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iGPS: Global Positioning in Urban Canyons with
Road Surface Maps

Vincent Drevelle and Philippe Bonnifait

Abstract—Interval Global Positioning with road Surface
(iGPS) is a new method to obtain a robust and continuous po-
sitioning in urban areas by tightly-coupling precise 3-D drivable
area maps with GPS pseudorange measurements. Map and GPS
measurements are represented by geometric constraints, thus
turning the localization problem into a constraint satisfaction
problem whose solution is the confidence domain of position.
Interval analysis is employed to solve the problem by using
contractions and bisections of a prior position box. If more
than 3 satellites are visible, the method is robust to erroneous
pseudorange measurements. The system is also able to compute
multiple position hypotheses where there are ambiguities. An ex-
perimental validation using real GPS pseudorange measurements
and a precise 3-D map is reported to illustrate the performance of
the method with real data in an urban area, and with reduced
satellite visibility. Confidence domains are consistent with the
ground truth throughout the 1 km trial, and a 6.5 m 95%
accuracy is achieved with at least two satellites in view.

I. INTRODUCTION

Global Positioning Systems (GPS) can be used anywhere
in the world and can provide highly accurate localization in
open areas. Real time kinematic (RTK) offers centimeter-
level positioning using phase measurements, but implies the
use of a base station, and good satellite visibility. When
these conditions are met, GPS can be sufficient to control
autonomous vehicles in path-following tasks [1].

In urban environments, GPS signals are frequently blocked
by surrounding buildings, and even reflected, causing multi-
path and non-line-of-sight measurement errors. This is incom-
patible with urban navigation tasks that require decimeter-level
and high continuity positioning to keep vehicles within traffic
lanes. Methods using exteroceptive sensors must therefore be
used to control the vehicle trajectory and to perform obstacle
avoidance either in a collaborative way with the infrastructure
[2] or fully autonomously with embedded sensors [3].

However, even though GPS is not precise enough to perform
robot control tasks, a robust global positioning method able to
quantify position uncertainty may still be needed, in order to
• initialize a local positioning system (e.g. to limit the

area in where initial particles of a particle filter will be
generated, or to narrow the set of visual features to be
searched and tracked by a vision based algorithm).

• perform integrity checks on the local positioning system:
a reliable global positioning method can fire an alert if
the vehicle drifts away from its planned trajectory.

Vincent Drevelle and Philippe Bonnifait are with Heudiasyc, CNRS UMR
7253, Université de Technologie de Compiègne, BP 20529, 60205 Compiegne
Cedex, France, e-mail: vincent.drevelle@hds.utc.fr.

Figure 1: Heudiasyc’s experimental vehicle: CARMEN in front
of the 12th arrondissement mairie in Paris

• carry out high-level topological navigation: while reactive
control is performed with local exteroceptive sensors such
as cameras and LIDAR, navigation choices (e.g. path
planning, turning at intersections, respecting the speed
limit, stopping at the destination) require reliable global
positioning information.

To counter GPS’s poor precision and uncertain availability
in urban environments, GPS is usually aided by inertial
measurement units. For road vehicles, geographic information
can be used as well. Much research has been done with
standard maps [4], [5], but precise digital surface models [6]
and lane-level maps [7] are now available to provide strong
positional constraints.

Fusion of GPS measurements with geographical information
for map-aided positioning has been an active area of research,
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either by using the map to correct raw GPS measurements, like
in the Road Reduction Filter [8], or by adding a constraint
stage after the update of a Kalman filter, like the two-step
projection method proposed in [9]. Particle filtering has also
been studied to address the problem of positioning with a
map constraint, like in [10] with a facet-based representation
of the drivable space, in [11] with clothoidal surfaces and
a representation of the connections between parallel driving
lanes, and more recently in [12] where particles are weighted
with respect to vehicle speed and functional road class, as well
as map topology. A drawback of particle filtering is the risk
of losing a solution if the number particles is not sufficient to
evenly cover the position space. Moreover, strong constraints
may lead to the death of a lot of particles, and the solution
may tend to condensate on the edges of the road constraint.

In this paper we present Interval Global Positioning with
Road Surface (iGPS), a robust approach for solving the
positioning problem in known urban environments with ge-
ometric constraints. For this purpose, GNSS pseudorange
measurements are tightly combined with a precise 3-D road
surface model. Unlike Bayesian or optimization methods,
which compute a point position estimate and quantify the error
distribution around this point, the proposed method formulates
the problem as a constraint satisfaction problem (CSP). Using
interval analysis and contractors, the positioning confidence
domain is computed as the set of positions compatible with
all the constraints. It can even be a disconnected solution set,
in the case of positioning ambiguity.

The paper is organized as follows. After an overview of
interval analysis and contractors, a solver for constraint satis-
faction problems (CSP) is introduced. The 3-D road constraint
and GPS constraint are presented. A constraint for robust GPS
positioning is also introduced. Finally, experimental results of
iGPS with real GPS data and 3-D map are presented.

II. INTERVAL ANALYSIS AND CONTRACTORS
A. Interval analysis

Interval analysis [13] involves intervals and their multidi-
mensional extension, interval vectors (or boxes). In opposition
to arbitrary sets, intervals and boxes are easy to represent and
manipulate. The set of real intervals is denoted IR, and the
set of n-dimensional boxes is IRn. In this paper, an interval
or a box is denoted [x] = [x, x], where vectors x and x are
respectively the lower and upper bounds of [x].

Interval arithmetic extends the use of classical real arith-
metic operators +,−,× and ÷ to intervals.

[x] + [y] = [x+ y, x+ y], [x]− [y] = [x− y, x− y]

Similarly, elementary functions such as tan, sin and exp can be
extended to intervals. This is done by returning the smallest
interval covering the range of the input through the function.

The image of a box by a function f : Rn → Rm is generally
not itself a box, but an arbitrary set. This problem is solved
using the so-called inclusion functions: The interval function
f from IRn to IRm is an inclusion function for f if the image
of [x] by f is included in the image of [x] by f, i.e.

∀[x] ∈ IRn, f([x]) ⊂ f([x]).

The box hull �S of a set S is the smallest box that includes S.
Since the union of boxes is not generally a box, the box union
operator t returns the box hull of the union of two boxes:
[x] t [y] = �([x] ∪ [y]).

B. Contraction and propagation

When the components of a vector x are linked by rela-
tions or constraints, a constraint satisfaction problem (CSP)
can be defined. This consists in finding the solution set
X = {x ∈ [x]|f(x) = 0}, where [x] is the domain of the
variables and f(x) = 0 represents the constraints, and can
also represent inequalities by introducing slack variables [13].

A contractor C for a CSP is an operator that computes a
smaller domain [xc] = C([x]) without affecting the solution
set, i.e. X ⊂ [xc] ⊂ [x]. There are many ways to implement
a contractor, one of which is the forward-backward contractor
based on constraint propagation [14].

C. Set inversion and subpavings

The set inversion problem consists in determining the set
X such that f(X) = [y], where [y] is a known interval
vector of m measurements. To approximate compact sets in a
guaranteed way, subpavings can be used. A subpaving of a box
[x] is the union of non-empty and non-overlapping subboxes
of [x].

X

X

X

Figure 2: Bracketing of a disconnected set X between two
subpavings X (inner approximation) and X (outer approxi-
mation).

Using interval analysis, the solution X = f−1([y]) can be
approximated between two subpavings X and X such that
X ⊆ X ⊆ X (Fig. 2). The SIVIA algorithm performs this
type of set inversion by recursively bisecting an initial box
[13].

Algorithm 1 implements a SIVIA that only computes an
outer approximation X of the solution set in a given domain
[x0]. It uses a list of boxes L managed by the functions push
and pull. If L is a queue, the algorithm employs a breadth-first
strategy. ε controls the sharpness of the subpaving X . Boxes
larger than ε after contraction are bisected.

Since we are seeking to characterize the positioning confi-
dence domain, we only need to compute the outer subpaving
X of the set that fulfills positioning constraints. In this paper,
we present a new kind of constraint based on 3-D drivable
space.
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Algorithm 1 SIVIA(in: [x0], ε)

1: X := ∅ // empty subpaving
2: push([x0],L)
3: while L is not empty do
4: [x] := pull(L)
5: [x] := C([x]) // contract the box
6: if width([x]) < ε then
7: X := X ∪ [x]
8: else if [x] 6= ∅ then
9: ([x1], [x2]) := bisect([x])

10: push([x1],L); push([x2],L)
11: end if
12: end while
13: return X

III. 3-D ROAD CONSTRAINTS

In urban areas, a strong constraint on position is provided
by the road network. 3-D roads can be used for contracting
not only the East and North estimates through the use of road
boundaries, but also altitude.

A. Drivable space

In this paper, the drivable space denotes the area in which
the vehicle may move. For a car, the drivable space can be
defined as the surface of the roadway, delimited by the curbs.
Obstacles like poles or lane separators are also excluded from
the drivable space. Finally, since we consider the position at
the center of the vehicle, erosion is performed on the drivable
space to take the size of the vehicle into account.

Figure 3: Wireframe view of the drivable space extracted from
a database

The drivable space is represented in 3D by a triangular
mesh, i.e. a surface made up of connected triangular facets
(Fig. 3). Vertices are represented by their 3-D coordinates,
while facets are defined by a list of three vertices. We assume
that the vehicle moves only within the represented drivable
space, which provides a very strong constraint on the position.

B. Positioning constraint on a single facet

Being located on a 3D triangular face can be expressed by
four simple constraints: one constraint representing the facet
plane, and three constraints for the edges.

Let us consider the facet of Fig. 4. The first constraint
is given simply by the plane equation obtained from the 3

C

B
A

M

nAB

nCA
nBC

Figure 4: Facet ABC with its edge normals

vertices. The point M is on the plane defined by the points
A,B,C, and therefore satisfies

(
−−→
AB ∧

−→
AC) ·

−−→
AM = 0 (1)

Edge constraints can be expressed by enforcing the posi-
tivity of the dot products of vertex-to-point vectors and the
corresponding edge normal vectors:

−−→
AM · −−→nAB ≥ 0
−−→
BM · −−→nBC ≥ 0
−−→
CM · −−→nCA ≥ 0 (2)

Given a valid local tangent frame, the dot-product inequal-
ities can be simplified by working only with 2D coordinates
(assuming the road is never vertical). Moreover, if facets are
small enough with respect to altitude variation, constraining
the position inside the bounding box of the facet is sufficient
to approximate the facet plane constraint (1). Algorithm 2
presents this contractor: initial contraction is performed with
the bounding box of the facet, then dot-product constraints (2)
are enforced simply by an inclusion test (line 6 of Alg. 2). If
there is no point M in the box that satisfies (2), then the box
is discarded. In this algorithm, interval vectors [a], [b], [c] are
the coordinates of the considered facet vertices.

Algorithm 2 facet_contract(in: [x], [a], [b], [c])

1: [bbox] := [a] t [b] t [c]
2: [x] := [x] ∩ [bbox]
3: if [x] = ∅ then
4: return([x])
5: end if
6: if ([x1:2]-[a1:2])·

(
0 −1
1 0

)
([b1:2]-[a1:2])∩[0,+∞]=∅

or ([x1:2]-[b1:2])·
(
0 −1
1 0

)
([c1:2]-[b1:2])∩[0,+∞]=∅

or ([x1:2]-[c1:2])·
(
0 −1
1 0

)
([a1:2]-[c1:2])∩[0,+∞]=∅ then

7: return(∅)
8: end if
9: return([x])

A more efficient contractor could be obtained with the
Sutherland-Hodgman polygon clipping algorithm [15] used in
computer graphics. Indeed, contracting a box [x] with a facet
ABC could be seen as clipping the facet with the box [x], and
then computing the bounding box of the resulting polygon.
Nevertheless, the uncertainty of the map points is much more
difficult to handle, particularly when the uncertainty is not the
same for all the vertices.
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C. Positioning constraint on the road surface

The whole road constraint is simply the union of the
constraints from each facet of the map M. Since the map
may cover a very large area, the number of facets used in
the road constraint may become very large too. However, it
is not necessary to consider facets that lie outside the prior
position box. A facet selection step is thus performed before
computing the contracted boxes with each facet.

Algorithm 3 contracts a box with the entire road. The ex-
tract_facets function returns the set of facets whose bounding
box intersects the prior box; this enables us to focus only on
the interesting part of the map and to reduce computation time.

Algorithm 3 road_contract(in: [x],M)

1: [xc] := ∅
2: F := extract_facets(M, [x])
3: for each f in F do
4: [xc] := [xc] t facet_contract([x], f.[a], f.[b], f.[c])
5: end for
6: return [xc]

D. Taking topology into account

When a previous position is known, road topology can be
used to reduce the initial facet candidates. Since the road
network is very dense in urban areas, a basic facet selection
method (like in section III-C) can select facets that are not
reachable from the current location. Indeed, a facet which is
not far from the current position, as the crow flies, can actually
be unreachable if we consider that the vehicle has to follow
the roads.

Let [xk|k] be the position at time tk, [xk+1|k] the predicted
location zone at time tk+1, and s the distance traveled (pos-
sibly measured using an odometer) between tk and tk+1.

The first step is to bound the zone [z] in which the
vehicle can possibly have moved between tk and tk+1. It is
straightforward to get a rough estimate for each component:

[z] =
1

2

(
[xk|k] + [xk+1|k] + [−s, s]

)
(3)

The physical interpretation of (3) is that the traveled distance
constraint is applied independently on each dimension of
[x]. This can be simplified when only travelled distance
information is used for prediction. In this case, the vehicle
evolution area is equal to the predicted position (Fig 5).

The facets that intersect [z] are extracted from the map, to
get the submap Mz . Facets in Mz that intersect [xk|k] are
marked, then every facet that shares an edge with a marked
facet in Mz is iteratively marked. The obtained connected
components are the roads on which the vehicle may have
traveled between tk and tk+1. The final selection is performed
by eliminating any marked facets that do not intersect [xk+1|k].

This procedure replaces line 2 of Alg. 3. Figure 5 shows
how topological facet selection can reduce the number of
facet candidates, compared to the selection of every facet
compatible with the prior box. It permits to reduce road
selection ambiguities, especially in dense road networks.

Topological 
facet selection

Facets compatible 
with prediction

Facets compatible with 
previous position

Figure 5: Simple facet selection vs topological facet selection.
Simplified case with [z] = [xk+1|k] (large box). The small box
is [xk|k].

IV. GPS PSEUDORANGE CONSTRAINTS

A. GPS observation model

GPS positioning with pseudorange measurements is a Time
of Arrival method [16]. Pseudoranges are the distances to each
visible satellite, offset by a unknown amount due to the offset
between the receiver clock and the GPS time. GPS positioning
using pseudoranges is thus a four-dimensional problem: along
with the Cartesian coordinates (e, n, u) of the user in a local
tangent frame to the Earth, the user’s clock offset dtu has to
be estimated. Let x = (e, n, u, d) with d = c · dtu.

Measured pseudoranges need to be corrected, to take into
account relativity effects and the time taken by signals to cross
the ionosphere and troposphere [17]. The propagation delay
corrections applied to measured pseudoranges to get corrected
pseudoranges ρi are imprecise because of model and parameter
errors. Moreover, receiver measurement errors should also be
taken into account. Corrected pseudorange measurements are
thus represented as intervals [ρi] whose bounds are determined
given an integrity risk [18].

Satellite positions (esi , n
s
i , u

s
i) are computed with broadcast

ephemeris data. They are represented as boxes [xs] =
([esi ], [n

s
i ], [u

s
i ]) to take ephemeris inaccuracy into account.

User

tGPS

tu

(e, n, u, dtu)

dtu
tur

tGPS
e

ρ4

ρ1
ρ2

ρ3

Figure 6: GPS positioning with pseudoranges

The location zone computation consists in characterizing the
set X of all locations compatible with the measurements and
the satellite position intervals. Each pseudorange introduces
a constraint on the solution. The constraint induced by the
ith corrected pseudorange measurement is represented by the
natural inclusion function of the GPS pseudorange observation
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function:

[ρi] =
√

([e]− [esi ])
2 + ([n]− [nsi ])

2 + ([u]− [usi ])
2+[d]

(4)

B. GPS contractor

A contractor for a single pseudorange constraint is given
in Alg. 4. It is a forward-backward contractor [14], which
performs constraint propagation in an optimal order, following
the elementary constraints decomposition of the pseudorange
measurement function (Fig. 7).

Algorithm 4
pseudorange_contract(in: [x], [ρ], [xs])
// Forward
[i9] := [u]− [us]
[i8] := square [i9]
[i7] := [n]− [ns]
[i6] := square [i7]
[i5] := [e]− [es]
[i4] := [i6] + [i8]
[i3] := square [i5]
[i2] := [i3] + [i4]
[i1] :=

√
[i2]

[ρ] := [ρ] ∩ ([i1] + [d])

// Backward
[d] := [d] ∩ ([ρ]− [i1])
[i1] := [i1] ∩ ([ρ]− [d])
[i2] := [i2] ∩ square [i1]
[i3] := [i3] ∩ ([i2]− [i4])
[i4] := [i4] ∩ ([i2]− [i3])
[i5] := [i5] ∩ square−1 [i3]
[i6] := [i6] ∩ ([i4]− [i8])
[i7] := [i7] ∩ square−1 [i6]
[i8] := [i8] ∩ ([i4]− [i6])
[i9] := [i9] ∩ square−1 [i8]
[e] := [e] ∩ ([i5] + [es])
[n] := [n] ∩ ([i7] + [ns])
[u] := [u] ∩ ([i9] + [us])

return [x]

ρ

+

sqrt

+

sqr

–

e es

+

sqr

–

n ns

sqr

–

u us

d

[i8]

[i9][i7]

[i6][i5]

[i4][i3]

[i2]

[i1]

Figure 7: Elementary constraints decomposition of pseudo-
range measurement inclusion function (for the subtraction
operators, the term on the right is the one which is subtracted)

The constraint for GPS positioning using pseudoranges
consists in fulfilling the pseudorange constraints for all visible
satellites. With m satellites in use, a GPS contractor is given
in Alg. 5.

C. Robust GPS contractor

GPS measurements are prone to errors as shown in figure 8:
although satellite failures are rare, measurement errors are

Algorithm 5
gps_contract(in: [x], [ρ]1, . . . , [ρ]m, [x

s]1, . . . , [x
s]m)

1: for i := 1 to m do
2: [x] := [x] ∩ pseudorange_contract([x], [ρi], [x

s]i)
3: end for
4: return [x]

commonplace in urban environments, owing to multipath
propagation, or non-line-of-sight measurements (when the di-
rect signal is blocked and only reflected signals are measured).
In these cases the error bounds set on pseudoranges are no
longer consistent with the real pseudorange error.

Figure 8: Illustration of satellite outage and multi-path in
urban areas.

Inconsistent error bounds may lead either to an empty solu-
tion (in this case, the presence of an inconsistency is detected)
which directly decreases the continuity of the positioning
service, or to a misleading solution that affects integrity.

Instead of enforcing the constraints of all pseudoranges, the
robust GPS constraint consists in relaxing a given number q of
pseudorange constraints. This way, q erroneous measurements
are tolerated, and the constraint corresponds to the set of
solutions at least compatible with m− q measurements. This
is the so-called q-relaxed intersection [19] of the pseudorange
constraints.

X1

X2

X3 {1}

X i

{2}

X iX i

{0}

X i =

Figure 9: q-relaxed intersection of three sets for q ∈ {0, 1, 2}

Given m sets X1, . . . , Xm of Rn, the q-relaxed intersection
{q}⋂

Xi is the set of x ∈ Rn which belongs to at least m− q of
the Xi’s (Fig. 9).

The robust GPS contractor is given in Alg. 6. It should be
noted that in contrast to the standard intersection of boxes, the
q-relaxed intersection of several boxes is not generally a box.
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As a consequence, the box-hull of the q-relaxed intersection
is used at line 5 of Alg. 6.

Algorithm 6
gps_contract_qrel([x], [ρ]1, . . . , [ρ]m, [x]s1, . . . , [x]sm, q)

1: repeat
2: for i := 1 to m do
3: [xc](i) := pseudorange_contract([x], [ρ]i, [x]si )
4: end for

5: [x] := �

 {q}⋂
i∈{1,. . . ,m}

[xc](i)

 hull of the q-relaxed
intersection of m

boxes
6: until no more contraction can be done on [x]
7: return [x]

If a measurement is wrong and inconsistent with the other
measurements, it is automatically excluded from the solution,
and it can be identified as an outlier [18]. The fault detection
and exclusion implemented in our system works by analyzing
the consistency of individual measurements with the q-relaxed
solution. The robust solution is equivalent to the union of
every m − q satellites combinations sub-solutions. When
an erroneous measurement is present, the m − q satellites
sub-solutions tend to drift away, until they have no more
common intersection. At this point, the presence of a fault
can be detected. When all the sub-solutions involving a given
measurement are empty, this measurement is identified as
erroneous. Figure 10 gives an illustration with real data.
Since the remaining sub-solutions do not include the faulty
measurement, fault exclusion is automatic.

position domain

wrong GPS 
measurement

GPS line-of-sight

Figure 10: Detection of an erroneous GPS measurement with
6 satellites tracked by the receiver. The faulty pseudorange is
shown in red (probably a non-line-of-sight signal)

When the robust GPS contractor is associated with the road
contractor, the presence of a fault cannot be detected with
less than 3 satellites in view, and at least 4 pseudoranges
measurements are needed to identify the faulty measurement.

D. Receiver clock offset estimation/prediction

As previously stated, GPS positioning consists in finding
not only the receiver’s position, but also its clock offset dtu.
Over a short period of time, receiver time can be considered as
a clock running at a constant speed. The receiver clock drift

˙dtu can thus be estimated to assist the prediction of dtu. Once
the clock offset predictor has been initialized, this enables
positioning with a single satellite in view, as long as there is no
ambiguity in the current road selection [20]. The clock offset
prediction is thus a way to improve positioning availability in
urban canyons.

The clock offset of many receivers is not continuous: it is
often maintained within a specific range, which causes jumps
in the dtu value. In these cases, ˙dtu contraction fails because
of inconsistency, and the receiver clock offset estimator is
reset, which means in practice that the inconsistency is always
detected, because typically a clock jump is about 1 ms and the
confidence in dtu is about 50 ns.

V. EXPERIMENTAL RESULTS

A. Experiment

To evaluate the iGPS positioning algorithm, data acquisition
was performed on the Stereopolis vehicle from the French In-
stitut Geographique National (IGN), for the CityVIP research
program. It is a 1 km loop in the 12th arrondissement of Paris,
a 5 minute drive around the local mairie (Fig. 11).

Figure 11: Trajectory around the 12th arrondissement mairie
in Paris

The drivable space was provided by the IGN [6]. It was
drawn up from precise aerial photographs (5 cm horizontal
precision, 25 cm in altitude), and converted from its original
Lambert93 projection to a local tangent frame. GPS position-
ing is also performed in the same local tangent frame. We
use GPS pseudorange measurements acquired at 2 Hz with a
high-end Septentrio PolaRx2 receiver. Satellite positions and
pseudorange corrections are computed with the open source
GPSTk library [21]. Ground truth is provided by a post-
processed Applanix inertial navigation system.
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Figure 12: Histogram of the number of visible satellites and
skyplot.

The acquired data are very challenging for GPS positioning,
since there are fewer than 4 satellites in view during 77%
of the trial, and fewer than 3 satellites in view in 40% of
the measurement epochs (Fig. 12). In these conditions, the
position computed by the PolaRx2 receiver is unavailable for
long periods of time in the narrow streets, and suffers from
up to 10 m horizontal error and 35 m vertical error (Fig. 13).
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Figure 13: Position solution output by the PolaRx2 receiver
for the complete trial. Ground truth is in black.

B. Results of the iGPS positioning algorithm

Localization with iGPS is performed using the road con-
tractor described in section III together with the robust GPS
contractor described in section IV-C. We use the SIVIA
algorithm (Alg. 1), with the contractor Croad_gps implemented
in Alg. 7. This successively applies the road and GPS con-
tractors until no more contraction occurs. The improved facet
selection algorithm described in section III-D is employed. An
odometer provides the traveled distance s(tk, tk+1) between
two epochs. The traveled distance is also employed to compute
a prior box [xk+1|k] from the bounding box obtained in the
previous step [xk|k].

The SIVIA algorithm requires an initial box, in which the
solution set will be searched. We use a large box that includes
the whole test area. This is a great the advantage of the
interval based method over particle filtering, which requires an
initial distribution of particles. For a large map, the required
number of initial particles can be very large, which make
initial localization time an memory consuming with particle

Algorithm 7 Croad_gps(in: [x],M, [ρ]1...m, [x
s]1...m, q)

1: repeat
2: [x] := road_contract([x],M)
3: [x] := gps_contract_qrel([x], [ρ]1...m, [x

s]1...m, q)
4: until no more contraction can be done on [x]
5: return [x]

filtering. On the contrary, initialization of the interval-based
method only requires a single box that has to include possible
locations. Thanks to the efficiency of CSP contraction, the
initial box can be chosen arbitrarily large.

The number q of tolerated wrong measurements in the
robust GPS contractor is dynamically set as a function of the
number m of visible satellites. With fewer than 4 satellites
in view, we use a non-robust contractor (qm<4 = 0). With at
least 4 satellites in view, the robust contractor is employed:
qm=4 = 1, qm>4 = 2. Pseudorange intervals are set to
ensure a risk of less than 10−4, assuming normally distributed
pseudorange errors with σ = 1 m. The choice of error bounds
on pseudoranges is done as follows [18].

Let r be he risk associated with each pseudorange measure-
ment:

r = Pr (ρi /∈ [ρ]i) , i ∈ {1 . . .m} (5)

Let Nok be the number of pseudorange intervals that are
consistent with the truth. The probability of having exactly
i good pseudoranges out of m is given by the binomial
distribution. Thus, by summing over successive values of i,
the probability of having at least m − q good measurements
is:

Pr(Nok ≥ m− q) =

m∑
i=m−q

(
m

i

)
(1− r)irm−i (6)

where
(
m
i

)
= m!

i!(m−i)! is the binomial coefficient.
The robust q-relaxed GPS contractor enables to computes an
outer approximation X(t) of the position confidence domain
as a subpaving, which is guaranteed to be consistent with the
true position x(t) if the number of spurious pseudoranges is
less than or equal to the number q of relaxed measurements.
This way,

Nok ≥ m− q ⇒ x(t) ∈ X(t) (7)

which leads to

Pr(x(t) ∈ X(t)) ≥ Pr(Nok ≥ m− q) (8)
Pr(x(t) /∈ X(t)) ≤ 1− Pr(Nok ≥ m− q) (9)

R ≤ 1−
m∑

i=m−q

(
m

i

)
(1− r)irm−i(10)

With the chosen strategy to set q as function of m, and with
a risk R = 10−4, (10) can be inverted to find the individual
maximum risk r that can be assumed on each pseudorange
interval. Assuming normally distributed pseudorange errors of
variance σ2, a way to set the error bounds on each pseudorange
measurement is then given by

[ρ] = [ρ− ασ, ρ+ ασ] with α = −Φ−1
(r

2

)



8

where Φ represents the cumulative distribution function of the
standard normal distribution. The values of r and α as a
function of the number of pseudoranges m are given in Table I.

Table I: Pseudorange intervals risk r and error bounds for
R = 10−4 as a function of the number m of measurements.
[ρ] = [ρ− ασ, ρ+ ασ]

m 1 2 3 4 5 6
q 0 0 0 1 2 2
r 10−4 5 · 10−5 3.3 · 10−5 4.1 · 10−3 0.022 0.017
α 3.89 4.06 4.15 2.87 2.29 2.38

The positioning algorithm is implemented in C++, and
computes position confidence domains in real-time. It uses
a multithreaded version of SIVIA that enables to process
several boxes in parallel, thus taking advantage of multicore
processors. In the presented results, a processing time of
250 ms was allotted for each sample.

Fig. 14 shows the bounds of the confidence domains with
respect to ground truth. Confidence domains are consistent
with ground truth throughout the trial. The center of gravity
of the solution subpaving is used as a point position estimate
for error computations.
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Figure 14: Bounds of the computed position subpaving. Zero
ordinate is ground truth. Points are the center of gravity of
the solution subpaving.

The test starts with good satellite visibility, before entering
urban canyons with 2 or 3 satellites in view. At epoch #69
(Fig. 15a), accurate positioning is achieved with only two
satellites in view, thanks to the road constraint. At epoch
#220 (Fig. 15b), road selection is ambiguous at a crossroads.
Ambiguous positioning occurs at epoch #553 (Fig. 15c) after
a crossroads, since two satellites are not enough to select only
the good road segment.

Around epoch #280, the system in unable to efficiently
contract position with zero then only one satellite in view.
Nevertheless, between epochs #560 and #580, the system is

able to contract position with only one satellite in view, thanks
to the receiver clock offset prediction.

(a) epoch #69

(b) epoch #220

(c) epoch #553

Figure 15: Left: view of surrounding buildings. Center:
drivable space. Candidate facets are in red. Right: position
solution subpaving (in black). The blue box is the prior
predicted position, and the lines are GPS satellites lines of
sight.

Although the computed confidence domains are easy to
interpret visually when plotted on a map, a point position
estimate is often needed to communicate with other systems.
The center of gravity of the subpaving is a good position
estimate when the solution set is connected [22]. With at least
2 satellites in view, positioning error is less than 6.5 m 95%
of the time (Fig. 16). In the same conditions, the radius of
the computed confidence domain does not exceed 16 m 95%
of the time.

Along with the confidence domain radius, it is also inter-
esting to see how the true position is distributed inside the
computed domains. Figure 17 shows the distribution of the
relative location of the ground truth inside the confidence
domain bounds. Since the domain’s width changes at each
sample, we have normalized the domain between 0 (lower
bound) and 1 (upper bound). It shows that the true position
is not always at the center of the domain, but distributed over
it. The confidence domains are not excessively pessimistic
since the true position is quite well distributed over the full
width of the interval. With the chosen risk of 10−4, one could
expect that the extreme values (located at the boundaries of the
domain) would be rare. However, there is a significant number
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Figure 16: Empirical cumulative distribution functions of the
2-D position error of the center of gravity of the solution, and
of the confidence domain radius. CDFs are plotted for all
epochs (m ≥ 0), and for epochs with at least one (m ≥ 1) or
two (m ≥ 2) satellites in view.

of true positions located near the confidence domain bound-
aries. They are mainly due to under-constrained cases, where
the non-isotropy of the map constraint distorts the confidence
domain in a direction or causes multiple hypotheses.

VI. CONCLUSIONS

The iGPS global localization method has been presented
in this paper. It uses bounded-error GPS measurements and a
precise 3-D map of the drivable space as geometric constraints
on position. These data are merged in a branch and prune
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Figure 17: Distribution of the relative location of the true
position inside the confidence domain bounds. 0 corresponds
to the lower bound, 1 corresponds to the upper bound.

algorithm, which combines a robust GPS pseudorange con-
tractor and a road contractor that takes topology into account,
to characterize the user location zone.

Experimental validation was performed with real GPS data
in Paris. With at least 2 satellites in view, the method provides
consistent error bounds with 16-meter average radius location
zones, and a 6.5 m horizontal accuracy (95%).

Since the method neither estimates nor predict the full
vehicle pose, confidence domains computed with fewer than 2
satellites in view are very large. Integrating a vehicle evolution
model will provide a prediction of the vehicle pose, resulting
in tighter confidence domains when GPS visibility is reduced.
It should also allow the use of a robust GPS contractor with
fewer than four satellites in view.
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