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Multi-Hypothesis Map-Matching on 3D Navigable Maps using Raw GPS

Measurements

Clément Fouque1,2, & Philippe Bonnifait1,2

1Université de Technologie de Compiègne (UTC), 2CNRS Heudiasyc UMR 6599, France

Abstract— For many road transport applications, maps of
the environment where the vehicles evolve are available. This
information can contribute to the positioning process itself. In
this paper, global positioning on navigable maps is formalized
in a general Bayesian framework. Using a tight integration of
map data, a generic solution to multi-hypothesis map-matching
is described. This method is then applied to the use of
raw GPS measurements: pseudoranges and Dopplers. State
space equations are given and a marginalized particle filter is
proposed to solve efficiently the problem. Experimental results
are presented and show that this approach can provide good
results even if few satellites are visible.

Index Terms— Map-matching, tightly coupled GPS, Bayesian
filtering

I. INTRODUCTION

During the last decade, many Intelligent Transportation

Systems (ITS) applications involving geographical data have

been proposed to enhance driving assistance and safety. Such

kind of information is commonly stored in a geo-referenced

navigable map that describes the road network. To retrieve

attributes, the relative location with respect to the map has

to be known.

This problem, called map-matching, has been deeply

studied in the ITS field of research. Various approaches

using either geometrical or topological description of the

network have been proposed [1], [2]. Somehow, most of

them rely on global position fixes, see [3], [4] for instance.

Therefore, their efficiency depends on the availability and

the quality of the positioning. To settle these limitations,

another approach consists in solving map-matching simulta-

neously with positioning [5], [6], [7]. Such a tightly-coupled

approach increases positioning availability as the number

of measurements can be reduced. Precision can also be

improved as shown in the paper [8] where GPS differential

corrections are elaborated using the map geometry.

In map-matching, the correct road link identification is

the main issue, especially in ambiguous situations. When

using snapshot or mono-hypothesis approaches like in [3],

[5], [6], ambiguity can occur in case of parallel roads or at

junctions. Therefore, approaches considering the use of the

network topology have been proposed. The authors of [9]

have proposed a Multi-Hypothesis Tracking (MHT) approach

that exploits the road connectivity. Hypotheses are attached

to roads and new hypotheses are created at each new road

junction. The authors of [7] choose a constrained Interacting

Multiple Model (IMM) approach to handle ambiguities at

road junctions. When entering in a road junction area, a bank

of map-constrained Extended Kalman Filters (EKF) are used.

Another approach relies on a constrained particle filter (PF)

[10]. Here, the evolutions of the particles are constrained by

the road geometry and when a junction is reached, particles

are allocated to connected roads thanks to the knowledge of

the topology of the network.

This approach is here extended to a generic description

of Multi-Hypothesis Map-Matching (MHMM). MHMM is

a particular positioning problem in which all candidate

solutions are searched on the space defined by the map. The

problem consists in finding the roads and the locations on the

roads simultaneously. In a Bayesian framework, this problem

can be stated as a hybrid state estimation problem in the form

of a Jump Markov System. According to this description,

we investigate the problem of multi-hypothesis tracking in

the measurement domain. Here, positioning hypotheses are

estimated through a map-constrained marginalized PF that

exploits raw GPS measurements, i.e. pseudoranges (PR)

and shifts of satellite frequency (called Dopplers in the

following), to accomplish Bayesian inference. Therefore,

this approach allows estimating the MHMM in a single step

without any global position.

The paper is organized as follows. First, the MHMM

problem is stated in a generic Bayesian framework and

the characterization of positioning hypotheses is described.

The following section presents an application of this general

method to a specific problem: we consider the use of raw

GPS measurements combined with a 3D road map to esti-

mate the vehicle location. For an efficient implementation,

a marginalized PF is used that combines both network ge-

ometry and topology. Finally, experimental results using few

visible satellites are reported to evaluate the solver efficiency

regarding to positioning quality and road identification.

II. BAYESIAN MHMM

A navigable road map describes here the road network

using a geo-referenced carriageway per driving direction.

The connections between carriageways are known. In this

section, the MHMM is formalized whatever the sensor

used and whatever the representation of roads (polylines or

clothoids for instance).

A. State-Space model

A map-based positioning problem can be seen as an hybrid

state estimation problem. Each carriageway is identified by

a unique identification (ID), denoted I, that is discrete. This

description may be extended to address the lane-matching

problem [4]. The location on a carriageway is described
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by the curvilinear abscissa, denoted l, which is continuous.

Some additional parameters may be needed to solve the state

observation problem as we will see later on. So, let denote

x (l being one of its components) the vector that contains

all the continuous components. We consider a hybrid state

vector sk where the subscript is used to indicate a sample:

sk =
[

Ik xk

]T
∈ N× R

n (1)

As done in [11], such an observation problem can be

described by a stochastic model:











Ik+1 ∼ P (Ik+1 = I | Ik, xk, yk)

xk+1 = f (Ik, xk) + αk

yk = g (Ik, xk) + βk

(2)

Where yk is the observation at step k using the sensors,

αk the process error and βk the observation error. f (.) is

the process model describing the evolution of the continuous

components and g (.) the observation model. These models

depend on the carriageway ID because of the map constraint.

Finally, P (.) is a transition kernel depicting the evolution of

the probability of the IDs I contained in the map. In the

following, a first order Markov chain assumption depending

on the network topology is done. Thus, (2) is a Jump Markov

System.

B. Sequential estimation

The problem is to estimate p (sk | y1:k) sequentially using

all the available measurements y1:k [12]. Considering the

Bayes’ factorization, the posterior density can be rewritten

as:

p (sk | y1:k) = p (yk | sk) ·
p (sk | y1:k−1)

p (yk | y1:k)
(3)

Where p (yk | sk) is the observation likelihood according

to the observation model of (2) and p (yk | y1:k) a normal-

ization factor given by:

p (yk|y1:k−1) =

ˆ

p (yk|sk) · p (sk|y1:k−1) · dsk (4)

Eq. (3) is the estimation step of the Bayesian recursive

estimation process. This step needs p (sk | y1:k−1), the prior

density of sk. Using the process model and the posterior at

step k − 1:

p (sk | y1:k−1)=

ˆ

p (sk | sk−1) p (sk−1 | y1:k−1) dsk−1

(5)

We will see later that the prediction of continuous com-

ponents depends on the previous state sk−1, but also on the

current carriageway. Eq. (3) and (5) constitute the solution

of Bayesian MHMM.

C. Estimation of the global positioning

The global position can be estimated using the marginal

density p (xk | y1:k) of the continuous components:

p (xk | y1:k) =

ˆ

p (xk, Ik | y1:k) · dIk (6)

The joint posterior p (xk, Ik | y1:k) can be factorized ac-

cording to the Bayes’ rule:

p (xk, Ik | y1:k) = p (xk | Ik, y1:k) p (Ik | y1:k) (7)

This factorization isolates the problem of carriageway

identification, described by p (Ik | y1:k), from the problem

of localizing the mobile on the carriageway, depicted by

p (xk | Ik, y1:k). By considering that p (Ik | y1:k) is a

discrete density (with Dirac functions) and by introducing

Eq. (7) in Eq. (6), one can easily find that the marginal

density is a weighted sum over all the carriageways contained

in the map:

p (xk |y1:k)=
NI
∑

i=1

p (xk |Ik=I, y1:k)P (Ik=I |y1:k) (8)

Where NI is the number of carriageways.

Eq. (8) gives the expression that allows finding to most

likely solution on the whole map. This strategy is not

always the best, especially if the identification of the road

is ambiguous. In this case, it can be better to do an

estimation par carriageway. For a given carriageway I, the

positioning hypothesis MI
k is characterized by its posterior

and its probability with respect to the others:

MI
k =

{

p (xk | Ik = I, y1:k)
ΩI

k = P (Ik = I | y1:k)
with

NI
∑

i=1

ΩI
k = 1 (9)

III. SOLVING THE MHMM USING RAW GPS AND

POLYLINES

In this section, we show how to solve the Bayesian

MHMM when using raw GPS measurements and when the

carriageways are describes by polylines. A measure of the

speed of the vehicle is also used.

We use a sequential Monte Carlo method to solve the

MHMM problem. To implement efficiently the tracking, a

marginalized PF can be applied [11], [13], [14]. Indeed,

considering the factorization of p (sk | y1:k) given by Eq. (7),

the estimation of the continuous state can be isolated from

the discrete state estimation. So, hypotheses are attached to

every candidate road and EKF is used to track the continuous

components of the state vector. New candidate roads are ran-

domly chosen at junctions using the connection information

stored in the map. This is a sub-optimal approach, but it

allows reducing strongly the number of particles.
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Fig. 1: Geometrical description of a carriageway.

A. State description

Since we use raw GPS measurements to compute the

Bayesian inference, additional continuous parameters are

needed, so :

xk =
[

lk vk dk ḋk
]

(10)

where vk is the speed along the carriageway. dk and ḋk
represent the clock offset and clock drift of the receiver.

1) Evolution of the carriageway IDs: The kernel transi-

tion for the carriageway IDs I is given by a topological

approach: if the hypothesis reaches the end of carriageway,

the transition depends on the connected carriageways CI . By

assuming an equiprobable transition:







P
(

Ik+1 = Ik | Ik, lk < LIk

)

=1

P
(

Ik+1 = J | Ik, lk ≥ LIk

)

=
1

dim CI
∀J ∈ CI

(11)

Where LIk is the total length of the carriageway Ik.

2) Evolution of continuous components: As constrained

hypotheses are used, the process model xk+1 = f (Ik, xk)
is reduced to a conditionally linear model. The nonlinearity

is due to switching.

xk+1 =

{

A · xk +B · LIk if Ik+1 6= Ik

A · xk else
(12)

The process matrices A and B are invariant and given by

:

A =









1 Te 0 0
0 1 0 0
0 0 1 Te

0 0 0 1









and B =









−1
0
0
0









(13)

Te being the sampling period.

B. Constrained observation models

The main idea here is to use the raw GPS measurements,

PR and Dopplers, and the speed of the vehicle to estimate the

likelihood of every hypothesis. The map acts as a constraint.

Let consider a polyline composed by n+ 1 segments: each

segment is defined by its origin SI
i , its length LI

i and its

orientation in space UI
i (see Figure (1)). The last segment

is set with LI
n+1 = 0. To find the global position XI

k we

first need to extract the segment indexed j such that :

j
∑

i=1

LI
i < l <

j+1
∑

i=1

LI
i (14)

The constrained PR model for one satellite is obtained by

using the carriageway geometry in the classical PR model

[15]:

ρIk =

∥

∥

∥

∥

∥

SI
j +

(

lk −

j−1
∑

i=1

LI
i

)

UI
j −Xs

k

∥

∥

∥

∥

∥

+ dk (15)

Where Xs
k is the satellite position reconstructed from the

broadcast ephemeris.

The same approach is used for the Doppler measurements.

We assume here that velocity is also constrained: the vehicle

direction is assumed to be collinear to shape segment direc-

tion. The Doppler measurement is given by a dot product:

ρ̇Ik =
(

vkU
I
k − V s

k

)

• ulos + ḋk (16)

Where V s
k is the satellite velocity obtained from the

broadcast ephemeris and ulos is the line-of-sight vector. ulos
depends also on the map geometry since the position is

constraint:

ulos =
SI
j +

(

lk −
∑j−1

i=1
LI
i

)

UI
j −Xs

k
∥

∥

∥
SI
j +

(

lk −
∑j−1

i=1
LI
i

)

UI
j −Xs

k

∥

∥

∥

(17)

Additionally, the vehicle speed obtained from CAN bus is

used:

yCAN,k =
[

0 1 0 0
]

· xk (18)

Next, speed and GPS errors are assumed to be indepen-

dent.

C. Marginalized particle filter

1) Continuous Components Tracking: As EKF estimates

the continuous components, errors are assumed to be Gaus-

sian. Thus, process and observation errors are modeled

by Gaussian white noises: αk ∼ N (0, Qα) and βk ∼
N (0, Qβ). The candidate positions are approximated by

Gaussian densities along the carriageways. Their mean µk|k

and covariance Σk|k define the density:

p
(

xk|k | Ik, y1:k
)

≃ N
(

µk|k,Σk|k | Ik
)

(19)

µk|k and Σk|k are given by [12]:











K = Σk|k−1 ·G
t ·
(

G · Σk|k−1 ·G
t +Qβ

)−1

µk|k = µk|k−1 +K
(

yk − g
(

Ik, µk|k−1

))

Σk|k = (I −K ·G) · Σk|k−1

(20)

Where G = ∂g
∂x

is the Jacobian matrix of the observation

model.

The prediction stage is given by:

{

µk|k−1 = f
(

Ik, µk−1|k−1

)

Σk|k−1 = A · Σk−1|k−1 · A
t +Qα

(21)
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Algorithm 1 Marginalized PF

1) Prediction step: for i = 1, . . . , N

a) Evolution of I: Ii
k ∼ p

(

Ii
k | Ii

k−1
, µi

k|k−1

)

b) Prediction of the continuous states:
〈

µi
k|k−1

,Σi
k|k−1

〉

2) Update step: for i = 1, . . . , N

a) Importance weight update:

ωi
k ∝ ωi

k−1
· p
(

yk | Ii
0:k, y1:k−1

)

b) EKF state updates:
〈

µi
k|k,Σ

i
k|k

〉

3) Hypotheses estimation

a) Particle subsets extraction

b) Computation of each MI
k

4) Re-sampling

a) Computation of particle set size according to Mk

b) Draw Nk+1 samples from p
(

Ii
k+1

|Ii
k, µ

i
k|k

)

2) Estimation of the IDs: For this discrete problem, we

do importance sampling. Let consider a set of N weighted

samples of p (Ik | y1:k):

χk =
{

Ii
k, ω

i
k

}

i=1:N
(22)

Where ωi
k denotes the weight. Therefore, the density

describing the road identification problem is given by:

p (Ik | y1:k) =
N
∑

i=1

ωi
k · δrk

(

Ii
k

)

(23)

where δrk is the Dirac function.

To estimate the weight of each particle, standard bootstrap

[16] is applied for the recursion:

ωi
k ∝ ωi

k−1 · p
(

yk | Ii
0:k, y1:k−1

)

(24)

The measurement likelihood p
(

yk | Ii
0:k, y1:k−1

)

is quan-

tified using two Normal laws:

p
(

yk|I
i
0:k, y1:k−1

)

≃ (25)

N
(

yCAN,k, QCAN,k|I
i
k

)

.N
(

yGPS,k, QGPS,k|I
i
k

)

The likelihood is computed according to the predicted

measurement of the EKF [14].

3) Algorithm: Algorithm 1 describes the realization of the

marginalized PF. A positioning hypothesis (9) is obtained

from the subset χI
k of the particles evolving on the given

carriageway I through a Gaussian mixture:

MI
k =







∑NI

k

i=1
ωi
k · N

(

µi
k|k,Σ

i
k|k | Ii

k = I
)

ΩI
k =

∑NI

k

i=1
ωi
k

(26)

Where NI
k is the dimension of this particle subset.

To avoid particle set degeneracy, a re-sampling strategy is

used. We have chosen here the adaptive approach proposed

by the authors of [17]. The size of the particle set is
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Fig. 2: Trajectory –dashed– vs. map-matched trajectory –

plain– in a ENU frame centered on the map.
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(a) With Dopplers
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(b) Without Dopplers

Fig. 3: Road junction crossing: vehicle path –dashed– vs.

map-based position of the most-likely hypothesis –dot-.

then adjusted according to the size of the hypotheses set.

When approaching a junction for instance, N is automatically

increased.

IV. EXPERIMENTAL RESULTS

In this section, several experimental results are reported

to show the performance of the MHMM based on raw

GPS measurements and a measure of the speed of the

vehicle. Tests have been carried out in Compiègne, with an

experimental car. The raw data of a GPS PolaRx2e receiver

has been logged simultaneously with the speed of the vehicle

at 10 Hz. The data has been then post-processed in a East-

North-Up (ENU) frame centered on the map.

In a first test, a crossroads is studied to illustrate the

behavior of the method. Then, the full trial is evaluated.

Finally, the performance with a degraded satellite visibility

is assessed. The results of the road selection are compared

to a hand-made map-matching similar to the one presented

in [10] and estimated continuous state are compared with

the positioning output of the PolaRx2e. Figure 2 shows the

true trajectory –dashed– versus the map-matched trajectory

–bold. The TeleAtlas map used here presents roughly an

offset of 15 meters.
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dimMk = 1 dimMk ≥ 2 Total
OK NOK Amb. NOK OK Amb. NOK

Mean 97% 3% 98% 2% 89% 8% 3%
Best 99% 1% 100% 0% 90% 9% 1%

Worst 93% 7% 96% 4% 87% 7% 6%

TABLE I: Road Identification
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30
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m

0 20 40 60 80 100 120 140 160 180 200
−1
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3
x 10
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Fig. 4: Estimation results for first order parameters with a

good visibility: Position –up– and clock offset –down–.
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Fig. 5: Estimation results for derivative parameters with a

good visibility: Velocity –up– and clock drift –down–.

A. Behavior at a road junction

Figure 3 shows an intersection crossing. Two cases are

considered: Algorithm 1 using Doppler measurements –3a–

and without Dopplers –3b–. Without Dopplers, the road

identification only relies on the particles positions through

the constrained PR model (15). Thus, several wrong selec-

tions are done at the junction as the map suffers from biases.

At the same junction, the road identification is correctly done

when relying on position and heading information provided

by the Dopplers (16). This shows clearly the benefits of using

Dopplers to enhance the map-matching process: The particle

score is also estimated according to the heading error, giving

additional parameters to discard wrong hypotheses.

B. Performance under normal conditions

1) Road identification: The performance of the proposed

method is here evaluated with a good satellite visibility. As a

the solver acts like a Monte Carlo method, the data-set was

processed hundred times to obtain a statistical description

of the road identification performance. Due to the limited

accuracy of the road selection ground truth, results were

rounded to the nearest percent. Table I shows these results:

– OK: Road identification is correctly done: the correct

road is the only hypothesis.

– Amb.: An ambiguous area is identified and the hy-

potheses set contains the correct road.

– NOK: Wrong selection: the correct ID doesn’t appear

in the hypotheses set.

In spite of the map offset, the method shows interesting

performance as the wrong selection rate stands low. More-

over, ambiguous areas are well identified, and the best

and worst cases have similar rates. These results shows

that the proposed method allows a correct identification of

ambiguous areas and an efficient road identification despite

the low map accuracy.

2) Positioning quality: Road identification is only one

aspect of the problem. Performance of the continuous state

tracking has also to be evaluated: We consider here the mean

state of the particle set. Figure 4 shows the estimation errors

for the first order parameters: position and receiver clock

offset. Additionally, Figure 5 provides the estimation errors

for the derivative parameters: velocity and clock drift.

Considering the first order parameters, the estimation

errors are not centered because of the tight integration of the

map in the fusion process. The mean value for the position

is between 12m and 15m. This bias is due to the map

offset. Identically, the clock offset estimation error is not

centered, meaning that part of the map offset is reported to

the clock offset estimation. Conversely, estimation errors on

the derivative parameters are centered, meaning that the map

constraint as a limited impact on these parameters. These

results show that the proposed method performs efficiently

the continuous state tracking under open-sky.

C. Performance with few visible satellites

We have removed here satellites from the computation to

simulate urban canyons.

1) 3 satellites available: Table II shows the results of

the road identification behavior and figure 6 the positioning

error in the best case. Considering the road identification,

no significant variation is observed except for the worst case

that shows a significant increase of wrong selections. The

reduction of the redundancy in the measurement domain can

explain this degradation: as the measurement redundancy is

reduced, discarding wrong hypothesis takes more time.

By considering the positioning error in the best case, one

can notice that the positioning quality is similar to open-sky

conditions. Regarding this result, one can consider that with

only 3 satellites providing Dopplers and PR, the system is

able to track efficiently the rad ID and the vehicle position.

1502



dimMk = 1 dimMk ≥ 2 Total
OK NOK Amb. NOK OK Amb. NOK

Mean 95% 5% 97% 3% 84% 12% 4%
Best 99% 1% 99% 1% 87% 12% 1%

Worst 88% 12% 94% 8% 77% 12% 11%

TABLE II: Road identification with 3 satellites.

0 20 40 60 80 100 120 140 160 180 200
0
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30

40

s

m

Fig. 6: Positionning error with 3 satellites in the best case.

2) 2 satellites available: With only 2 satellites, the

identification performance significantly decreases as shown

by Table III. Moreover, the dispersion of the results is

significantly increased: the worst case shows about 50%

of wrong selection whereas the best case shows similar

results than previously. Theses results come from the lack

of redundancy with only 2 satellites. In such a case, only

5 measurements are used to estimate the state vector, the

dimension of which is 5. Therefore, without redundancy, it

is possible to find an erroneous hypothesis that is more likely

than the ”true” one.

Figure 7 describes the positioning errors in the best case.

Errors are similar to those observed for the mean case with

only three satellites. This is an interesting result: when

road identification is correctly solved, the method is able to

track the vehicle states with only two measurements. Thus,

we conclude that information redundancy is mandatory to

solve road identification, but less data is needed for position

tracking.

V. CONCLUSION

In this paper, a generic approach for MHMM has been

presented. Based on a tight integration of a navigable road

map with sensor measurements, this approach allows multi-

hypothesis tracking of map-matched solutions in a Bayesian

framework. Here, topological description is used to predict

hypotheses and geometrical description is used to express

constrained observation models. Such an approach allows

solving road identification and positioning simultaneously.

This method has been applied to the specific problem of

directly map-matching GPS measurements using a marginal-

ized PF that is able to track several hypotheses. Here, a 3D

standard road map has been used to constraint the location

space. Experimental results show interesting performance

even under reduced visibility conditions since this approach

is able to provide a positioning even if only two satellites

are visible. Moreover, benefits of Dopplers measurements

have been highlighted. As they provide additional redun-

dancy through heading information, they enhance wrong

hypotheses elimination. Finally, the results show that such

an approach is highly dependent on the map quality: the

dimMk = 1 dimMk ≥ 2 Total
OK NOK Amb. NOK OK Amb. NOK

Mean 83% 17% 86% 14% 71% 13% 16%
Best 97% 3% 95% 5% 84% 12% 4%

Worst 53% 47% 43% 57% 44% 7% 49%

TABLE III: Road identification with 2 satellites.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

s

m

Fig. 7: Positionning error with 2 satellites in the best case.

use of enhanced maps should greatly improve positioning

performance. Further development will consider the integrity

monitoring of the positioning hypotheses as this information

is of great interest for many ITS applications.
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