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A sequential test for autonomous localisation of
map errors for driving assistance systems

Clément Zinoune1,2, Philippe Bonnifait1, Javier Ibañez-Guzmán2

Abstract—Driving assistance systems are progressively intro-
duced to enhance safety and comfort in passenger vehicles. They
increasingly rely on information stored in digital navigation maps.
However maps can be obsolete or contain errors, resulting in
malfunctions of context based driving assistance systems and
possibly generating hazardous situations. This paper aims at
making the vehicle able to detect and localise map errors in an
autonomous manner using its embedded sensors. The proposed
approach relies on the sequential generation and monitoring of
residuals, that is the vehicle estimated trajectory is compared
statistically with the geometric data in the map. The approach
allows driving assistance functions to know if they can rely on
the map in real-time and to store this information for future
journeys. Performance is assessed using vehicle data acquired in
real traffic conditions, which is then compared with an outdated
navigation map.

Index Terms—Vehicle localization, map errors detection, driv-
ing assistance systems integrity

I. INTRODUCTION

Driving assisting functions are becoming standard in new
vehicles. Organizations such as the European New Car Safety
Programme (Euro NCAP) [1], which provide a classification
in terms of safety to new vehicles, are incorporating the
use of Advanced Driving Assistance Systems (ADAS) into
their criteria. Contextual information about the area where the
vehicle evolves is essential for such systems. The presence
of obstacles in the vehicle trajectory, the forthcoming road
curvature and the current speed limit may be detected by
the vehicle on-board exteroceptive sensors like laser scanners,
radars or cameras. Whilst these have the potential to provide a
rich understanding of the vehicle situation, their deployment in
all types of traffic conditions is limited not only by the physics
associated to them (e.g. field of view), but also by their cost.
To enhance their performance, they are often combined with
contextual data extracted from stored maps.

Digital maps are becoming the central component of some
ADAS and of driverless passenger vehicles [2], [3]. However,
they inevitably hold errors due to the constant evolution of
road networks and errors during the mapping process. These
may cause severe malfunctions of map-aided ADAS. It is
therefore crucial for systems to know whether the stored digital
maps can be relied upon. The quality of a given map may be
evaluated by comparing them with reference maps or aerial im-
ages. however this requires offline and centralised processing,
with results being available to vehicles at considerable delays.
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This paper presents a sequential approach aiming at making
the vehicle capable to assess autonomously the on-board
digital map used for ADAS systems whilst in motion. The
vehicle position is first estimated using an Extended Kalman
Filter (EKF) based on GPS and vehicle embedded data. This
estimation is then compared with the vehicle’s map-matched
position provided by the guidance-navigation system. It is
shown that the detection of an error in the digital map is
equivalent to ascertain a change in the mean of the random
variable. This paper focuses on the reduction of the time
required for the detection of the beginning and the end of
the map errors. Moreover, a precise localisation of map errors
is done and stored in the vehicle’s memory for future journeys.
The system performance is evaluated using data acquired in
real traffic conditions and compared with empirical mean and
Neyman Pearson tests.

The paper is organized as follows: Section II presents
a review of existing methods and formulates the problem.
The manner in which the vehicle trajectory and positioning
is estimated using embedded vehicle data is presented in
Section III. The proposed approach for map error detection
is described in Section IV. Results obtained from tests with
real data are presented and statistically analysed in Section V.
Section VI concludes the paper.

II. STATE OF THE ART AND PROBLEM STATEMENT

Contributions to the maps assessment exist within the geo-
graphic information science (geomatics) domain [4]. The basis
of these methods resides in comparing two maps using metrics
which can be as various as the elements to assess. Vector maps
are made of three basic entities, vertices, lines and surfaces.
Only the two firsts are relevant for our application since
surfaces are not used by ADAS. The simplest way to measure
the similarity of two points of the space is the Euclidean
distance. which is defined for two points A = (xA, yA) and
B = (xB , yB) by dE in Eq. (1).

dE (A,B) =

√
(xB − xA)

2
+ (yB − yA)

2 (1)

The similarity between two curves may be measured as
the maximum gap between two curves using the Hausdorff
distance [5]. This is a good metric to detect road offsets and
some dissimilarities in the curves shapes. However it may be
tricked if the segments have different lengths or very different
shapes [6]. The mean distance introduced in [7] takes into
account the surface between the curves.

In general, each metric allows highlighting a precise charac-
teristic of similarity between geographical features (distance,
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Figure 1. Block diagram of system monitoring

shape, likelihood, . . . ). It is then suitable to adopt a fault
detection strategy to interpret their behaviour.

A very wide range of mathematical and statistical methods
have been used to compare sets of geographical data. In
[8], the authors use fuzzy logic to compute an outlier index
to express how a geographical object belongs to its spatio-
temporal neighbourhood. This approach aims at detecting
errors as well as temporal changes in maps.

Map creation and assessment may be done straight from
aerial imagery [9], [10], [11]. The roads are extracted thanks to
image processing methods and compared to an existing digital
map.

The vehicles themselves can be used to create or to refine
maps. In [12], [13], a large number of GPS traces are used to
infer the road map of an area or to increase the map precision
with probabilistic clustering techniques.

In [14], the authors adapt probabilistic simultaneous local-
isation and mapping (SLAM) methods to increase the map’s
level of precision. The roads are modelled by cubic splines and
used as state variables in the positioning filter. The parameters
of the splines are updated while the robot evolves in its
environment.

Map comparison requires that the two maps to be compared
are accessible. These may come from geospatial databases
or from aerial images. Also, the execution time is not a
critical issue while the algorithms are run offline. However, in
automotive applications the constraints are different. Vehicle’s
system architectures make difficult to have access to the
digital navigation map as a whole. Only information about the
road environment close to the vehicle is available. Moreover,
embedded algorithms must be efficient enough to be run
online by inexpensive ECUs.Therefore approaches proposed
in system diagnosis domain are then very relevant in our
problem. Redundant sources of information may be used to
detect faults in a system using statistical methods [15]. In
[16] cumulative sum is used to detect abrupt changes of the
Kalman filter covariance matrix and thus isolate faults in a
robot’s positioning system.

System monitoring approaches are very promising for in-
telligent vehicles applications as they require reasonably low
computational capabilities. The system architecture adopted in
this work detailed in Fig. 1. The state of the system to monitor
is estimated using its available inputs and outputs. Residuals
are then generated and allow error detection and localisation
thanks to a set of statistical rules.

III. VEHICLE POSITIONING

The real-time vehicle positioning is done by a loosely
coupled Extended Kalman Filter (EKF). It uses GPS fixes

when available to correct the proprioceptive estimation [17].
The state representation is shown in (2).{

Xk = f(Xk−1, Uk) + αk

Yk = H.Xk + βk
(2)


Xk =

[
xk yk ωk bk ψk

]T
Yk =

[
xgps k ygps k ωg k

]T
Uk =

[
vk rk

]T (3)

The state, observation and input vectors are detailed in (3),
where index k denotes the kth time step. In the state vector
X ,

(
x y

)
are the vehicle’s coordinates in a East-North-

Up (ENU) reference frame. ψ and ω stand for the vehicle’s
heading (clockwise from the north direction) and yaw rate
(rotation rate around the Up axis) respectively. Finally, b is
the vehicle’s gyroscope bias as defined in (5). The observation
vector Y contains the vehicle’s position according to the GPS
observation

(
xgps ygps

)
and yaw rate measured by the

vehicle’s gyroscope ωg . The input vector U is composed of
the vehicle’s speed v and the speed difference between the
rear vehicle’s wheels r.

The model and observation noises are α and β respectively,
and supposed to be white and zero mean.

The state transition function f depends on the input U and
on the state itself. It is defined in (4) where T is the sampling
period and l is the vehicle’s rear track. The observation model
H used here is given in (7).

f (Xk−1, Uk) =


xk + T.vk. sin(ψk)
yk + T.vk. cos(ψk)

l.rk/2
bk

ψk − T.ωk

 (4)

ωg = ω + b (5)

r =
2

l
.ω (6)

H =

 1 0 0 0 0
0 1 0 0 0
0 0 1 1 0

 (7)

IV. MAP ERROR DETECTION AND LOCALISATION

Statistical tests are appropriate to evaluate parameters of a
probability law based on set of outcomes. In our application,
we aim at detecting a change of the mean of the probability
density function (PDF) of a set of observed data while the
standard deviation of this PDF is in the same order of
magnitude than the expected mean gap. Page’s trend test works
sequentially and is especially efficient for stream data. In the
following sections, the test principles are recalled in general
terms and then applied to autonomous map error detection.
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A. Page’s trend test

Page’s test consists in statistically detecting a change in the
mean of a random variable [15]. Let us consider N samples
di of a random variable D. The likelihood of two hypotheses
H0 and H1 are compared. The first one states that D has
a constant mean µ0 among the N samples. The second one
assumes that the mean of D was µ0 for the first r−1 samples
and µ1 for samples r to N :

H0 : di = µ0 + bi , i = 1, . . . , N

H1 :

{
di = µ0 + bi , i = 1, . . . , r − 1
di = µ1 + bi , i = r, . . . , N

(8)

where b is a zero-mean noise of standard deviation σ. The
generalized likelihood ratio of both hypotheses is given by Eq.
(9).

Λ(D) =

N∏
i=1

p (di, r|H1)

N∏
i=1

p (di|H0)

(9)

While the likelihood of the alternative hypothesis H1 de-
pends of an unknown parameter r, its maximum likelihood
estimation is considered.

Λ (D) =

sup
r

(
r−1∏
i=1

p (di|H1)
N∏
i=r

p (di|H1)

)
N∏
i=1

p (di|H0)

(10)

As the likelihood of the null hypothesis H0 does not depend

on r and having
r−1∏
i=1

p (di|H1) =
r−1∏
i=1

p (di|H0), the likelihood

ratio can be simplified as follows:

Λ(D) = sup
r

(
N∏
i=r

p (di|H1)

p (di|H0)

)
(11)

Let δ denote the mean gap (δ = µ1 − µ0). Under Gaussian
assumption, one can get [18]:

ln (Λ(D)) =
δ

σ2
sup
r

(
N∑
i=r

(
di − µ0 −

δ

2

))
(12)

The decision of choosing either H0 or H1 is made by
comparing the likelihood ratio with a threshold λ:{

H0 : ln (Λ(D)) < ln(λ)
H1 : ln (Λ(D)) > ln(λ)

(13)

For real time implementation, it is especially convenient
to formulate the test sequentially. Let us then define the
cumulative sum as in Eq. (14).

SN
r (µ0 , δ) = δ

N∑
i=r

(
di − µ0 −

δ

2

)
(14)

which can be re-written:

SN
1 (µ0 , δ) = Sr−1

1 (µ0 , δ) + SN
r (µ0 , δ) (15)

The decision rule then becomes:

{
H0 : SN

1 (µ0 , δ)− inf
r

(
Sr−1
1 (µ0 , δ)

)
< γ

H1 : SN
1 (µ0 , δ)− inf

r

(
Sr−1
1 (µ0 , δ)

)
> γ

(16)

where γ = σ2 ln(λ).
Let δm be the minimum value of δ which must be detected.

The test is split into two sub-tests running in parallel, the first
aiming at detecting a mean growth and the other a decrease
of the mean.

Finally, at the current time k, a mean growth is detected as
soon as Eq. (17) is true.

Uk −mk > γ (17)

where
Uk = Uk−1 + dk − µ0 −

δ

2
(18)

mk = min (mk−1 , Uk) (19)

Conversely, a mean decrease is detected when:

Mk − Tk < γ (20)

where
Tk = Tk−1 + dk − µ0 +

δ

2
(21)

Mk = max (Mk−1 , Tk) (22)

As soon as threshold γ is reached, the cumulative sums are
reset to zero. The actual mean change happened at the last time
m (resp. M ) has reached its minimum (resp. maximum) before
crossing γ. The choice of γ has consequences on the false
alarm probability. It is not possible to express it formally while
the probability density function of hypothesis H1 depends of
an unknown parameter r. However, it can be set based on the
number h of estimated parameters in the probability density
function and on the standard deviation p: γ = 2 · h/p. Often
γ = 4 · σ/δm is used [18].

Let us consider the example shown in Fig. 2. The residual
presents a mean jump between indexes 40 and 60. The decision
variable crosses the threshold at index 44. Thanks to the
cumulative sum it is possible to find the origin of the fault
back at index 40.

B. Residuals generation for map errors

This section develops the residuals generator as indicated
in Fig. 1. The residuals are computed between map-matched
points and estimated vehicle positions provided by the estim-
ator bloc (EKF). The residuals that we use are the lateral and
longitudinal offsets in a frame R1 aligned with the road.

Let us consider map-matching as a random process that
provides an estimation M of the true vehicle position X in
the axis system R1:

M = X + α (23)

where α is a zero-mean noise with a diagonal covariance
matrix with σ2

a and σ2
b as components (longitudinal and lateral
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Figure 2. Illustrative example of Page’s test. The signal to consider is plotted
on the top graph. The corresponding cumulative sum and decision variable
are beyond. The red stars denote the sample indexes for wich the test has
detected a mean change.

standard deviations of the map matched position along the road
segment).

The components used from the state vector are denoted by
Xest = (x, y)

T in the East-North plane R0 locally tangent to
Earth with the covariance matrix P of the estimation error β:

P =

[
σ2
x σ2

xy

σ2
xy σ2

y

]
R0

(24)

In order to make the residuals independent on the road
direction, an isotropic approach consists in using the outer
circle of the ellipsoid. Its radius is λ = max (λi), λi being
the eigenvalues of P . So the covariance matrix expressed in
R1 is λ · I (with I being the identity matrix).

In R1, the difference between the map matched and es-
timated positions is given by L which has two independent
components.

L =

[
d
e

]
= M −Xest = α− β (25)

Under the hypothesis of independent errors, the lateral
residual d and the longitudinal residual e have the following
variances.

σ2
d = λ+ σ2

b

σ2
e = λ+ σ2

a
(26)

The detection of geometrical errors in maps can now be
made by running the Page’s tests simultaneously on two inde-
pendent residuals: d and e. The means employed in hypotheses
H0 are set to zero since an error-free road link is, by definition,
centred on its true location. Oppositely, the means used in
hypotheses H1 are set to the maximum acceptable bias in the
map.

V. EXPERIMENTAL RESULTS

In this section, the experimental data gathered in real traffic
conditions and used for method validation is first detailed.

Figure 3. Definition of the metrics used for tests assessment based on a
simple example. The error to detect is represented on the upper part of the
figure. As the test may go back in the past to localise a detected error, the
outcomes of the test appear on the second line. The error finally detected and
localised appears on the bottom graph.

The method developed in the previous section is then assessed
and compared to two standard methods based on fixed length
sliding windows. The algorithms are tested on four real areas
chosen to be representative of critical map errors.

The method was tested in real conditions thanks to a Renault
Espace standard passenger vehicle. The localisation system on
board was a standard single frequency GPS receiver. A high
grade inertial navigation system (INS) [19] tightly coupled to
a dual frequency GPS receiver was used as position ground
truth.

Via the CAN-bus, we recorded the vehicle’s odometer,
speed, rear wheel speed difference and yaw rate as required
by the vehicle positioning system developed in III.

An out-of-date commercial digital map designed for ad-
vanced navigation purposes was used. This presents the ad-
vantage of containing roads that have been modified since the
creation of the map as well as roads that have not changed.
This is very convenient for testing an error detection system
in real conditions. The map-matched points provided by the
navigation engine were broadcast on the CAN-bus.

A. Analysis methodology

We aim at evaluating the performance of a fault monitoring
system in terms of distance to alert, distance to recovery (an
adaptation of time-to-alert and time-to-recovery) and accuracy
of map error localisation. In this section, we present the
metrics used for this evaluation.

As shown in Fig. 3, the distance to alert δH0→H1
is the

distance travelled by the vehicle before detecting an error.
Reciprocally, δH1→H0

is the recovery distance. As soon as
the vehicle passed through the map error, the fault is localised
and stored in the map for future use. eH1|H0

denotes the
length of the road that has been identified as erroneous while
being actually fault free. Reciprocally, eH0|H1

stands for the
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length of road that actually contains an error that has not been
detected by the algorithm.

The ground truth trajectory has been employed to localise
manually the map errors using a step-by-step data player.

B. Other tests used for comparison

The performance of Page’s trend test has been compared
to two other classical methods based on fixed length sliding
window. These both aim to discriminate between H0 and H1:{

H0 : di = bi , i = 1, . . . , N
H1 : di = δm + bi , i = 1, . . . , N

(27)

where bi ∼ N
(
0 , σ2

)
.

On the one hand, a simple decision rule based on the
empirical mean of the sliding window was implemented:

1

N

n∑
i=1

di
H1

≷
H0

δm (28)

On the other hand, the Neyman Pearson probabilistic
decision rule was used. This is based on the generalised
likelihood ratio of the hypotheses. Under Gaussian noise
assumption, the choice follows the rule (29) [15], [18]:

n∑
i=1

di
H1

≷
H0

σ
√

2 ·N · log (λ) (29)

Where λ arises from a compromise between desired false
alarm (type I error) and miss-detection probabilities (type II
error) of the decision rule. The false alarm probability has
been set here to 0.1%.

The size N of the sliding window must be large enough to
be statistically representative and short enough to detect map
errors as fast as possible. Moreover, the samples D must be
reinitialised as soon as the vehicle leaves one road for another
which happens frequently in urban environment. It has then
been set to N = 20 which is equivalent to 250 meters of
travelled distance.

C. Test areas

The tests were run on a set of roads that was recently
modified due to the construction of a new motorway in
Normandie, France (see Fig. 4). This area is representative
of typical geometric errors that a map may hold and which
may cause sever malfunctions in driving assistance systems.
In area 1 and 2, sharp bends were added to the road which was
previously straight. This would makes a curve warning system
inefficient. In area 3 a new carriage way was added to the old
single track road. This induces a constant lateral offset of the
new road which would make obsolete intersection warning
systems on crossing roads. On the fourth area, the lateral road
offset decreases while the vehicle goes. This situation is very
useful to highlight the distance to recovery of the tests.

Area 1

Area 2

Area 3 Area 4

Figure 4. Global top view of the test areas. The out-of-date map being
assessed is shown by yellow lines. A map of the actual road network is plotted
in transparent grey. The four test zones are circled in red. The trajectory
followed by the vehicle is in purple.

Table I
COMPARATIVE RESULTS

Test δH0→H1 δH1→H0 eH0|H1
eH1|H0

Area 1
Page 0m 0m 0m 0m
Mean 73m 150m 90m 177m
N.P. 46m 255m 220m 0m

Area 2
Page 20m n.a.3 20m 0m
Mean n.d.4 n.a. 35m 0m
N.P. 80m n.a. 0m 170m

Area 3
Page 0m 0m 0m 0m
Mean 50m 100m 150m 200m
N.P. 0m 300m 0m 300m

Area 4
Page 0m 20m 0m 20m
Mean 50m 0m 250m 40m
N.P. 0m 250m 0m 210m

3 not applicable
4 not detected

D. Results analysis

Tests have been run on the lateral and longitudinal residuals.
However, we saw that the most relevant error to detect is
lateral road offset. Longitudinal error usually arises from the
map-matching filtering process and not from the map itself.
We focus therefore solely on the lateral euclidean distance
d. The most restrictive constraint comes from intersection
warning systems which require a longitudinal precision of 10
meters for the placement of an intersection on a road link.
Indeed, a lateral offset of a road link induces a longitudinal
misplacement of intersection on crossing roads. This value has
then been chosen as the mean change to detect δm = 10m.
Finally, the cumulative sum threshold is set dynamically to be
γ = 4.σ/δm which represents a good compromise between
false alarm rate and time to alert.

Results summarized in Table I show that Page’s trend test
is appropriate for detection and localisation of error in maps.
Indeed, errors are detected less than 20 meters after the
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Figure 5. Sequential outcomes of three trend tests on hypotheses H0 (correct
road segment) and H1 (erroneous road segment). The lateral distance to the
map-matched position is denoted on the upper part. The plot colour shows
the true state of the road: correct in green, with error in red.

beginning of the error and well located. The two other methods
provide less suitable false alarm and misdetection rates. This
is mainly due to the fact that fixed length sliding windows
are used. The error detection has then undesirable collateral
effects on the tail of the window. These methods show bad
results when the road error is small with respect to the size of
the sliding window.

Let us focus on area 1, to better understand the strength
and weakness of the three methods. The upper part of Fig.
5 shows the lateral error between the vehicle’s estimated
position and its map-matched position against the travelled
distance. The lower part shows the sequential outcomes of
each methods while the vehicle is driven. It can be seen on
this figure that Page’s test is very efficient for detecting the
error since it chooses H1 as soon as the road is actually
erroneous. Moreover, in this example, it locates perfectly the
error (from abscissa 520 to 1520 meters). The outcomes of the
two other tests are less accurate. Indeed, the errors are detected
later and locate it very poorly. This is due to the fact that is
not possible to know where the change happened within the
sliding window. The whole window is supposed to belong to
H1 as soon as the threshold is crossed. Correct road points are
then declared faulty while they are not and vice versa. This
example illustrates why these methods induce false alarms,
misdetections and inaccuracies in error localisation.

VI. CONCLUSIONS

The application of a sequential test on embedded data
to detect and localise map errors has been presented. The
monitoring of the map consisted in comparing the vehicle
map-matched position provided by the navigation engine to the
estimated vehicle’s position. This estimation was computed by
fusing data from the proprioceptive sensors and GPS estimates.
The generated residuals were then analysed using Page’s trend
test. The presence of a map error was detected when a change

in the mean of the observed residuals occurred. This test was
run on data collected on real traffic condition and using for
reference a three-year-old map, which stored known errors.
Trials have shown that every error in the map was rapidly
detected and localized accurately (less than 20m from the
detection distance). The false alarm and misdetection rates
were low (no false alarm and less than 20m of misdetection
over 2500m of relevant road sections). The test has shown
better performance than conventional algorithms based on
fixed length sliding windows. Future work will consist on the
implementation of the proposed approach as part of a driving
assistance function on a test vehicle to evaluate the benefits of
map integrity.
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