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Global Positioning in Urban Areas with 3-D Maps

Vincent Drevelle and Philippe Bonnifait

Abstract— A global positioning method based on a precise
3-D drivable area map and on GPS pseudorange measurements
is presented. Map and GPS measurements are represented by
geometric constraints, thus turning the localization problem
into a constraint satisfaction problem whose solution is the
confidence domain of position. Interval analysis is employed
to solve the problem by using contractions and bisections of
a prior position box. If more than 3 satellites are visible, the
method is robust to wrong pseudorange measurements. The
system is also able to compute multiple position hypotheses
in the case of ambiguities. An experimental validation using
real GPS pseudorange measurements and a precise 3-D map
is reported to illustrate the performance of the method with
real data in an urban area, with reduced satellite visibility.
Confidence domains are consistent with the truth during the
whole 1 km experiment, and a 6.5 m 95% accuracy is achieved
with at least two satellites in view.

I. INTRODUCTION
Global Positioning Systems (GPS) offer a worldwide posi-

tioning solution, and can achieve high accuracy localization
in open areas. Real time kinematic (RTK) enables centimeter-
level accuracy positioning with phase measurements, but
implies the use of a base station, and good satellite visibility.
When these conditions are met, GPS can be sufficient to
control autonomous vehicles in path-following tasks [1].

In urban environments, GPS signals are frequently blocked
by surrounding buildings, and even reflected, causing mul-
tipath and non-line-of-sight measurement errors. This is in-
compatible with autonomous urban navigation tasks, requir-
ing decimeter-accurate positioning to keep the vehicle inside
the traffic lanes. Thus, local methods with exteroceptive
sensors are needed to control the vehicle trajectory and to
perform obstacle avoidance [2].

But, even if not precise enough to perform a robot control
task, a robust global positioning method able to quantify
position uncertainty, can still be needed to
• initialize a local positioning system (eg. to limit the

area in where initial particles of a particle filter will be
generated, or to narrow the set of visual features to be
searched and tracked by a vision based algorithm).

• perform integrity checks on the local positioning sys-
tem: a reliable global positioning method enables to fire
an alert if the vehicle drifts from its planned trajectory.

• carry out high-level topological navigation: while re-
active control is performed with local exteroceptive
sensors like cameras and LIDAR, the navigation choices
(eg. path planning, turn at a crossroad, respect of the
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speed limit, stop at the final waypoint) need reliable
global position information to be achieved.

To counterbalance the poor GPS precision and availability in
urban environments, usually GPS is aided by inertial mea-
surement units. For road vehicles, geographic information
can be used as well. Much research has been done with
standard maps [3][4], but precise digital surface models [5]
and lane-level maps [6] are now available to provide strong
constraints on position.

In this paper, we propose a robust approach to solve
the positioning problem in known urban environments, with
geometric constraints. For this purpose, GNSS pseudorange
measurements are combined in a tightly-coupled fashion
with a precise 3-D road surface model. Unlike Bayesian or
optimization methods, which compute a punctual position
estimate and quantify the error distribution around this point,
the proposed method formulates the problem as a constraint
satisfaction problem (CSP). By using interval analysis and
contractors, the positioning confidence domain is computed
as the set of positions compatible with all the constraints.
It can even be a disconnected solution set in the case of
positioning ambiguity.

The paper is organized as follows. After an overview
of interval analysis and contractors, a solver for constraint
satisfaction problems (CSP) is introduced. Then, the 3-D
road constraint and GPS constraint are presented. A con-
straint for robust GPS positioning is also introduced. Finally,
experimental results with real GPS data and 3-D map are
presented.

II. INTERVAL ANALYSIS AND CONTRACTORS

A. Interval analysis

Interval analysis [7] involves intervals and their multidi-
mensional extension, interval vectors (or boxes). In opposi-
tion to arbitrary sets, intervals and boxes are easy to represent
and manipulate. The set of real intervals is denoted IR, and
the set of n-dimensional boxes is IRn. In this paper, an
interval or a box is denoted [x] = [x, x], where vectors x
and x are respectively the lower and upper bounds of [x].

Interval arithmetic allows performing computations on
intervals thanks to the interval extension of classical real
arithmetic operators +,−,× and ÷.

[x] + [y] = [x+ y, x+ y], [x]− [y] = [x− y, x− y]

In the same way, elementary functions such as tan, sin and
exp can be extended to intervals. This is done by returning
the smallest interval covering the range of the input through
the function.
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The image of a box by a function f : Rn → Rm is
generally not itself a box, but an arbitrary set. This problem
is solved using the so-called inclusion functions: The interval
function f from IRn to IRm is an inclusion function for f
if the image of [x] by f is included in the image of [x] by
f, i.e.

∀[x] ∈ IRn, f([x]) ⊂ f([x]).

The box hull �S of a set S is the smallest box that includes
S. Since the union of boxes is not generally a box, the box
union operator t returns the box hull of the union of two
boxes: [x] t [y] = �([x] ∪ [y]).

B. Contraction and propagation

When the components of a vector x are linked by re-
lations or constraints, one can define a constraint satisfac-
tion problem (CSP). It consists in finding the solution set
X = {x ∈ [x]|f(x) = 0}, where [x] is the domain of the
variables and f(x) = 0 represents the constraints, and can
also represent inequalities by introducing slack variables [7].

A contractor C for a CSP is an operator that computes a
smaller domain [xc] = C([x]) without affecting the solution
set, i.e. X ⊂ [xc] ⊂ [x]. There are many ways to implement
a contractor, one of them is the forward-backward contractor
based on constraint propagation [8].

C. Set inversion and subpavings

The set inversion problem consists in determining the set
X such as f(X) = [y], where [y] is a known interval
vector of m measurements. To approximate compact sets
in a guaranteed way, subpavings can be used. A subpaving
of a box [x] is the union of non-empty and non-overlapping
subboxes of [x].

Using interval analysis, the solution X = f−1([y]) can be
approximated between two subpavings X and X such that
X ⊆ X ⊆ X . The SIVIA algorithm allows performing such
a set inversion, by recursively bisecting an initial box [7].

Algorithm 1 implements a SIVIA that only computes an
outer approximation X of the solution set in a given domain
[x0]. It uses a list of boxes L managed by the push and pull
functions. If L is a queue, the algorithm employs a breadth-
first strategy. ε controls the sharpness of the subpaving X .
Boxes larger that ε after contraction are bisected.

Since we are seeking to characterize the positioning confi-
dence domain, we only need to compute the outer subpaving
X of the set that fulfills positioning constraints. In this paper,
we present a new kind of constraint based on 3-D drivable
space.

III. 3-D ROAD CONSTRAINTS

3-D roads can be used for contracting not only the East
and North estimates by exploiting the road boundaries, but
also altitude.

Algorithm 1 SIVIA(in: [x0], ε)

1: X := ∅ // empty subpaving
2: push([x0],L)
3: while L is not empty do
4: [x] := pull(L)
5: [x] := C([x]) // contract the box
6: if width([x]) < ε then
7: X := X ∪ [x]
8: else if [x] 6= ∅ then
9: ([x1], [x2]) := bisect([x])

10: push([x1],L); push([x2],L)
11: end if
12: end while
13: return X

A. Drivable space

In this paper, the drivable space denotes the surface on
which the vehicle can physically evolve. For a car, the
drivable space can be defined as the surface of the roadway,
delimited by the kerbs. Obstacles like poles or lane separators
are also excluded from the drivable space. Finally, since we
consider the position at the center of the vehicle, erosion
is performed on the drivable space to take the size of the
vehicle into account.

Fig. 1: Wireframe view of the drivable space extracted from
a database

The drivable space is represented in 3D by a triangular
mesh, i.e. a surface made of connected triangular facets
(Fig. 1). Vertices are represented by their 3-D coordinates,
while facets are defined by a list of three vertices. We
assume that the vehicle only evolves on the represented
drivable space, which provides a very strong constraint on
the position.

B. Positioning constraint on a single facet

Being located on a 3D triangular face can be expressed by
four simple constraints: one constraint representing the facet
plane, and three constraints for the edges.

Let us consider the facet of Fig. 2. The first constraint
is simply given by the plane equation obtained from the 3
vertices. The point M is on the plane defined by the points
A,B,C, thus it satisfies

(
−−→
AB ∧

−→
AC) ·

−−→
AM = 0 (1)

Edge constraints can be expressed by enforcing the posi-
tivity of the dot products of vertex to point vectors with the
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Fig. 2: Facet ABC with its edge normals

corresponding edge normal vectors:
−−→
AM · −−→nAB ≥ 0
−−→
BM · −−→nBC ≥ 0
−−→
CM · −−→nCA ≥ 0 (2)

When working in a valid local tangent frame, one can
simplify the dot-product inequalities by working only with
2D coordinates (assuming the road is never vertical). More-
over, if facets are small enough with respect to altitude
variation, constraining the position inside the bounding box
of the facet is sufficient to approximate the facet plane
constraint (1). Algorithm 2 presents this contractor: Initial
contraction is performed with the bounding box of the facet,
then dot-product constraints (2) are simply enforced by an
inclusion test (line 6 of Alg. 2). If there is no point M in
the box that satisfies (2), then the box is discarded. In this
algorithm, interval vectors [a], [b], [c] are the coordinates of
the considered facet vertices.

Algorithm 2 facet_contract(in: [x], [a], [b], [c])

1: [bbox] := [a] t [b] t [c]
2: [x] := [x] ∩ [bbox]
3: if [x] = ∅ then
4: return([x])
5: end if
6: if ([x1:2]-[a1:2])·

(
0 −1
1 0

)
([b1:2]-[a1:2])∩[0,+∞]=∅

or ([x1:2]-[b1:2])·
(
0 −1
1 0

)
([c1:2]-[b1:2])∩[0,+∞]=∅

or ([x1:2]-[c1:2])·
(
0 −1
1 0

)
([a1:2]-[c1:2])∩[0,+∞]=∅ then

7: return(∅)
8: end if
9: return([x])

C. Positioning constraint on the road surface

The whole road constraint is simply the union of the con-
straints from each facet of the mapM. Algorithm 3 contracts
a box with the entire road. The extract_facets function returns
the set of facets whose bounding box intersects the prior box;
It enables to focus only on the interesting part of the map.

D. Taking topology into account

When a previous position is known, road topology can be
used to reduce the initial facet candidates. Let [xk|k] be the
position at time tk, [xk+1|k] the predicted location zone at
time tk+1, and s the distance traveled between tk and tk+1.
For instance, s can be measured by an odometer.

Algorithm 3 road_contract(in: [x],M)

1: [xc] := ∅
2: F := extract_facets(M, [x])
3: for each f in F do
4: [xc] := [xc] t facet_contract([x], f.[a], f.[b], f.[c])
5: end for
6: return [xc]

The first step is to bound the zone [z] in which the vehicle
can have evolved between tk and tk+1. A rough estimate is
given by

[z] =
1

2

(
[xk|k] + [xk+1|k] + [−s, s]

)
(3)

The physical interpretation of (3) is that the traveled dis-
tance constraint is applied independently on each dimension
of [x].

The facets that intersect [z] are extracted from the map,
to get the submap Mz . Facets in Mz that intersect [xk|k]
are marked, then every facet that is connected to a marked
facet in Mz is iteratively marked. The obtained connected
components are the roads that may have been covered
between tk and tk+1. The final selection is performed by
only keeping the marked facets that intersect [xk+1|k].

This procedure replaces line 2 of Alg. 3.

IV. GPS PSEUDORANGES CONSTRAINTS

A. GPS observation model

GPS positioning with pseudorange measurements is a
Time of Arrival method [9]. Pseudoranges are the distances
to each visible satellite, offset by a unknown amount due to
the offset between the receiver clock and the GPS time. GPS
positioning using pseudoranges is thus a four-dimensional
problem: along with the Cartesian coordinates (e, n, u) of
the user in a local tangent frame to the Earth, the user’s
clock offset dtu has to be estimated. Let x = (e, n, u, d)
with d = c · dtu.

Measured pseudoranges need to be corrected, to take into
account relativity effects and the delays induced by the
ionosphere and troposphere traversal. The propagation delay
corrections applied to measured pseudoranges to get cor-
rected pseudoranges ρi are imprecise because of model and
parameter errors. Moreover, the receiver measurement errors
should also be taken into account. Corrected pseudorange
measurements are thus represented as intervals [ρi] whose
bounds are determined given an integrity risk [10].

Satellite positions (esi , n
s
i , u

s
i) are computed with broadcast

ephemeris data. They are represented as boxes [xs] =
([esi ], [n

s
i ], [u

s
i ]) to take ephemeris inaccuracy into account.

The location zone computation consists in characterizing
the set X of all locations compatible with the measurements
and the satellite position intervals. Each pseudorange intro-
duces a constraint on the solution. The constraint induced by
the ith corrected pseudorange measurement is represented
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by the natural inclusion function of the GPS pseudorange
observation function:

[ρi] =
√
([e]− [esi ])

2 + ([n]− [nsi ])
2 + ([u]− [usi ])

2+[d]

(4)

B. GPS contractor
A contractor for a single pseudorange constraint is given

in Alg. 4. It is a forward-backward contractor [8], which per-
forms constraint propagation in an optimal order, following
the elementary constraints decomposition of the pseudorange
measurement function (Fig. 4).

Algorithm 4
pseudorange_contract(in: [x], [ρ], [xs])
// Forward
[i9] := [u]− [xs3]
[i8] := square [i9]
[i7] := [n]− [xs2]
[i6] := square [i7]
[i5] := [e]− [xs1]
[i4] := [i6] + [i8]
[i3] := square [i5]
[i2] := [i3] + [i4]
[i1] :=

√
[i2]

[ρ] := [ρ] ∩ ([i1] + [d])

// Backward
[d] := [d] ∩ ([ρ]− [i1])
[i1] := [i1] ∩ ([ρ]− [d])
[i2] := [i2] ∩ square [i1]
[i3] := [i3] ∩ ([i2]− [i4])
[i4] := [i4] ∩ ([i2]− [i3])
[i5] := [i5] ∩ square−1 [i3]
[i6] := [i6] ∩ ([i4]− [i8])
[i7] := [i7] ∩ square−1 [i6]
[i8] := [i8] ∩ ([i4]− [i6])
[i9] := [i9] ∩ square−1 [i8]
[e] := [e] ∩ ([i5] + [xs1])
[n] := [n] ∩ ([i7] + [xs2])
[u] := [u] ∩ ([i9] + [xs3])

return [x]

ρ

+

sqrt

+

sqr

–

e es

+

sqr

–

n ns

sqr

–

u us

d

[i8]

[i9][i7]

[i6][i5]

[i4][i3]

[i2]

[i1]

Fig. 4: Elementary constraints decomposition of pseudorange
measurement inclusion function

The constraint for GPS positioning using pseudoranges
consists in fulfilling the pseudorange constraints for all

visible satellites. With m satellites in use, a GPS contractor
is given in Alg. 5.

Algorithm 5
gps_contract(in: [x], [ρ]1, . . . , [ρ]m, [xs]1, . . . , [xs]m)

1: for i := 1 to m do
2: [x] := [x] ∩ pseudorange_contract([x], [ρi], [xs]i)
3: end for
4: return [x]

C. Robust GPS contractor

GPS measurements are prone to errors: while satellite fail-
ures may rarely occur, erroneous measurements are frequent
in urban environments, due to multipath propagation, or non-
line-of-sight measurements (when the direct signal is blocked
and only reflected signals are measured). In those cases, the
error bounds set on pseudoranges are no more consistent
with the real pseudorange error.

Inconsistent error bounds may lead either to an empty
solution (in this case, the presence of an inconsistency is
detected), or to a misleading solution.

Instead of enforcing the constraints of all pseudoranges,
the robust GPS constraint consists in relaxing a given
number q of pseudorange constraints. This way, q wrong
measurements are tolerated, and the constraint corresponds
to the set of solutions at least compatible with m − q
measurements. This is the so-called q-relaxed intersection
of the pseudorange constraints [11].

X1

X2

X3 {1}

X i

{2}

X iX i

{0}

X i =

Fig. 5: q-relaxed intersection of three sets for q ∈ {0, 1, 2}

Considering m sets X1, . . . , Xm of Rn, the q-relaxed

intersection
{q}⋂

Xi is the set of x ∈ Rn which belongs to
at least m− q of the Xi’s (Fig. 5).

The robust GPS contractor [10] is given in Alg. 6. One
should notice that, in opposition to the standard intersection
of boxes, the q-relaxed intersection of several boxes is not
generally a box. As a consequence, the box-hull of the q-
relaxed intersection is used at line 5 of Alg. 6.

If a measurement is wrong and inconsistent with the other
measurements, it is automatically excluded from the solution,
and it can be identified as an outlier [10].

D. Receiver clock offset estimation/prediction

As previously stated, GPS positioning does not only
consists in finding the receiver’s position, but also its clock
offset dtu. Over a short period of time, receiver time can be
considered as a clock running at constant a constant speed.
The receiver clock drift ˙dtu can thus be estimated to help



Algorithm 6
gps_contract_qrel([x], [ρ]1, . . . , [ρ]m, [x]s1, . . . , [x]

s
m, q)

1: repeat
2: for i := 1 to m do
3: [xc](i) := pseudorange_contract([x], [ρ]i, [x]si )
4: end for

5: [x] := �

 {q}⋂
i∈{1,. . . ,m}

[xc](i)

 hull of the q-relaxed
intersection of m

boxes
6: until no more contraction can be done on [x]
7: return [x]

the prediction of dtu. This enables positioning with a single
satellite in view, as long as there is no ambiguity in the
current road selection [12].

The clock offset of many receivers is not continuous: it is
often maintained into a specific range, which causes jumps
in dtu value. In those cases, ˙dtu contraction fails because of
inconsistency, and the receiver clock offset estimator is reset.
In such a case, the inconsistency is always detected, because
typically a clock jump is about 1 ms and the confidence in
dtu is about 50 ns.

V. EXPERIMENTAL RESULTS

A. Experiment

Data acquisition was performed on the Stereopolis vehicle
from the French Institut Geographique National (IGN), for
the CityVIP research program. It is a 1 km loop in the 12th
arrondissement of Paris, a 5 minute drive around the local
town hall (Fig. 6).
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Fig. 6: Trajectory around the 12th arrondissement town hall
in Paris and histogram of the number of visible satellites.

The drivable space is provided by the IGN [5]. It is
hand made from precise aerial photographs (5 cm horizontal
precision, 25 cm in altitude). It has been converted from
its original Lambert93 projection to a local tangent frame.
GPS positioning is also performed in the same local tangent
frame. We use GPS pseudorange measurements acquired at
2 Hz with a Septentrio PolaRx2 receiver. Satellite positions
and pseudorange corrections are computed with the open
source GPSTk library [13]. Ground truth is provided by a
post-processed Applanix inertial navigation system.

The acquired data are very challenging for GPS position-
ing, since there are less than 4 satellites in view during 77%

of the trial, and even less than 3 satellites in view in 40% of
the measurement epochs (Fig. 6).

B. Results of the positioning algorithm

Localization is performed by using the road contractor
of section III together with the robust GPS contractor of
section IV-C. We use the SIVIA algorithm (Alg. 1), with
the contractor Croad_gps implemented in Alg. 7. It succes-
sively applies the road and GPS contractors until no more
contraction happens. The improved facet selection algorithm
of section III-D is employed. An odometer provides the trav-
eled distance s(tk, tk+1) between two epochs. The traveled
distance is also employed to compute a prior box [xk+1|k]
from the bounding box of the previous solution [xk|k].

Algorithm 7 Croad_gps(in: [x],M, [ρ]1...m, [x
s]1...m, q)

1: repeat
2: [x] := road_contract([x],M)
3: [x] := gps_contract_qrel([x], [ρ]1...m, [xs]1...m, q)
4: until no more contraction can be done on [x]
5: return [x]

The number q of tolerated wrong measurements in the
robust GPS contractor is dynamically set as a function of
the number m of visible satellites. With less than 4 satellites
in view, we use a non-robust contractor (qm<4 = 0). With at
least 4 satellites in view, the robust contractor is employed:
qm=4 = 1, qm>4 = 2. Pseudorange intervals are set to
ensure a risk of less than 10−5 assuming normally distributed
pseudorange errors with σ = 1 m [10].

Fig. 7 shows the bounds of the confidence domains with
respect to ground truth. Confidence domains are consistent
with ground truth along the whole trial. The center of gravity
of the solution subpaving is used as a punctual position
estimate for error computations.

The test starts with good satellite visibility, before entering
urban canyons with 2 or 3 satellites in view. At epoch #69
(Fig. 8a), accurate positioning is achieved with only two
satellites in view, thanks to the road constraint. At epoch
#220 (Fig. 8b), road selection is ambiguous at a crossroad.
Ambiguous positioning occurs at epoch #553 (Fig. 8c) after
a crossroad, since two satellites are not enough to select only
the good road segment.

Around epoch #280, the system in unable to efficiently
contract position with zero then only one satellite in view.
Nevertheless, between epochs #560 and #580, the system
is able to contract position with only one satellite in view,
thanks to the receiver clock offset prediction.

The center of gravity of the subpaving is a good position
estimate. With at least 2 satellites in view, positioning error
is less than 6.5 m 95% of the time (Fig. 9). In the same
conditions, the radius of the computed confidence domain
stays within 16 m 95% of the time.

VI. CONCLUSIONS
A global localization method has been presented in this

paper. It uses bounded-error GPS measurements and a pre-
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Fig. 8: Upper row: position solution subpaving (in black).
Blue box is the prior predicted position, lines are GPS
satellites lines of sight. Lower row: drivable space. Candidate
facets are in red.

cise 3-D map of the drivable space as geometric constraints
on position. These data are fused in a branch and prune algo-
rithm, which combines a robust GPS pseudorange contractor
and a road contractor that takes topology into account, to
characterize the user location zone.

Experimental validation has been performed with real GPS
data in Paris. With at least 2 satellites in view, the method
provides consistent error bounds with 16-meter average ra-
dius location zones, and a 6.5 m horizontal accuracy (95%).

Since the method does not estimate nor predict the full
vehicle pose, confidence domains computed with less that
2 satellites in view are very large. Integrating a vehicle
evolution model will enable to predict the vehicle pose,
which will enable to get tighter confidence domains when
GPS visibility is reduced. It could also permit the use of a
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Fig. 9: Empirical cumulative distribution functions of the 2-
D position error of the center of gravity of the solution, and
of the confidence domain radius. CDFs are plotted for all
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robust GPS contractor with less than four satellites in view.
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