of Fig. 6. The ground
truth solution is provided by a post-processed Trimble 5700

receiver with a local base. The sequence covers 1800 m
of street and road near the lab in Compiègne, and lasts
about 170 seconds. The trajectory is shown in Fig 7, where
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in red

the bounding boxes of solution sets for each measurement
epoch are reprensented. These solutions are computed using
a non robust SIVIA, with a contractor based on constraint
propagation.

EGNOS augmentation system is used to get cor-
rected pseudoranges, with associated measurement error
variances, assuming an overbounding Gaussian distribution.

When using a non robust solver, inconsitency between

(a) no bias (b) 30 m bias (c) 50 m bias

Figure 9: XY projection of the 1-relaxed solution with one
biased measurement

measurements can be detected when the solution set is
empty. However, the measurement error can be too small to
be detected, while being large enough to make the computed
location zone inconsistent with ground truth.

In Fig. 8, a bias ramp is added to the first pseudorange
of the set of six available pseudoranges. Non-robust
solution set (blue lines) remains consistent with ground truth
until the bias reaches 18 meters (a). With a measurement
bias ranging from 18 to 23 meters (b), ground truth doesn’t
belong anymore to the solution set but there is no way
to detect it. This is the weak point of the non-robust
solver. Starting from a 24-meter bias, the solution set
becomes empty (c), which proves inconsistency between
measurements and the model.

Using a robust 1-relaxed solver, the presence of one
wrong measurement does not compromise the integrity of
the computed location zone. The evolution of location zone
bounds with respect to the pseudorange bias in Fig. 8 (red
lines) can be explained in three phases. From a 0 to 19
meter bias (A), a non-empty six-satellite solution can be
computed. Since the solver is robust to one faulty mea-
surement, all the five-satellite solutions are also included
(Fig. 9a). The location zone gets tighter as the inconsistency
grows. Starting from a 19-meter bias, the presence of an
erroneous measurement can be detected, as the six-satellite
solution is the empty set. The solution set is thus only
made of five-satellite solutions (B1). Then only two five-
satellite solutions are non empty (Fig. 9b), until a 50 meter
bias (B2). Finally, when the bias exceeds 50 meters (C),
only one five-satellite solution is non empty, thus excluding
the faulty measurement from the location zone computation
(Fig. 9c). If needed, the wrong measuremnt can be identified
by testing compatibility of the six measurements with a box
of the solution sub-paving.

Use of geographical information

When using a robust set inversion algorithm, the computed
location zones tends to get wider. This is a direct conse-
quence of considering the union of not well conditioned
satellite subsets solutions. To counteract this phenomenon,
more redundancy is needed. Since GPS satellites visibility
can be reduced, especially in urban environment, other
sources of information have to be used.

Altitude measurements can easily be obtained by
the use of Digital Elevation Models (DEM) for ground
applications, or altimeters for planes.
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Fusion with GNSS pseudorange measurements can be
done either by setting the prior search box according to the
measured altitude and its uncertainty, or by implementing a
new constraint in the set-inversion.

Given a DEM with ±∆v vertical accuracy (altitude
measurement) and ±∆h horizontal accuracy (planimetric
error), a contraction operator can be defined (Alg. 2). It will
be applied to each box in the set inversion algorithm, thus
enforcing the altitude constraint.

Algorithm 2 DEMCONTRACT(in: [xin], DEM; out: [xout ])

1: [wnd] =

(

[xin]
[yin]

)

+

(

[−∆h,+∆h]
[−∆h,+∆h]

)

2: hmin = min[wnd](DEM)−∆v

3: hmax = max[wnd](DEM)+∆v

4: xout =





[xout ]
[yout ]
[zout ]



 =





[xin]
[yin]

[zin]∩ [hmin,hmax]





The DEM horizontal error is taken into account by
searching for the altitude extrema in a larger area than the
horizontal plane extent of the input box. Then, the vertical
error interval of the DEM is added to the altitude amplitude
found in the search zone. The output box is obtained by
cropping the vertical component of the input box.

To improve efficiency, the DEM contraction step may
be bypassed when the input box is very large (because of the
huge amount of DEM data to process), and also when the
input box is small compared to the DEM grid resolution.
Another optimisation is to use a coarse model for large
boxes, then to switch to the full precision model for smaller
input boxes.

We use a 25 meter horizontal grid resolution DEM
with 1 meter altitude precision covering the lab’s neigh-
bourhoud (BD Topo charted by the French Institut Géo-
graphique National).

In this trial, with the guarantee of immunity to one
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erroneous measurement (RSIVIA with q = 1), the altitude
information from the DEM allows to reduce the horizontal
location zone radius by a factor 5 on the y axis (Fig. 10).
The reduction of horizontal location uncertainty is even
greater in poor geometrical configurations, especially with
five or less satellites. The altitude constraint enables robust
snapshot localization with as low as four satellites.

The benefits of altitude information on horizontal un-
certainty are especially noticeable when only few satellites
are visible, or when robustness to a large number of faulty
measurements is needed.

Fig. 11 shows the influence of a biased measurement
on the horizontal position bounds, when merging DEM
information with GPS pseudorange measurements. It is
the same six-satellite dataset as in Fig. 8, allowing to
compare results with and without the use of a DEM.
While the non robust approach is not improved a lot by
the use of a DEM, great improvement can be seen in
the 1-relaxed solver behaviour. The location zone always
remains consistent with ground truth, since there is only one
erroneous measurement, but it is tighter thanks to the added
constraint. The erroneous measurement is totally excluded
from the solution after a 25 meter bias (where 50 meters
were necessary without altitude information).

CONCLUSION

A method to characterize a location zone using robust
set-membership solvers has been presented in this paper.
Bounds are set on measurements, taking error model and
risk into account. Those bounded-error measurements
translate into constraints in the location domain. Using
interval analysis, the constraints satisfaction problem can
then be solved, and a defined number of constraints can
even be discarded in order to keep solution integrity in the
presence of outliers.

An experimental validation has been achieved to com-
pute location zones, using GPS pseudorange measurements
corrected with EGNOS, and a Digital Elevation Model. It
has been implemented in real time as a parallelized C++
program. It showed that additional altitude information
from the DEM enabled more precise positionning while



tolerating GPS outliers, especially with a small number of
visible satellites.

Future work will be focused on dynamic car local-
ization, using a kinematic model of vehicle. Embedded
proprioceptive sensors will be used to constrain the lo-
cation zone, especially during GPS outages in difficult
environment such as urban canyons. In such areas, GPS
measurements can be very limited and contaminated by
non-line-of-sight (NLOS) reflected signals; a data horizon
scheme will be experimented to deal with the small number
of good GPS measurements. Three-dimensional maps of the
navigable space will also be studied to a stronger constraint
to the location zone, particularly when GPS geometrical
satellite configuration does not enables a tight location zone
characterization. It can be either a polyline representation,
with altitude and road width attributes, or a full surface
model of the navigable space. In both cases, the planimetric
and altimetric errors will have to be considered.
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