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Abstract

This paper presents a novel approach for solving the problem of 3D

alignment between video and lidar sensors. The proposed method con-

cerns intelligent vehicle applications, where the relative distance between

sensor frames can be significant. Circular calibration targets are used in

order to make full use of the perception properties of both lidar and video

cameras, which greatly simplifies the calibration task. The method deter-

mines the relative pose in rotation and translation of the sensors, using

sets of corresponding circular features acquired for several configurations

of the targets. A performance analysis in simulation and an error prop-

agation analysis are carried out. The calibration procedure is tested on

different configurations, and the calibration accuracy and estimation of

confidence intervals are evaluated on real data.

keywords: Extrinsic Calibration, Lidar, Vision Sensor, Circular targets, Intelli-
gent Vehicles.

1 Introduction

For many intelligent vehicle applications, multi-sensor systems are a require-
ment in the development of complete perception architectures, such as when
implementing Advanced Driver Assistance Systems or performing Autonomous
Navigation Tasks. These multi-sensor systems usually comprise radars, lidars
and video cameras, and the relative poses (rotation and translation) between
the different sensors’ coordinate systems have to be known. This becomes more
of a problem when the relative distance between the sensors is significant, and
when their perception fields are different (see Fig. 1).

One way of solving the extrinsic calibration problem is to use expensive sys-
tems such as theodolites together with specific markers corresponding to key
positions of the sensors. In this case, the user has to be a calibration expert.
Another way of addressing the problem is to implement an auto-calibration
approach that harnesses knowledge of the movement of the mobile platform
obtained, for example, via inertial measurement systems, to compensate for
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Figure 1: Experimental Vehicle CARMEN with its 4-Layers lidar and Vision
Systems

sensing delays and facilitate the association of natural features. Here no user in-
tervention is needed, but the system can give poor results if the auto-calibration
procedure is applied in suboptimal conditions. Using dedicated targets can be
seen as falling midway between these two alternative strategies. The particular
shape of the target is used to facilitate the matching of the features detected by
the sensors in order to achieve a high-accuracy relative pose estimation. Dedi-
cated targets are the choice we adopt here in order to have an easy-to-use and
efficient calibration system. When calibrating a system comprising a lidar and a
vision system, the data association cannot be done directly in the images, since
the lidar produces near-infrared measurements that cannot be seen in images.
We propose using circular targets for the correct alignment of video and lidar
sensors. The calibration procedure uses several target poses and provides, via
a batch process, the relative rotation and translation between the sensors with
the associated confidence intervals.

Circular targets with holes have several advantages: they reduce significantly
the lidar noise encountered when using the black-white zones of traditional
“checkerboard” targets. Given that lidars are based on the reflection of diffuse
light beams, black and white transitions reflect partial amounts of energy, which
decreases the quality of the range measurements. It is much more accurate to
perform a circle fitting in the 3D space of the lidar impacts contained within
the perforation border of the calibration target. Finally, if the target has con-
centric circles, geometric and algebraic constraints can be harnessed to obtain
an estimation of the camera-intrinsic parameters (i.e. focal length and principal
point) simultaneously.

The paper is organized as follows. First, related works are summarized in
Section 2. The 3D calibration procedure is then detailed in Section 3. Next, we
present a comparison with other methods in Section 4. A performance analysis
is carried out in simulation in Section 5. Real experiments are reported in
Section 6 to illustrate the quality of results with different set-ups.

2 Related Works

Several calibration methods have been proposed recently for estimating 3D rela-
tive pose between lidars and video sensors. The authors of [1] propose a target-
based calibration method between a camera and a single-row laser range finder.
This method has been improved by [2]. A target-less calibration approach for
a 3D lidar is presented in [3]. Similarly, [4] uses geometric primitives defined
by the user in both perception modalities. In [5], the calibration procedure be-
tween an omnidirectional sensor and a lidar uses 3D planes and assumes that the
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vision sensor has been previously calibrated. In [6] a Maximum Likelihood cal-
ibration procedure is proposed using a checkerboard observed at different poses
for a calibrated camera and a multi-layer lidar. In [7], the authors describe a
calibration procedure for a single-layer lidar and a camera mounted on it, based
on a calibration target consisting of adjacent rectangular black and white boxes.
In [8], the calibration makes use of relative pose data provided by an Inertial
Measurement Unit (IMU) and therefore does not need specific targets to cali-
brate a system comprising 4 video feeds and a synchronous Velodyne lidar. A
calibration procedure for lidar-camera rigs has been also proposed by [9]. The
authors have developed a robust algorithm that uses correspondences between
image line and 3D points. Finally, in [10], a 3D calibration pattern based on Y
structures and pins of different lengths and colors is proposed. This particular
shape provides information for the localization of corresponding pixels in the
image.

3 Calibration Procedure

The problem is to estimate the relative pose , denoted C [R, t]L, between the
lidar and a vision system using a calibration target with a circular hole, so it
can be detected by both of these sensors (See Fig. 2). To this end the method
estimates in each sensor frame the center and the normal to the supporting
plane of the circle in space, representing the circular hole of the target.

Figure 2: Frames involved in the lidar-camera calibration

3.1 Target Pose Estimation in the lidar Frame

The IBEO Alasca XT lidar considered in this study is equipped with a rotating
mirror and four independent photo-diode receivers. This sensor is able to report
200m range measurements from four different detection planes, also called layers
(see Fig. 3).

The four crossed scan layers cover a vertical field-of-view (FOV) of 3.2°
where the inter-layer divergence corresponds to 0.8°. The advertised light beam
divergence is 0.5 mrad, which is equivalent to a spot of diameter 50 cm at a range
of 100 m. The multi-layer technology is intended to ensure object detection in
the case of changes in vehicle pitch. This kind of lidar consequently has a
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Figure 3: The lidar measures ranges in four detection planes (i.e. layers) with
different directions

very limited FOV compared to a Velodyne sensor, which complicates the 3D
alignment problem.

We shall assume that the intrinsic parameters of the lidar are known pre-
cisely: the 3D points that we use are assumed to be accurate; only measurement
noise needs to be taken into account. For a 12.5 scanning frequency, the angular
resolution is illustrated in Fig. 3, covering a total horizontal FOV of almost 330°.

Geometrically, a 3D laser impact can be defined in the lidar frame L as a
single 3D point Lp. When intersecting the inner hole of the target, the lidar
beam impacts will be contained within a 3D circle.

Before using the range information, a preprocessing stage is necessary to
obtain a clean set of measurements using several lidar scans. Outlier data can
then be filtered using the median filtering technique proposed in [2] and applied
on n lidar scans of the calibration scene. Using the filtered data, points lying
inside the perforation border of the calibration target are extracted using a 1-D
edge detection: for each layer, a numerical derivative is performed on the depth
value within a fixed range value where the target should be. The depth value
signal of the target has a particular shape (see the left-hand side of Fig. 4) which
gives 4 peaks when differentiated (see the right-hand side of Fig. 4). Taking
only the two inner peaks of the derived depth value gives the perforation border
of the calibration target. Since the lidar has 4 layers, p = 8n points within the
perforation border of the calibration target are extracted.

Figure 4: Calibration target perforation border detection using 1-D edge detec-
tion

Now, let Lc be the center of the 3D circle, Ln the normal vector to the
supporting plane and r the known radius of the inner perforation border of the
target.

As proposed in [11], a 3D circle fitting may be performed by estimating the
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normal vector Ln of the circle supporting plane and the circle center Lc, using
a nonlinear minimization over the following geometrical criterion:

e =

p
∑

i=1

[A2
i +B2

i ] (1)

with

Ai =
L n·

(

Lpi −L c
)

and Bi = ‖Ln×
(

Lpi −L c
)

‖2 − r (2)

where the dot and cross product operators are denoted respectively by
(·) and (×). The symbol ‖.‖2 denotes the L2-Norm, and

• Ai corresponds to the Euclidean distance between a lidar impact around
the target hole , Lpi, and the 3D plane defined by its normal vector Ln

and the circle center, Lc.

• Bi represents the Euclidean distance between a lidar impact around the
target hole border, Lpi, and the 3D circle axis passing through the circle
center, Lc in the direction Ln.

Accordingly, the criterion in Eq. 1 is minimized using the Levenberg-Marquardt
algorithm (LM-algorithm) [12]. After convergence of the nonlinear minimization
algorithm, applying this technique to various poses of the calibration target gives
not only a first set of 3D laser features (i.e. circle centers, Lc, and normal plane
vectors, Ln) but also a 3D circle reconstruction in the lidar frame for every pose.

3.2 Target Pose Estimation in the Camera Frame

In contrast to a lidar, a video camera is a passive sensor and its perception
principle relies on the convergence of the visible light onto its imager. This
study considers the image formation process through an ideal pinhole camera
model. The strategy for estimating the target pose (i.e. its circle center and
its normal vector) by the means of two imaged concentric circles is described
below.

3.2.1 Geometrical Model of the Vision Sensor

Let Mp = [X, Y, Z, 1]T be a 3D homogeneous point in the target frame M.
This 3D point can be expressed in the camera frame C using the relative pose

in rotation CRM =
[

r1 r2 r3
]

and translation CtM =
[

tx ty tz
]T

:

Cp =

[

CRM
CtM

0 1

]

Mp (3)

Let x = [u, v, 1]T be the 2D homogeneous coordinates of its projection in the
image of the left-hand camera frame C (see Fig. 2). Using the central projection
model with homogeneous coordinates, we obtain the classical perspective camera
projection equation [13]:

x ∼





f 0 px
0 f py
0 0 1





[

I | 0
]

Cp (4)
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where f represents the focal length, (px, py)
T

are the coordinates of the
principal point and the notation ∼ to denote an equality up to a scale factor,
since we are considering homogeneous coordinates.

The pinhole camera model assumes that the image coordinates are Euclidean
coordinates having the same scales in the two axial directions. But image coor-
dinates are measured in pixels, and therefore we need to consider unequal scale
factors in the image axis. To this end the matrix K is modified in:

K =





fx f.s u0

0 fy v0
0 0 1



 =





ku s 0
0 kv 0
0 0 1









f 0 px
0 f py
0 0 1



 (5)

where the parameters fx, fy, u0, v0 and s are known as the intrinsic pa-
rameters and represent respectively the focal lengths in pixels in the x and y
directions, the pixel coordinates of the principal point, and the skew, and ku, kv
are the number of pixels per unit distance in image coordinates. Therefore the
full perspective projection model is

x ∼ K
[

CRM | CtM
]

Mp (6)

3.2.2 Vision Sensor Intrinsic Parameter Estimation

It should be remarked that prior to the intrinsic calibration, the lens distortions
have to be removed. For this purpose, we use the method proposed by [14], hence
the camera model presented in Eq. 6 is accurate. As mentioned earlier, in our
approach, the circular calibration target also includes a second concentric circle
around the circular hole. This is because projective properties of constrained
conics make them suitable for camera calibration, as proven in [15, 16, 17].
It is therefore possible to infer metric properties about the camera (intrinsic
parameters) and the scene (3D calibration target position) from the perspective
projections of these circular features with minimal user interaction. The intrinsic
calibration procedure, recalled in Appendix A, is applied to each camera before
the extrinsic calibration step.

So far, all intrinsic parameters in Eq. 5 can be estimated (assuming skew
s = 0). The next stage is to obtain the relative 3D transformation C [R, t]M
between the target and the vision sensors’ frames.

3.2.3 Vision Sensor Pose Estimation

Let us now define a reference plane in frame M with equation MZ = 0. Thus,
Eq. 6 becomes

x ∼ K
[

r1 r2
CtM

]

.Mp ∼ H.Mp (7)

where Mp = [X, Y, 1]T . The equation of a 3D circle of radius r on the
reference plane and centered at the origin of the frame M can be defined as:

MpT .Q.Mp = 0, Q =





1 0 0
0 1 0
0 0 −r2





Using Eq. 7, the perspective projection of the circle Q gives on the image
plane a conic C which is defined by
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xTCx = 0, C ∼ H−TQH−1 (8)

The conic C is estimated from the segmented image [17] using a classical
ellipse fitting algorithm [18]. Now, let C̃ be a generic proper conic (non-singular
with 2 positive and 1 negative eigenvalues):

C̃ = KTCK (9)

The homogenous image coordinates of the projected circle center xc =
(xc, yc, 1)

T
are obtained by projecting the frame origin, which is the center

of Q, in the image:

xc = (xc, yc, 1)
T ∼ K

[

CRM | CtM
]

(0, 0, 0, 1)
T ∼ KCtM (10)

Next, the center of Q is by definition the pole of the line at infinity [19],
hence in the image, the projected center of Q is the pole of the vanishing line:

l∞ ∼ Cxc (11)

then

Cxc ∼ CH (0, 0, 1)
T

∼ H−TQH−1H (0, 0, 1)
T
= −r2H−T (0, 0, 1)

T

∼ r3 = Cn

(12)

Therefore, the normal vector to the target plane containing the circle Q is
given by:

Cn ∼ C̃K−1 (xc, yc, 1)
T

(13)

As presented in [15], it is possible to obtain the projected center of two
concentric circles using only their imaged conics. Basically, the projected circle
center of two concentric circles is different from the centers of the projected
conics, but always lies on a line defined by them. It is then possible to use
the cross-ratio of four aligned points to extract the image coordinates of the
projected circle center xc.

Thus far we have obtained only the orientation of the target in the camera
frame. The last unknown is the coordinates of center of the 3D circle in the
camera frame. Let us consider the line containing the center of the camera frame
Ccc = (0, 0, 0)

T
and the canonical coordinates of the projected circle center

Cxc = K−1 (xc, yc, 1)
T

in 3D space. Points on this 3D line are represented by

x(λ) = Ccc + λ
(

Cxc −C cc
)

= λK−1 (xc, yc, 1)
T

(14)

In the camera frame, since the 3D circle Q is centered at the origin of the
frame M, Cc = CtM. Therefore we look for the value of λ which gives the
position of Cc:

CtM = λK−1 (xc, yc, 1)
T

⇐⇒C nT CtM = λCnT K−1 (xc, yc, 1)
T

⇒ λ =
C
n

T C
tM

CnT K−1(xc, yc, 1)
T

⇒C c =
C
n

T C
tMK

−1(xc, yc, 1)
T

CnT K−1(xc, yc, 1)
T

(15)
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The value d =C nT CtM is the orthogonal distance to the supporting plane
of the circle. From [20] we have:

d =
√

ρ3 r (16)

where ρ is the smallest positive eigenvalue of C̃ (see Eq. 9) with det
(

C̃
)

=

−1 and r is the radius of the corresponding circle Q:

Cc =
dK−1 (xc, yc, 1)

T

CnT K−1 (xc, yc, 1)
T

(17)

Like in Section 3.1 for the lidar, we now have the orientation Cn and the
position Cc of the circular target in the video camera frame. The next step, pre-
sented in Section 3.3, is to match this information and to calculate the rotation
and translation between the lidar and the vision sensors.

3.3 Lidar to Camera Transformation Estimation

The lidar-to-camera calibration procedure works as a two-step process: firstly,
the transformation parameters are calculated in closed form using the sensor-
to-target calibration. Secondly, the transformation is refined by minimizing a
point-to-point error measure, similar to the Iterative Closest Point Algorithm.

3.3.1 Initialization of the procedure

A well-known closed-form solution for this problem is the method developed by
[21]. This method consists in obtaining the optimal rotation from the Singular
Value Decomposition (SVD) of the correlation matrix of the centered point sets
represented by Σ:

Σ =
[

Lĉi −L c
]

3×n

[

C ĉi −C c
]T

n×3
= USVT (18)

where n is the number of poses, and Lĉi are the estimated coordinates of the
3D circle center from the ith pose of lidar measurements. Lc is the centroid of
the 3D-circle center point set in the lidar frame, C ĉi are the coordinates of the
3D-circle center point set estimated from the ith pose of camera measurements
and Cc is the centroid of the 3D-circle center point set in the camera frame.
Therefore, the 3× 3 optimal rotation matrix is obtained as follows:

CR0,L = VUT (19)

where the subscript (0) denotes that it constitutes an initial estimation. The
translation vector Ct0,L is obtained as the vector which aligns the centroid of
the 3D-circle center point set in the camera frame, Cc, and the rotated centroid
CR0,L.

Lc:

Ct0,L =C c−C R0,L.
Lc (20)
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3.3.2 Non-linear optimization of the solution

This solution C [R0, t0]L is usually a good starting guess for the extrinsic cal-
ibration. Therefore, with the aim of refining these estimated parameters, the
first step is to generate the 3D circles of the n poses estimated by the camera.
This consists in computing m points of every estimated circle pose by using the
3D circle center and an orthonormal base lying within the plane of the circle.
The orthonormal base is obtained from the normal vector to the plane of the
circle, by applying the Gram-Schmidt procedure [22]. Let Cpi,k be the kth gen-
erated 3D point using the camera estimation of the ith pose. The second step
is to generate the 3D circles of all the poses estimated by the lidar (Section 3.1)
just like for the camera estimations, giving Lpi,k. The first guess is then sys-
tematically applied for the rigid transformation C [R0, t0]L so as to obtain the
points in the camera frame. The third step, assuming that the error orientation
of the first guess rigid transformation is lower than π/2, is to match the 3D
points of the camera and lidar transformed estimations for every pose using the
nearest neighbor criterion based on the Euclidean distance:

mink,j

∥

∥

Cpi,k − (CR0,L.
Lpi,j +

C t0,L)
∥

∥

2
(21)

An example of 3D point matching is presented in Fig. 5. At this point
it is worth mentioning that we have a corresponding 3D point set of camera
and lidar observations. Finally, the refining of the rigid transformation param-
eters, [α, β, γ, tx, ty, tz]

T , is obtained by minimizing the following non-linear
objective function:

ǫ =
n
∑

i=1

m
∑

k=1

W.D2
ik (22)

with
Dik =

∥

∥

Cpi,k −C RL,(α, β, γ).
Lpi,k −C tL,(tx, ty, tz)

∥

∥

2
(23)

where Dik represents the Euclidean distance residual of the points after
applying the rigid transformation and W is a weighting matrix. The results
are obtained using a robust M-estimator algorithm for calculating the robust
weights as in [23] and the LM-algorithm. After convergence, the solution of the
calibration problem is represented by C [R, t]L.

Figure 5: Matching camera and lidar target pose estimations
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3.4 Calibration Confidence Estimation

The precision of the calibration results can be estimated under the assumption
that measurement errors are normally distributed. Therefore, the covariance
matrix of the estimated parameters, Cσ, is defined as follows:

Cσ = σ2.
(

JTJ
)−1

(24)

with σ2 = 1
θ−ϕ ‖ǫ‖2. J represents the Jacobian matrix of the last LM-

algorithm iteration and σ2 represents an unbiased estimate of the variance,
defined by θ, the number of observations, ϕ, the number of estimated parameters
and ǫ the residual of the non-linear objective function (see Eq. 22). In our case,
ϕ is equal to 6 (3 rotations and 3 translations) and θ−ϕ represents the degrees of
freedom of the Student’s t-distribution. Based on the above classical approach
for the covariance matrix of the non-linear fitted parameters [24], the width of
the 100(1− τ)% confidence interval is given by:

δCi = t
τ/2
θ−ϕ.

√

Cσ (i, i) (25)

where
√

Cσ (i, i) is the standard deviation of the ith estimated parameter

and t
τ/2
θ−ϕ the corresponding t-value for τ and θ − ϕ degrees of freedom.

Matlab users may easily obtain the confidence intervals for the parameters
via the nlparci function, and both the residuals and the Jacobian matrix via
the lsqnonlin function, which performs the non-linear minimization.

3.5 Calibration Algorithm

The overall approach can be summarized in the following algorithm:

Algorithm 3.1 Circle-based lidar-Vision sensors Calibration Algorithm

Input: - Images of the circular pattern (for at least n = 6 poses)
- 3D points of the circular pattern from lidar (for at least 6 poses)

Output: C [R, t]
L

1: for i = 1 to n do

2: ◮ Estimate the ith lidar calibration pose,
[

L
n, L

ĉ
]

i
, as described in Section 3.1.

3: ◮ Estimate the ith camera calibration pose,
[

C
n, C

ĉ
]

i
, as described in Section 3.2.

4: end for

5: ◮ Compute a first guess, C [R0, t0]L, for the lidar-camera rigid transformation using the
linear solution (Section 3.3)

6: repeat

7: ◮ Non-linear minimization using LM-algorithm according to the criterion Eq. 22
8: ◮ Robust noise variance estimation σ2 based in non-linear minimization residuals
9: ◮ Weighting matrix W update

10: until convergence of C [R, t]
L

4 Comparison with other approaches

Table 1 presents a synthesis of different camera/lidar calibration procedures,
which fall into two main categories: methods using user-selected corresponding
features [3][4], and methods with a calibration pattern [1][2][6][7][9][10]. The
main drawback with the first category is that lidars emit infrared light that
cannot be seen by video cameras. Therefore corresponding features, like points
or edges, have to be selected or detected and then precisely associated with
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Calibration Camera-

lidar

Application Error lidar Intrinsic

Pattern Interdistance analysis type calib.

Proposed Perforated Important Intelligent yes 4-layers yes

circular

target

Vehicle (IV)

[1][2] Chessboard small IV yes 1-layer yes

Planar target

[3] Hand feature small IV yes 1-layer no

[4] Hand feature Important IV no 1-layer no

[6] Chessboard Important IV no 4-layers yes

Planar target

[7] 3D boxes small robotic, IV no 1-layer yes

[8] IMU Pose

data

Important IV yes multi-layers yes

[9] Planar target small robotic yes 1-layer no

[10] 3D calib.

pattern

small robotic no 1-layer no

Table 1: Comparison of lidar-to-camera 3D calibration methods (IV : Intelligent
Vehicle)

their image projection, over several poses. In other words, a data association
problem has to be solved to ensure that it is sufficient to find the relative position
between the sensors. The second category also poses a particular problem for
the calibration: the pattern has to be chosen so that it can be seen by both
modalities (lidar and vision). So far, several works [1][2][9] have achieved this
using a planar calibration pattern for both single and multi-layer lidar. It is
easy to provide a precise estimation of the camera parameters using this kind
of calibration target, but it is difficult to get a common reference point from
the lidar data, because only the normal and the orthogonal distance can be
obtained. Therefore additional constraints need to be used to find a singularity-
free solution. [7][10] use a 3D calibration target that can be perceived and easily
matched via both sensing capabilities. In our work, the hole in the calibration
target ensures an easy-to-detect 3D target without singularities. [8] gives an
alternative way of calibrating a lidar-camera system using relative pose data
from an external sensing system (here an IMU1). The proposed algorithm opens
the way to fully automatic auto-calibration, and appears very promising, even
if less accuracy is achieved.

5 Performance Analysis in Simulation

Four simulation trials are reported below, where the accuracy and consistency
of the proposed calibration routine are respectively quantified and verified. In
order to have conditions similar to the real multi-sensor system, the simulation
model corresponds to the sensor relative position on board the vehicle.

1Inertial Measurement Unit
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The extrinsic parameters are the translation vector CtL = [−0.2, 0.8, 1.8]
T

in meters and an orientation matrix CRL,(α, β, γ), computed from the rotation
angles α = 11°, β = −1° and γ = 0.5° respectively in the X, Y and Z axes.

The lidar impacts were generated as the intersection of the lidar beam and
the simulated calibration target and all lidar layers intersected the calibration
object. A Gaussian white noise was added in the direction of the lidar beam,
simulating range measurement errors. Based on the model given in Eq. 6,
a synthetic image of the calibration target was generated. A Gaussian white
noise was added to the projected coordinates of the calibration target and to
the intrinsic parameters.

5.1 Test No. 1: Influence of the number of poses

A first Monte Carlo-like simulation was performed in order to estimate the
precision achieved by the proposed method using a minimal number of poses
(worst case). To this end, six random poses were distributed and oriented
randomly in the common field-of-view of the multi-sensor system over 100 trials.
The noise added to the image coordinates and the focal lengths was fixed to one
pixel. Here, the intrinsic camera parameters were constrained to a unitary
aspect ratio (i.e. fx = fy = 1670) and a principal point at the image center.

At each trial, the extrinsic parameters were estimated. The results give a
relative position error of 46.1mm and a relative orientation error of 3.4 degrees.
Six poses would appear not to be accurate enough, considering that the obtained
calibration results lead to unacceptable image projection errors for objects lo-
cated at the advertised range of the lidar (200m). A complementary test was
therefore performed to observe the error as the number of poses changes. As
shown in Fig. 6, an improvement is obtained as the number of poses increases.
Seven to nine poses for calibration gives a good trade-off between precision and
the overhead of pose acquisition.

Figure 6: Extrinsic calibration parameter error behavior by poses

5.2 Test No. 2: Influence of image noise

In order for the error behavior of the method to be evaluated with respect to
an image noise variation, a second simulation test was performed. Similarly to
the first simulation test, one hundred trials using seven poses were generated
for each level of the image noise. The Gaussian white noise added between one
and three pixels of standard deviation. So as to compare the results obtained
by the robust non-linear minimization of the 3D poses, we also executed an
Iterative Closest Point algorithm , a reference among classical registrations of
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3D point sets. The results given in Fig. 7 demonstrate that the proposed robust
registration scheme performs quite well and much better than the classical one.

(a) Translational error (mm.) (b) Orientation error (degrees)

Figure 7: Extrinsic calibration errors for different image noise levels

5.3 Test No. 3: Consistency test

The consistency of the calibration estimation, presented in Section 3.4, is crucial
for error propagation and uncertainty quantification when merging lidar and
vision data. Since the estimated intervals correspond to a given probability
(e.g. 95% confidence) of the solution lying between them, a consistency test
was performed. To this end, the estimations of the rigid transformations and
the confidence intervals using 7 poses in the calibration process were plotted
over a hundred trials.

Fig. 8 illustrates, as an example, the consistency test for the orientation angle
parameter in the y-axis of the lidar frame (i.e. pitch vehicle angle) previously
denoted β. Results are also compared with those obtained through the Iterative
Closest Point registration. In the figure, the estimates are centered so that the
ground truth value is the x plot axis.

Figure 8: Consistency test for β at 95%

It will be remarked that the robust non-linear algorithm runs significantly
better than the Iterative Closest Point registration. The two approaches never-
theless oscillate in the same way, since the same criterion, based on the L2-norm
distance between two point-sets, is minimized. The main difference compared
to the ICP approach is that we know the point-to-point correspondence (see
Section 3.3.2). Looking at Fig. 8, it will also be remarked that the consistency
of the estimates is slightly optimistic, since several intervals do not contain the
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zero value. Moreover, it is worth mentioning that the convergence is globally
very good, even if it is not guaranteed, as exemplified by Fig. 8 at the 53rd,
69th and 88th trials.

5.4 Test No. 4: Influence of the projection camera model

Focusing now on the behavior of the extrinsic calibration method with regard
to the projection camera model parameters, a new Monte Carlo-like test was
performed with fifty trials each. In this test, seven random poses were used
and a Gaussian-white noise, ranging between one and three pixels of standard
deviation, was added to the image coordinates. The projection camera model
used during the calibration process was constrained to a unitary aspect ratio
(i.e. fx = fy), in contrast to the simulated model.

(a) Translational (mm.) (b) Orientation (degrees)

Figure 9: Absolute errors using a camera model with a unitary aspect ratio

For every trial, the extrinsic parameters were estimated and the mean error
of the fifty trials was computed. The results obtained by the robust non-linear
minimization of the 3D poses are presented in Fig. 9. It will be remarked
that even though the parameter calibration error is not negligible, this method
provides much better results than those obtained using the classical registration
method.

A second test was performed taking in the same conditions, except that the
camera model was unconstrained to a non-unitary aspect ratio. This test quan-
tifies the influence of the camera model over the absolute error of the extrinsic
calibration parameters. Fig. 10 illustrates the significant improvement obtained
when using an unconstrained camera model.

(a) Translational (mm.) (b) Orientation (degrees)

Figure 10: Absolute errors using an unconstrained camera model
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The results of this last test reveal that the intrinsic parameters have a con-
siderable influence over the extrinsic parameters. It is worth recalling that the
extrinsic calibration method is based only on the minimization of the Euclidean
error between the lidar and the camera perception. Therefore, errors in the
intrinsic parameters will be compensated for by the extrinsic parameters, thus
reducing this bias.

6 Real Experiments

The evaluation of the calibration method in real conditions was performed using
the 4-layer lidar and different vision system configurations, namely monocular
with short and wide angles, and a stereo vision rig. The experimental condi-
tions are described below, and the results for both considered configurations are
reported. The Matlab calibration source files are publicly available here2.

6.1 Hardware setup

The CARMEN experimental vehicle (see Fig. 1) is used for implementing and
testing perception functions in real-life conditions. This platform uses a num-
ber of sensors including the 4-layer lidar and the vision systems. The lidar is
installed at the front of the vehicle in the bumper section, while the cameras
are located behind the windshield and on the roof of the vehicle (see Fig.1).
This configuration of sensors involves only occasional occlusions to the camera
for short distances with respect to the lidar.

6.2 Alignment between the lidar and video camera

In this experiment an IBEO Alasca XT and a Sony DFW-VL500 camera were
used (see Fig. 11). The resolution of the camera was set to 640×480 pixels. We
used a calibration target with two concentric circles of radii 33cm and 23cm.
The camera’s focal distances fx and fy, and the principal point were estimated
using the circle-based calibration target.

Twenty scans were performed for each pose in the calibration process. Only 7
poses were used to estimate the initial guess solution for the rigid transformation.

Figure 11: CARMEN experimental platform, showing the relative locations of
the sensors

For the case of a unitary aspect ratio in the projection camera model, the
extrinsic calibration parameters C [R, t]L were first estimated. Since the lidar

2http://www.hds.utc.fr/~vfremont/dokuwiki/doku.php?id=en:links
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produces near infrared data, we use this rigid transformation to express these
data in the camera frame, and a projection of the multi-layer range measure-
ments onto the scene image can be obtained using the perspective projection
model of Eq. 6. The results in the left-hand image are presented in Fig. 12.

In a second trial, we used an unconstrained aspect ratio camera model and
recomputed the corresponding extrinsic parameters.

(a) Unconstrained aspect ratio (b) Unitary aspect ratio

Figure 12: Projection image of lidar data using the extrinsic calibration method

The image projection of the lidar data reveals that the errors resulting from
the assumption of a unitary aspect ratio in the projective camera model are
almost imperceptible. In Table 2, however, one observes that this simplifying
assumption can provide estimates of the relative position of the sensors, which
can be slightly biased (see the value of tx in column 4). This phenomenon was
also visible in the previous simulations.

The confidence intervals for the rotation angles are quite similar, which is
not the case for the translation parameters. For instance, the confidence on tx
is twice as good as that on ty, which is due to the aspect ratio of the CCD sen-
sor. The method provides very high confidence intervals for the depth direction
(i.e. tz), which is only to be expected, since the geometrical configuration of
the calibration pattern is optimal in this direction. Notice that the “measured
values” in Table 2 are not ground truth, but were measured manually and are
shown for comparison.

Table 2: Calibration results obtained with real data

Results of the Test using Real Data

Translation Two Focal Confidence One Focal Confidence Measured

(m) Camera Interval Camera Interval

tx -0.1651 ±0.0491 -0.3331 ±0.0647 -0.2

ty 0.9208 ±0.1176 0.9246 ±0.0648 0.88

tz 1.8466 ±0.0116 1.8027 ±0.0087 1.82

Rot. angles (rad)

Rx = α 1.5370 ±0.0296 1.5428 ±0.0156 n.a.

Ry = β -0.0455 ±0.0118 -0.0505 ±0.0149 n.a.

Rz = γ 1.6075 ±0.0466 1.6296 ±0.0261 n.a.

A second experiment was carried out using the IBEO Alasca XT and a
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PointGrey camera with a Theia wide-angle lens (of focal length approx. 1.3mm).
In Fig. 13, the detected 3D circle is visible on the left-hand side, corresponding
to the camera image presented on the right-hand side. Notice that the center
position and the orientation of the 3D circle are well estimated.

(a) Detected 3D circle using lidar data (b) Corresponding wide-angle image

Figure 13: 3D circle detection

Fig. 14 shows the image re-projection of lidar data for two different poses,
corresponding to the estimated calibration values presented in Tab. 3.

Figure 14: Lidar data re-projection onto two different images of the calibration
video.

Table 3: Calibration results obtained with real data for 12 target poses

Results of the Test using Real Data

Translation (m) Wide Angle Camera Confidence Interval Measured

tx -0.053 ±0.072 -0.1

ty 0.954 ±0.15 0.922

tz 1.81 ±0.05 1.87

Rot. angles (rad)

Rx = α -0.036 ±0.093 -0.035

Ry = β -0.011 ±0.025 0.047

Rz = γ -0.0024 ±0.03 0

This experiment gives good results for an unusual setup: the large depth
between the sensors, the short focal length of the optical lens and the small size
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Table 4: Results of stereo calibration (extrinsic parameters w.r.t left camera
frame)

Manufacturer Tsai Proposed

data for Left/Right Camera for Left/Right Cameras

fx(pix.) 216 223/220 230/226

fy(pix.) 216 221/219 229/227

u0 (pix.) 160 149/151 140/146

v0 (pix.) 120 116/110 119/113

Rotation C [α, β, γ]T
C′ = C [α, β, γ]T

C′ = C [α, β, γ]T
C′ =

(rad) [0, 0, 0]T [−0.01,−0.007,−0.014]T [0.026, 0.003,−0.016]T

Translation C [tx, ty , tz ]
T
C′ = C [tx, ty , tz ]

T
C′ = C [tx, ty , tz ]

T
C′ =

(mm) [−450, 0, 0]T [−442.6,−0.15, 2.8]T [−447.7, 6.2, 5.5]T

of the target make the calibration estimation process difficult. Nevertheless, the
results are coherent with respect to the measured values, and the re-projected
lidar data are well placed in the images.

6.3 Calibration between a lidar and a stereo-vision system

Fifteen stereo images of the circular target were acquired at a low resolution
of 320x240 pixels. Table 4 shows the calibration results for both intrinsic and
extrinsic parameters of the stereo rig. Results are compared with the classical
Tsai approach [25] and with the information provided by the camera manufac-
turer. Regarding the estimation of extrinsic parameters, our approach uses the
target center coordinates Cci and C′

ci calculated using Eq. 17 in both cameras C
and C′. Since each image pair i provides two 3D points, the 3D transformation
between the two cameras can be estimated using the 3D registration approach
[21] presented in Section 3.3.1. It can be seen (e.g. Table 4) that our algorithm
gives similar results to Tsai’s method, but our calibration target can also be
used with a multi-layer lidar, since its shape can easily be detected in 3D.

In this calibration trial, eight different target poses were acquired. Each
pose was composed of twenty lidar scans and the corresponding target image
of the left-hand camera in the stereo rig. The rigid transformation between the
lidar and the left camera was then computed and the intervals of confidence
were estimated. The obtained relative orientation and position of the lidar in
the camera frame are presented as an Euler and a translation vectors:

[α β γ]
T

=
[

0.09± 0.031 −0.003± 0.013 −0.037± 0.012
]T

(in m.)

[tx ty tz]
T

=
[

0.266± 0.034 1.323± 0.107 2.44± 0.015
]T

(in rad.)

It will be remarked that the z component of the translation vector is quite
large (around 2.5m) as visible in Fig. 1. In order to project lidar scan points
onto the right-hand image (see Fig. 15), the point coordinates from the left-
hand camera frame need to be transformed into right-hand camera coordinates
using the extrinsic parameters of the stereo rig given in Table 4. We wish to
emphasize that in the case of stereo video cameras, our circular target means
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that the 3D alignment between the lidar and the two cameras and the extrinsic
calibration of the stereo rig can both be performed.

Figure 15: lidar data re-projection onto stereo images for two different target
positions

7 Conclusion

In this paper, we proposed a new extrinsic calibration method for a configuration
comprising 4-layer lidar and video cameras to be used in automotive applica-
tions. This kind of calibrated transformation is useful for multi-sensor obstacle
detection, as shown in [26], where re-projected lidar information is employed to
perform a visual confirmation of the detected objects.

Through the use of a circular calibration target, extrinsic calibration and
intrinsic camera calibration can be performed simultaneously. Both computer
simulations and real data were used to test the proposed technique, and con-
fident results have been obtained. The estimation of the confidence intervals
provided by the calibration method are useful for uncertainty propagation in
data sensor fusion methods. It important to note that our method quite eas-
ily gives a good estimation of the relative pose of the sensors. One additional
perspective of this work is providing confidence intervals corresponding to the
extrinsic calibration parameters for the stereo rig, using only circular calibra-
tion targets. Another perspective is the estimation of the distortion parameters
using concentric circles. We are also investigating how to analyze parameter
sensitivity with respect to calibration target space positions, in order to provide
more accurate results in both intrinsic and extrinsic parameters. Finally, we
think that this method could easily be adapted to the calibration of a 3D lidar
(e.g. Velodyne sensor) with respect to multi-camera systems. Further research
might also be carried out to find the optimal size of the target, considering fea-
tures of both lidar and video sensors, in particular with the use of wide-angle
optical lens.
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Appendix A

Camera intrinsic parameters estimation

The Imaged Circular Points (ICPs), which are the projections of the Circular
Points are in the form of e± = h1±ih2 where h1 and h2 are the first two columns
of the world-to-image homography H (Eq. 7). The Image of the Absolute Conic
(IAC), denoted ω, encodes the intrinsic properties of the camera and is defined
by

ω ∼ K−TK−1 =
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As stated in [15], all intrinsic calibration parameters can be obtained first
by computing the image of the absolute conic (IAC) with precision from the
imaged circular points using at least three images of two concentric circles under
different orientations. By using this method, the intrinsic camera parameters
in Eq. 5 can be estimated. If each ICP lies on the IAC, the following constraint
is enforced:

e±
Tωe∓ ∼ 0

which can be rewritten as

h1
Tωh2 = 0

h1
Tωh1 − h2

Tωh2 = 0
(26)

Each view gives two linear equations in the upper diagonal elements of the
IAC [13]. If K is constant, three views are necessary to obtain a solution. As
presented in [15], one ICP (and therefore its complex conjugate) can be recovered
from one view of a pair of projected concentric circles {C1,C2} computing the
rank-2 matrix ∆2:

∆2 = β2C
−1

1
−C−1

2
∼ H diag(0, 0, 1)HT

The ICPs are then recovered in the form of
√
s1u1 ± i

√
s2u2, where u1

and u2 are the first two columns of U resulting from the SVD (Single Value
Decomposition) of ∆2 = Udiag(s1, s2, 0)U

T with UUT = I. The determination
of K, is performed by estimating the IAC, ω, as the locus of all ICPs, through
a linear formulation of the problem (Eq. 26). Finally, a Cholesky factorization
of the IAC gives the matrix K.
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