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Localization confidence domains via set-inversion
on short-term trajectory

Vincent Drevelle and Philippe Bonnifait

Abstract—The knowledge of localization uncertainties is of
prime importance when the navigation of intelligent vehicles
has to deal with safety issues. This paper presents a robust
estimation method able to quantify the localization confidence
based on interval analysis and constraint propagation. Firstly,
tightly-coupled position domains are computed by constraint
propagation on GPS measurements and a precise 3D map of
the drivable area. Since GPS is prone to satellite masking and
wrong measurements in urban areas, a second stage provides
localization integrity and information availability, by the use of
a position and proprioceptive data history. A robust constraint
propagation algorithm is employed to compute the current
vehicle pose. It is able to handle erroneous positions with a
chosen integrity risk. Experiments carried out in urban canyons
illustrate the performance of the method in comparison with
a particle filter. Despite bad satellite visibility, full positioning
availability is obtained and errors are less than 5.1 m during
95% of the trial. In opposition to the particle filter, confidence
domains are consistent with ground truth which confirms the
high integrity of the method.

Index Terms—localization, sensor fusion, GPS, 3D map

I. INTRODUCTION

LOCALIZATION (also called ego-localization or posi-
tioning) is a prerequisite for mobile robot navigation in

large areas [1]. Given a known map of the environment, the
knowledge of the pose of the robot is firstly necessary for
path planning. Secondly, metric localization can also been used
for navigating in a constrained environment, if a map of the
drivable space is known.

In this paper, we consider the navigation of intelligent vehi-
cles in urban areas without dedicated beacons installed in the
infrastructure. The goal is to reach a meter-level accuracy with
high integrity and availability for way-point navigation. For
this, we study the use of affordable dead-reckoning sensors,
like odometers and gyros, merged with standalone Global
Positioning System (GPS). Because of frequent masking of
the GPS satellites that can reduce drastically the number of
position fixes, pseudoranges are directly exploited in a tightly
coupled manner. Recent advances related to mapping make
possible to use precise 3D maps of the road network, surveyed
in global coordinates with many details that allow the charting
of the drivable space. If the vehicle always remains located
in the drivable space of such a 3D map, this information
can be exploited in the localization process as a position
constraint. We describe a data fusion method that is able to
exploit this prior contextual information simultaneously with
the hybridization of GPS with dead-reckoning (Fig. 1).

Vincent Drevelle and Philippe Bonnifait are with Heudiasyc, University of
Technology, Compiegne, France, e-mail: vincent.drevelle@tremplin-utc.net.

Figure 1. Localization problem constrained by the drivable space (in green)
and a short-term history of positions (small rectangles).

Compared with Simultaneous Localization and Mapping
(SLAM), localization is the process that refers to pose in-
ference from known landmarks. When using radio-navigation
devices based on Received Signal Strength Indicator, Time of
Flight, Time of Arrival or Time Difference of Arrival measure-
ments [2], there is no data association issue [3]. When beacons
are passive, the sensor measurement association problem is
easy to address with highly discernible landmarks. Examples
in computer vision systems applied to outdoor navigation are
the use of natural sparse features [4] or roadsigns [5].

From the integrity point of view, using exteroceptive mea-
surements for robot localization is more risky than using pro-
prioceptive sensors, because the robot is interacting with other
systems. Exteroceptive observations can be then erroneous. For
instance, radio signals are subject to multipath propagation and
optical sensors are sensitive to adverse conditions. Moreover,
when exploiting passive landmarks in the perception process,
other sources of error arise because of landmark location
errors, modification/displacement and wrong association in
case of ambiguity. When the robot is used for human beings
transportation, localization methods have to provide quantified
position uncertainty linked to confidence figures. This has to
be done in real-time since position uncertainty may vary a
lot with environmental factors and geometrical configuration.
Integrity quantification refers to all of these notions. The
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localization method should then provide a confidence domain
in real-time to the navigation module, considering the sources
of error: sensor noise, spurious measurements, landmark po-
sition uncertainty, association errors, failures, etc. Monitoring
confidence domains is a very efficient method to check that
the localization uncertainty meets the navigation requirements
specification.

In case of autonomous navigation, this can be achieved
by making use of redundancy [6]. One solution is to exploit
several redundant sensors, in particular proprioceptive sensors
like done in [7] for fusing GPS with an inertial measurement
unit (IMU). Another is to use a map of the environment as a
source of information [8]. When the number of exteroceptive
measurements is very low, another strategy is to do the
processing on a trajectory or a position history [9].

In this paper, we focus on estimation and propagation of
confidence domains. If the information from the sensor is
bounded and if the bounds are well estimated, a classical set-
membership predictor/estimator is well adapted. In practice,
error bounds on sensor measurements and model parameters
cannot be guaranteed. In this case, the confidence that can
be placed on the computed domains decreases monotonically
towards zero as time approaches infinity [10]. In opposite,
if the system avoids the recursive processing of the date by
handling a limited amount of sensor information, it is possible
to keep constant the risk on the estimated domain.

In order to do a constant-risk fusion of the different in-
formation sources, we propose an interval-based method able
to do the estimation process on a trajectory horizon. Indeed,
interval based methods are well suited for non-linear problems
[11]. Moreover, they enable to solve problems with multiple
hypotheses solutions as shown by [12] for detecting ambiguous
initial localization. Interval methods have also the advantage
to manipulate sets, which allows to efficiently process entire
domains of the state space. Finding adequate error bounds can
be pessimistic or even impossible particularly when outliers
may arise. A way to address this issue is to add robustness
to the method by explicitly relaxing some constraints like
proposed by Jaulin in [13].

The paper is organized as follows. After a general prob-
lem statement description, classical Bayesian pose estimation
methods are reviewed and a constraint particle filter solver is
presented for comparison purposes. Interval analysis and set-
inversion with contractors are introduced in section III. Then, a
two-stage real-time pose estimation strategy is presented. The
first stage consists in a tightly coupled GPS - 3D map set-
membership positioning method that uses time-of-flight GPS
measurements, the bounds of which are dynamically chosen
in order to keep constant the risk. In section V, a robust pose
estimation scheme based on a position and proprioceptive data
history is proposed and developed. Section VI explain how
to choose the interval bounds given an integrity risk. Finally,
experimental results processed in real-time are reported and
compared with the particle filter.

II. CLASSICAL APPROACH

A. Problem statement

In this paper, we aim at estimating in real-time the 2D pose
of a vehicle equipped with a GPS receiver and proprioceptive
sensors, with the help of a 3D-mapM that acts as a constraint.
This can be formulated using an evolution model f that
involves proprioceptive sensors u and an observation model
g in which exteroceptive measurements y are used:

xk+1 = f(xk,uk)

yk = g(xk)

xk ∈M

The drivable space M is the surface on which the vehicle
can physically evolve. For a car, the drivable space can
be defined as the surface of the roadway, delimited by the
sidewalks. Obstacles like poles or lane separators are also
excluded from the drivable space. The raw drivable space can
be eroded to take the size of the vehicle into account.

Figure 2. 3D wireframe view of the drivable space extracted from a database

The drivable space is represented in 3D by a triangular
mesh, i.e. a surface made of connected triangular facets
(Fig. 2). Vertices are represented by their 3-D coordinates,
while facets are defined by a list of three vertices. We assume
that the vehicle only evolves on the represented drivable space,
which provides a very strong constraint on the position.

The vehicle is assumed to move without slipping in an hor-
izontal planar world. Thus, pose estimation only consider the
vehicle’s planar coordinates (e, n) and heading ψ. The discrete
non-holonomous evolution model f of the pose x = (e, n, ψ)
between two samples (let denote Ts = tk+1 − tk ) is e(tk+1) = e(tk) + Ts · v(tk) · cosψ(tk)

n(tk+1) = n(tk) + Ts · v(tk) · sinψ(tk)
ψ(tk+1) = ψ(tk) + Ts · ω(tk)

(1)

Vehicle speed and yaw-rate form the input vector u = (v, ω).
Vehicle speed v(t) can be measured from wheel speed sensors,
and, if the vehicle is equipped with a gyro, yaw-rate ω(t) can
also be directly measured.

Figure 3 describes a distributed estimation fusion. GPS raw
data is first fused with the map altitude information, which
allows to compute a point position with down to 3 time-
of-flight measurements from visible satellites (pseudoranges).
This computation is purely static. Then, the result is used to
correct the drift of an odometric prediction (Eq. 1), which is



SUBMISSION TO IEEE TRANSACTIONS ON ROBOTICS 3

Pose est im at ion

GPS raw data Proprioceptive
sensors

Tightly coupled
GPS — 3D map

positioning

(e,n,u)

(v,ω)

pose (e,n,ψ)

3D map

with confidence dom ains

Figure 3. System overview

aided itself by the drivable space constraint. So, the system
combines low sample rate position measurements with high
rate proprioceptive data. Pose estimation and confidence do-
mains have to be output at the required frequency.

B. Bayesian approach

Bayesian state filtering is a popular technique for solving
localization problem [14]. Non-linear Kalman filtering is the
most common estimation method. It can be robustified against
measurement outliers in different ways like gating the inno-
vation signal to reject bad observations [7] or by modeling,
in the distribution of the noise, the possible occurrence of
outliers using Student’s t-distributions [15]. When considering
prior map as a constraint, Kalman filters can still be used as
the core fusion engine by adding a constraint stage after the
update, like a two-step projection method proposed in [16] and
used by [17] to estimate the location of a vehicle within two
circular road segments.

Particle filtering has also been applied to similar problems.
Bootstrap with particle pruning has been studied with a facet-
based representation of the drivable space in [18]. It has also
been applied to clothoidal surfaces with a representation of
the connections between parallel driving lanes [19], in which
a special attention has been given to the gyro bias.

We present hereafter a particle filter that addresses the
problem described in Section II-A. It will be used as a
reference for comparison with the proposed approach.

C. Constrained Particle Filter

As stated above, a constrained particle filter (CPF) can solve
the pose estimation problem. Following the same bootstrap
paradigm as in [20], at each time step, particles evolve in
open loop, following the non-holonomous evolution model of
Equation 1.

If the signals of at least 3 satellites are received, a least
square estimate of the position is computed. The altitude
is derived from the map and introduced as a measurement
into the computation [21]. Particles weights are then updated
with the GPS position likelihood. As GPS measurements are
correlated over time, the state can be augmented with a first
order autoregressive shaping filter, similar to the one used in
[20] with a correlation time of 60 s and a reinitialization each
time the visible satellite-set changes.

Particles weights are finally updated with a trapezoidal map
likelihood as follows. Likelihood of particles that lie on the
road is set to one. It tapers off linearly as particle distance to
the road increases up to 50 cm. Particles that are more than
50 cm off the drivable space are so discarded.

Algorithm 1 details the main steps of the method for each
time step.

Algorithm 1 Constrained Particle Filter
1: for every particle xik do
2: xik ← f(xik−1) // Odometric evolution model
3: if nsat ≥ 3 then
4: xGPS ← GPS solver(pseudoranges, map)
5: wik ← wik−1 ·Gaussian likelihood(xik,xGPS)
6: end if
7: wik ← wik−1 · Trapezoidal likelihood(xik,map)
8: end for
9: Normalize weights

10: Resample if necessary
11: Compute estimate and confidence domain

Well-known drawbacks of particle filtering are the risk of
losing the correct solution during the tracking process the
the over-condensation of the particles on the edges of the
drivable space constraint, which mainly affects the integrity
of confidence domains (as we will see later on in Fig. 20b).
Another critical issue in particle filtering is the initialization,
which needs often many particles to evenly fill the position
space.

Bounded error approaches can provide efficient tools to
avoid these kinds of behaviors, by working with outer en-
velopes. In the following, we present one of these approaches
based on intervals.

III. INTERVAL ANALYSIS AND SET-INVERSION

Data can be represented by intervals and boxes in processing
stages where uncertainty has to be taken into account. This
allows propagating errors from the measurements to the pose
estimation. To model inaccuracy, positions are represented as
boxes which should contain the true location with a given
confidence level. Measurements are represented by intervals
to take noise into account. This section presents the basic
concepts needed to develop the method.

A. Interval analysis

Interval analysis [22] involves intervals and their multidi-
mensional extension, interval vectors (or boxes). In opposition
to an exact representation of sets, intervals and boxes are easy
to manipulate. The set of real intervals is denoted IR, and the
set of n-dimensional boxes is IRn. In this paper, an interval
or a box [x] = [x,x] is written between brackets; x and x
respectively denote the lower and upper bounds of [x]. The
width of an interval [x] is x−x and the width of a box is the
largest width of its interval components.

Interval arithmetic enables computations with intervals
thanks to the interval extension of classical real arithmetic
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operators +,−,× and ÷.

[x] + [y] = [x+ y, x+ y], [x]− [y] = [x− y, x− y]

In the same way, elementary functions such as tan, sin and
exp can be extended to intervals. This is done by returning
the smallest interval covering the range of the input through
the function.

The image of a box by a function g : Rn → Rm is generally
not itself a box, but an arbitrary set. This problem is solved
using the so-called inclusion functions. The interval function
[g] from IRn to IRm is an inclusion function for g if the
image of [x] by g is included in the image of [x] by [g], i.e.

∀[x] ∈ IRn,g([x]) ⊂ [g]([x]).

The minimal inclusion function [g∗] for a function g returns
the smallest box that contains g(x) — i.e. [g∗]([x]) =
�g([x]), the interval hull of g([x]) [22]. The natural inclusion
function for g is obtained by replacing each operator in the
expression of g by its interval counterpart. If each variable
occurs only once in the expression of g, then the natural
inclusion function is minimal.

The intersection of two boxes is an box. Since the union of
two boxes is not necessarily a box (e.g. [1, 2] ∪ [3, 4]), let us
define the box union t which returns the hull of the union of
two boxes (e.g. [1, 2] t [3, 4] = [1, 4]).

To approximate compact sets in a guaranteed way, sub-
pavings can be used. A subpaving of a box [x] is the
union of non-empty and non-overlapping sub-boxes of [x].
A guaranteed approximation of a compact set X can be made
by bracketing it between an inner subpaving X and an outer
subpaving X such as X ⊆ X ⊆ X .

B. Contractors and Constraint Propagation

When the components of a vector x are linked by re-
lations or constraints, one can define a constraint satisfac-
tion problem (CSP). It consists in finding the solution set
X = {x ∈ [x]|g(x) = 0}, where [x] is the domain of the
variables and g(x) = 0 represents the constraints, and can
also represent inequalities by introducing slack variables [22].

A contractor C for a CSP is an operator that computes a
smaller domain [xc] = C([x]) without affecting the solution
set, i.e. X ⊂ [xc] ⊂ [x]. There are many ways to implement
a contractor. One of them is the forward-backward contractor
based on constraint propagation [23].

C. Set-inversion via interval analysis

The set inversion problem consists in determining the set
X = g−1([y]) = {x | g(x) ∈ [y]}, where [y] is a known
interval vector of m measurements. Using interval analysis,
the solution X can be approximated between two subpavings
X and X such that X ⊆ X ⊆ X . The SIVIA algorithm allows
performing such a set inversion, by recursively bisecting an
initial box [22].

Since we are seeking to characterize the positioning confi-
dence domain, we only need to compute the outer subpaving
X of the set that fulfills positioning constraints. Algorithm 2

implements a SIVIA that only computes an outer approxima-
tion X of the solution set in a given domain [x0], given an
inclusion function [g] for g and a contractor Cg,[y]. It uses
a list L in which boxes are stored an retrieved. When L is
implemented as a stack, the algorithm employs a depth-first
strategy. If L is a queue, then the algorithm uses a breadth-first
strategy. ε controls the sharpness of the subpaving X . Boxes
larger that ε after contraction are bisected along the dimension
of largest-width component.

Algorithm 2 SIVIA(in: [x0], [y], ε)

1: X ← ∅ // Empty subpaving
2: Store [x0] in L
3: while L is not empty do
4: Retrieve a box [x] from L
5: if [g]([x]) ⊂ [y] then
6: X ← X ∪ [x] // [x] is included in X
7: else
8: [x]← Cg,[y]([x]) // Contract the box
9: if Width([x]) < ε then

10: X ← X ∪ [x]
11: else if [x] 6= ∅ then
12: ([x1], [x2])← bisect([x])
13: Store [x1] in L; Store [x2] in L
14: end if
15: end if
16: end while
17: return X

IV. TIGHTLY COUPLED GPS – 3D MAP POSITIONING

The proposed bounded error approach follows the same
distributed estimation fusion strategy as described in Figure 3.
Let us start by studying the fusion of GPS pseudorange
measurements with the 3D drivable space constraint.

A. Drivable space constraint

Being located on a 3D triangular facet can be expressed
by four simple constraints: one constraint representing the
facet plane, and three constraints for the edges. Optimal

A

B

C

[x]

[xc]

Figure 4. Contraction of box [x] with facet ABC. Facet is clipped with the
Sutherland-Hodgman algorithm. [xc] is the contracted box.
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contraction of a box with respect to a single 3D facet can
be performed with the Sutherland-Hodgman polygon clipping
algorithm [24]. It consists in successively clipping the facet
with each plane of the box, by finding intersections and
discarding exterior vertices (Fig. 4). The considered facet is
clipped with the box; then the bounding box of the resulting
polygon is returned as the contraction of the original box.

The whole road constraint is simply the union of the con-
straints from each facet of the mapM. Algorithm 3 contracts
a box with the entire road. To speed up the road contractor,
facets are stored with their bounding boxes, to enable quick
pruning of incompatible facets. The extract_facets function
returns the set of facets whose bounding box intersects the
prior box; It enables to focus only on the interesting part of
the map in order to save computation time. Map inaccuracy is
handled by using interval coordinates for the vertices (typically
±5 cm horizontally).

Algorithm 3 road_contract(in: [x],M)
1: [xc]← ∅
2: F ← extract_facets(M, [x])
3: for each f in F do
4: [xc]← [xc] t facet_contract([x], f)
5: end for
6: return [xc]

B. GPS pseudorange constraints

GPS positioning is a Time of Arrival method, which involves
pseudorange measurements from each visible satellite [21].
Pseudoranges are ranges offset by a unknown amount due
to the time base difference between the receiver and the
GPS system. GPS positioning using pseudoranges is thus a
four-dimensional problem: along with the “East, North, Up”
Cartesian coordinates (e, n, u) of the user in a local tangent
frame, the receiver clock offset dtu has to be estimated.
Satellite positions at their emission times can be retrieved from
broadcast ephemeris data using well known procedures [25].
A frame transformation is then applied to have the satellites
positions (esi , n

s
i , u

s
i) in the working frame.

Corrections are applied to measured pseudoranges to com-
pensate for relativity and atmosphere propagation delays.
Corrected pseudoranges ρi are imprecise because of model and
parameter errors. Moreover, the receiver measurement errors
should also be taken into account. Corrected pseudorange
measurements are thus represented as intervals [ρi]. Each pseu-
dorange introduces a constraint on the solution. The constraint
induced by the ith pseudorange measurement is represented
by the natural inclusion function of the GPS pseudorange
observation function (c is the speed of light):

[gi]([e], [n], [u], [dtu]) =√
([e]− [esi ])

2 + ([n]− [nsi ])
2 + ([u]− [usi ])

2 + c · [dtu] (2)

A forward-backward contractor [23] allows constraints to be
propagated in an optimal order for each measurement, using
(2). Constraints are split in an elementary constraints tree,

and constraint propagation is performed from the leafs to the
root, then back to the leafs (Fig. 5). Since there is no multi-
occurrence of a variable in the expression (2), this is an optimal
contraction.

[ρ]

+

sqrt

+

sqr

–

[e] [e ]s

+

sqr

–

[n] [n ]s

sqr

–

[u] [u ]s

[d]

[i8]

[i9][i7]

[i6]
[i5]

[i4][i3]

[i2]

[i1]

Figure 5. Elementary constraint decomposition of pseudorange constraint.
Intervals [ij ] represent represent auxiliary variables in the computation.

A GPS contractor can be built by successively applying
the pseudorange contractor with each available measurement,
until a fixed contracted box is obtained. Because of the loops in
the GPS positioning constraint graph, pseudorange contractors
have to be applied several times to reach a fixed solution.

C. Position computation
Position computation is then performed using the SIVIA

algorithm presented previously (Alg. 2) with the proposed road
and GPS pseudorange contractors (Alg. 4). This algorithm
computes an outer approximation of the set that satisfies both
the GPS and road constraints.

Algorithm 4 Croad_gps(in: [x],M, [ρ]1...m, [x
s]1...m)

1: repeat
2: [x]← road_contract([x],M)
3: [x]← gps_contract([x], [ρ]1...m, [x

s]1...m)
4: until no more significant contraction can be done on [x]
5: return [x]

To reduce positioning ambiguities and limit the number of
road facets used for contraction, a road-topology aware facet
selection step can be implemented before calling the SIVIA
algorithm [26]. Similarly to a a map-matching algorithm, the
topological facet selection step makes use of facet connections,
covered distance and prior position to determine the candidate
triangles of the map.

V. ROBUST POSE ESTIMATION ON DATA HISTORY

The pose estimation process is now done by constraint
propagation on a data history, as shown in Fig. 6.

Map, positions and proprioceptive data are merged using a
robust algorithm applied to a buffer of recent positions and
proprioceptive data (Fig. 7). A data buffer management algo-
rithm supervises buffers filling, keeping a reasonable buffer
size and ensuring buffers hold enough information to estimate
the pose.
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Figure 6. Data fusion system overview

data horizon

Figure 7. Data horizon. Ticks on the trajectory represent proprioceptive
measurements. Circles represent true position at GPS measurements epochs.
The boxes show the computed GPS solutions. Notice an erroneous GPS
position box at time tp3 .

A. Data history

To allow pose estimation based on a finite number of past
observations, two data history buffers are used:
• the position history buffer, containing o position boxes:
Lp(t) = {[p](tp1), . . . , [p](tpo)}

• the list of proprioceptive inputs boxes, contain-
ing n boxes: Lu(t) = {[u](tu1 ), . . . , [u](tun)}, with
[u](t) = ([v](t), [ω](t))T , v(t) and ω(t) denoting respec-
tively the linear speed and the angular speed of the vehicle
at the midpoint of the rear axle.

Each record in the data history buffer is timestamped with
its time of acquisition, to allow variable acquisition rate
processing [27]. It also enables to cope with out of sequence
measurements [28].

Data history buffers are managed to keep a tractable size.
The growth of the list of position observations is limited.
When the size limit is reached, the oldest data is removed
to make room for incoming data. The list of proprioceptive
inputs is then cleaned from obsolete data related to the position
previously discarded.

Since the absolute positions buffer is of limited size, adding
new observation data implies forgetting older position data.
Adding every position to the observation buffer may lead to
heading estimation issues when the length of the buffered
trajectory is in the same order of magnitude as the position
boxes width. This problem arises when the vehicle slows down
or stops: the system starts to accumulate redundant position

observations, while discarding older parts of the trajectory and
thus loosing the constraint on heading.

add discard discard , add

Figure 8. Data horizon management policy

To address this issue, observation buffer filling is based on
a spatial criterion (Fig. 8). If the new position box to be added
intersects the last position in the buffer, it is not added to the
buffer. This rule can however lead to the loss of informative
position information when the last position box is too large,
preventing any new smaller (thus more informative) box to be
added. To counteract this side-effect, the buffer filling policy
is complemented by a second rule: if the box to be added
is included in the last box of the buffer, and if it does not
intersect the penultimate box of the buffer, then the buffer’s
last box is replaced by the new box. The spatial density of
stored positions is controlled by enlarging or shrinking boxes
with a density ratio before testing intersections.

B. q-relaxed intersection

In the presence of spurious measurements, a robust method
has to be used. A robust set inversion method is the q-relaxed
set inversion. The q-relaxed set inversion consists in tolerating
a given number q of wrong measurements. The solution set,
with m measurements, is thus the set of solutions at least
compatible with m− q measurements.

X1

X2

X3 {1}

X i

{2}

X iX i

{0}

X i =

Figure 9. q-relaxed intersection of three sets for q ∈ {0, 1, 2}

Considering m sets X1, . . . , Xm of Rn, the q-relaxed inter-

section
{q}⋂

Xi is the set of x ∈ Rn which belongs to at least
m− q of the Xi’s (Fig. 9).

By considering the solution sets Xi = g−1i ([yi]) for each
measurements, the Robust Set Inverter via Interval Analysis
(RSIVIA) solver [22] guarantees the computation of a q-
relaxed solution set X = g−1([y]) with all the measurements.
This algorithm returns an outer subpaving of the q-relaxed
solution. Provided that a contractor Ci is available for each
measurement, a contractor Crelax for a q-relaxed constraint



SUBMISSION TO IEEE TRANSACTIONS ON ROBOTICS 7

is presented in algorithm 5. A detailed explanation of the q-
relaxed contractor is given in Appendix A.

Algorithm 5 Crelax(in: [x0], q, C1, . . . , Cm)
q-relaxed contractor for m constraints.

1: for i = 1 to m do
2: [x]i ← Ci([x0]) // contract [x0] w.r.t the ith constraint
3: end for

4: [x]← �

 {q}⋂
i∈{1,. . . ,m}

[x]i

 hull of the q-relaxed
intersection of m boxes

5: return [x]

The q-relaxed set inversion is a robust method in the sense
that the solution-set remains consistent with the truth as long
as there are no more that q outliers in the measurements
vector. If a measurement is wrong and inconsistent with the
other measurements, it is automatically excluded from the
solution, and it can be identified as an outlier. This way,
when there is enough redundancy to allow fault detection
and identification, the solution set is defined by the good
measurements. When outlier rejection is not possible, the
multiple solution hypotheses are combined in the solution set.

C. Robust pose estimation from previous positions

Each past position constrains the current pose (at time t) in
a subset of the pose space. Fig. 10 shows the estimation of
the current pose at time t, given two positions at past times t1
and t2, an estimate of the proprioceptive displacement and
a map. Since the heading is not measured, the knowledge
of a past position constrains the current pose inside a ring
whose radius depends on the vehicle displacement. At each
point of the ring corresponds a particular vehicle heading
interval. The map information is an additional constraint for
pose prediction (Fig. 10a). Moreover, the parts of the ring that
do not correspond to a trajectory inside the drivable space are
discarded (10b). As shown in figure 10c, when a history of
past positions is available, the current pose [x](t) is located
at the intersection of the constraints imposed by each position
information:

[x](t) =
⋂

k=1...o

[x+](t) | [p](tpk), [u](tu1 ), . . . , [u](tun) (3)

where [x+] denotes a prediction given a past position and the
knowledge of the proprioceptive sensors.

To deal with erroneous positions in the data buffer, a
given number q of erroneous measurements in the buffer
is tolerated, using q-relaxed intersection. The robust pose
estimation consists in computing the vehicle’s position and
heading at time t, given a finite number of prior position
measurements and inputs, under the hypothesis that at most
q position measurements are wrong. The robust pose estimate
[x]{q}(t) is given by Eq. (4).

[x]{q}(t) =

{q}⋂
k=1...o

[x+](t) | [p](tpk), [u](tu1 ), . . . , [u](tun) (4)

p(t1)

x(t)|p(t1)

(a) Current pose prediction from po-
sition [p](t1)

p(t2)

x(t)|p(t2)

(b) Current pose prediction from po-
sition [p](t2)

p(t1)

p(t2)

x(t)|p(t1),p(t2)

(c) Current pose is at the intersection
of the two predicted poses

Figure 10. Estimation of current pose, given two absolute positions, an
estimate of the proprioceptive displacement and a map. In this illustration,
the displacement is supposed to be straight. Arrows indicate heading.

x(tk) x(ti) x(tn) x(t)x(t)

p(tk)

Map

Prior 
pose

Contracted 
pose

Figure 11. Backward-forward constraint propagation of pose [x](t) with one
position [p](tk) and proprioceptive measurements. Map constraint is applied
at each time step.

Computation of [x+](t) | [p](tpk), [u](tu1 ), . . . , [u](tun) is
done using a backward-forward constraint propagation with
the natural inclusion function [f ] of the evolution function
given in Eq. (1), the map M and the proprioceptive inputs
(see Alg. 6 and Fig. 11). Backward propagation is performed
with the natural inclusion function of the inverted evolution
model finv defined as above: e(tk) = e(tk+1)− Ts · v(tk) · cosψ(tk)

n(tk) = n(tk+1)− Ts · v(tk) · sinψ(tk)
ψ(tk) = ψ(tk+1)− Ts · ω(tk)

[x]{q}(t) is computed by using the SIVIA algorithm with the
q-relaxed contractor Crelax([x0], q, Cp1 , . . . , Cpo ), relaxing q
constraints out of the o constraints from stored positions. Since
each [p](tpk) only contains position information, [ψ](t) cannot
be estimated directly by independent contraction with respect
to each [p](tpk). Thus, in the SIVIA algorithm, bisections are
prioritarily performed on [ψ](t) to enable heading estimation,
exactly like done in [29], [27]. This way, the forward-backward
contractor is called with prior heading values, which enables
effective contraction as illustrated by Fig. 12. Since the
contractors Cpk and the q-relaxed contractor Crelax involve
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Algorithm 6 Cpk (in: [x](tun), [p](tpk), Lu,M)
Backward-forward constraint propagation with one position,
proprioceptive measurements and map constraint

1: find j that verifies tuj−1 < tpk ≤ tuj
2: for i = n− 1 down to j do
3: [x](tui )← [finv]([x](tui+1), [u](tui ))
4: [x](tui )← road_contract([x](tui ),M)
5: end for
6: [x](tpk)← [finv]([x](tuj ), [u](tuj−1))
7: [x]1..2(tpk)← [x]1..2(tpk) ∩ [p](tpk)
8: [x](tuj )← [x](tuj ) ∩ [f ]([x](tpk), [u](tuj−1))
9: for i = j to n− 1 do

10: [x](tui+1)← [x](tui+1) ∩ [f ]([x](tui ), [u](tui ))
11: [x](tui+1)← road_contract([x](tui+1),M)
12: end for
13: return [x](tun)

computing the intersection of two poses, the heading angle
interval is first transformed into a sine and cosine represen-
tation to simplify computations. The interval extension of the
four-quadrant inverse tangent is used after the contraction to
retrieve the angle.

VI. INTEGRITY RISK

A. Position estimates
Position estimates (e, n, u), see Fig. 6, are computed each

time the receiver is tracking at least 3 satellites in line-of-sight.
Usually, confidence intervals are set on measurements once

for all. However, as the number of measurements increases, the
risk of having an outlier increases too. While a simple solution
consists in setting the measurements error bounds to cover the
worst case (the maximum number of visible satellites), this
adds pessimism to the position solution.

Our approach consists in adapting the measurements inter-
vals to keep a constant confidence in the result, regardless to
the number of available pseudoranges. Thus, the bounds set
on the pseudorange measurements depend on the number m
of visible satellites and are adjusted to keep a given integrity
risk r in the position solution. This risk corresponds to the
probability that the box [p] does not include the unknown
true position p.

r = Pr (p /∈ [p]) (5)

Assuming the pseudorange errors are independent, the risk
r[ρ] on each measurement and the computation of the bounds
±ασ can be directly derived using the following formula:

r = 1− (1− r[ρ])m (6)

r[ρ] = 1− m
√

1− r

With Φ denoting the cumulative distribution function of
the standard normal distribution, on can compute α =
−Φ−1

( r[ρ]
2

)
and using the standard deviation σ provided by

the GPS data, the measurement intervals are given by

[ρ] = [ρ− ασ, ρ+ ασ].

Then, the position box is computed by set inversion with the
contractor of section IV-C.

(a) Prior [ψ](t) interval is compatible with measurements history,
since the boxes after forward propagation intersect.

(b) Prior [ψ](t) interval is inconsistent with measurements history.
Intersection of boxes after forward propagation is empty.

Figure 12. Backward-forward constraint propagation with three position
measurements, for two different prior values of [ψ](t). Big arrows represent
the midpoints of the heading intervals. Starting with [ψ](t), headings [ψ](ti)
at past times are computed using the inverse model finv , and then forward
propagation is done.

B. Constant-risk pose estimation from data history

As previously shown, data history is useful for robustness.
It is also interesting for strengthening the hypotheses that are
made regarding independence. Indeed, the spatial sampling
strategy allows reducing the correlation of position errors,
since multipath errors are location dependent. It also decreases
time correlation coming from the receiver’s low-level signal
tracking stages.

It is established in [10] that the lower bound of the confi-
dence in the pose estimation tends to zero when the number
of used positions o tends to infinity, since each position in the
history has an associated risk. In order to guarantee a minimal
risk on the pose estimation result, it is crucial to limit the size
of the position buffer. The ability to provide a solution with
constant risk is a main feature of our method.

Let us consider from now on that the risk r associated with
each position box in the buffer is constant:

r = Pr (p(tpk) /∈ [p](tpk)) , k ∈ {1 . . . o} (7)
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Let Nok be the number of position boxes that are consistent
with the truth. The probability of having exactly i good
positions out of o is given by the binomial distribution:

Pr(Nok = i) =

(
o

i

)
(1− r)iro−i (8)

where
(
o
i

)
= o!

i!(o−i)! is the binomial coefficient.
Thus, by summing (8) over successive values of i, the proba-
bility of having at least o− q good position boxes is:

Pr(Nok ≥ o− q) =

o∑
i=o−q

(
o

i

)
(1− r)iro−i (9)

The proposed pose estimation algorithm computes a guaran-
teed approximation [x](t) of the solution at time t. Moreover,
if the number of spurious positions in the buffer is less than or
equal to the number q of relaxed positions, then the solution
is guaranteed to be consistent with the true pose x(t). This
way,

Nok ≥ o− q ⇒ x(t) ∈ [x](t)

which leads to

Pr(x(t) ∈ [x](t)) ≥ Pr(Nok ≥ o− q) (10)
Pr(x(t) /∈ [x](t)) ≤ 1− Pr(Nok ≥ o− q) (11)

R ≤ 1−
o∑

i=o−q

(
o

i

)
(1− r)iro−i (12)

where R denotes the maximum risk associated with a pose
computed from the data history.

In practice, Eq. (12) can be used in several ways: one can
choose the size o of the position buffer, the number of tolerated
outliers q, and the confidence in each position box and then
deduce the corresponding risk. Another way is to specify the
risk R and then compute the corresponding r given o and q.
In the reported results, r was fixed, o was limited by real-time
constraints and q was set to one.

VII. RESULTS

A. Experiment
Data acquisition was performed on the Stereopolis vehicle

from the French Institut Géographique National (IGN), for
the CityVIP research project. It consists in three laps of a
1 km loop in the 12th arrondissement of Paris, which roughly
corresponds to a 15-minute drive around the local town hall
(Fig. 13).

The drivable space is provided by the IGN. It is hand made
from precise aerial photographs [30]. It has been converted
from its original Lambert93 projection to the local working
frame in which the GPS positioning is performed. We use GPS
pseudorange measurements acquired at 2 Hz with a Septentrio
PolaRx2 receiver, all pseudoranges with L1 carrier to noise
ratio below 35 dBHz were filtered out. Satellite positions
and pseudorange corrections were computed with the open
source GPSTk library [25]. Ground truth is provided by a post-
processed Applanix inertial navigation system.

The acquired data is very challenging for autonomous GPS,
since 85% of the measurement epochs have less than 4
satellites in use. There are no more than 2 satellites in use
during 56% of the test run (Fig. 14).

Figure 13. Trajectory around the 12th arrondissement town hall in Paris
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(b) Skyplot during the first lap

Figure 14. Satellite visibility with C/N0 ≥ 35dBHz

B. Real-time implementation

SIVIA algorithm and contractors are implemented in C++.
The bisection strategy is “largest box first”, which enables to
evenly explore the solution space, even if the computation has
to be stopped after a timeout to satisfy real-time requirements.
As more time is allotted to set inversion, the solution gets more
precise, thanks to smaller boxes in the subpaving, which tend
to reduce pessimism and wrapping effect.

Since computation on each box is completely independent
from the other boxes of the subpaving, SIVIA benefits a lot
from parallel processing. In our implementation, the workload
is distributed in several threads to take advantage of multicore
architectures.

The tightly coupled GPS-map fusion is a rather fast compu-
tation. On the contrary, the process of robust pose estimation
on the data horizon is time consuming. The system has
been designed to enable real-time positioning despite the high
latency of robust pose estimation. For this purpose, two pose
computation tasks are simultaneously running (Fig. 15):
• The robust pose estimation based on the map and the

horizon of previous positions and proprioceptive data.
Since it requires heavy computations, this task yields
results too late for real-time.

• An quick pose predictor, which computes the new pose
each time a proprioceptive measurement is received. It
only uses the previous pose, the map and the vehicle
evolution model. This predictor, which only relies on map
and odometry, enables to get low-latency results while
keeping the robustness to erroneous positions.
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Robust pose 
estimation

Position 
history

GPS Odometer Gyro

Low latency 
Pose 

prediction

Buffer 
management

Tightly coupled 
GPS-map 

fusion

Drivable space

pseudoranges

position

Proprio 
history

Last pose

Figure 15. Real-time implementation of the robust pose estimation system

C. Pose estimation results

In this experiment, the risk has been specified to be less
than R = 10−3 in each pose estimate, using equation (12).
This is the common risk requirement in mobile robotics.

After several preliminary tests, the position buffer length
was set to o = 10 boxes, with a spatial density of two.
Two values of q have been retained. A first experiment has
been done with q = 0, i.e. no robustness to wrong position
in the horizon. This enables a comparison with the bootstrap
constrained particle filter (CPF) presented in section II-C. A
second run has been done with q = 1, i.e. one wrong position
box was tolerated in the horizon, in order to evaluate the
pessimism introduced by fault tolerance.

With q = 0, the tightly-coupled GPS 3D-map positioning
is therefore tuned with a risk r = 10−4. Assuming Gaussian
pseudorange error with 1 m variance, this leads for example
to ±4.15 m pseudorange error bounds with 3 satellites in view
and ±3.89 m with one satellite. With q = 1, the inversion of
Eq. (12) gives r = 4.8 · 10−3.

The pose estimation process provides a list of boxes up to
20 Hz. One can remark that even if the last pose (Fig. 15)
is a subpaving, the list of boxes can overlap because of
the prediction step. While this representation gives a good
knowledge of confidence domain, a punctual estimate is useful
for comparison with the CPF. We thus also compute a pose
estimate as the center of gravity of the solution set (Fig. 16).

At the beginning of the test run, the punctual pose estimate
only roughly follows the ground truth trajectory (see the
overshoot on Fig. 16). Indeed, the pose estimation algorithm
starts with no prior knowledge of the vehicle’s heading: the
prior value for [ψ] is set to interval [−π, π]. This leads
to multiple pose hypotheses that offset the pose estimate
(Fig. 17a). When enough data is gathered, wrong hypotheses

−2800 −2750 −2700 −2650 −2600 −2550 −2500 −2450

−600

−550

−500

−450

−400

−350

−300

Easting (m)

N
o

rt
h

in
g

 (
m

)

Start

Figure 16. 2D computed trajectory (center of gravity of the solution set) for
the three laps (thick blue). Thin red line is ground truth.

are discarded (boxes “die” because of inconsistency), and a
more precise estimate is computed (Fig. 17b).

(a) Ambiguous pose at the beginning
of the test

(b) Non-ambiguous pose

Figure 17. Solution subpaving at two epochs (thick blue boxes). Thin boxes
are the position history, green lines point to the used satellites.

The narrow streets of the trial which induces strong urban
canyons (Fig. 13). Despite this bad GPS satellite visibility, the
fusion system enables positioning information along the whole
trajectory.

During the whole test, the pose subpaving remains con-
sistent with ground truth. Figure 18 shows the errors on the
position estimate (center of gravity of the subpaving), along
with the bounds of the subpaving. In the first 30 seconds
of the experiment, the heading is not well initialized. When
enough positions are gathered in the buffer, a precise heading
estimated is obtained. Reduction of the heading uncertainty
enables a better rejection of wrong hypotheses at crossroads.
During the try, longitudinal error is generally larger than lateral
error. This is mainly due to the strong map constraint: the
vehicle’s itinerary mainly follows narrow streets. Once road
ambiguity is resolved, GPS pseudoranges mainly provide a
longitudinal constraint which can be biased due to measure-
ment and corrections errors, especially when only one or two
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satellites are used.

0 200 400 600 800 1000
−15

−10

−5

0

5

10

15

(m
)

t (s)

Error along x axis and bounds (East)

0 200 400 600 800 1000
−15

−10

−5

0

5

10

15

(m
)

t (s)

Error along y axis and bounds (North)

Figure 18. Set-Membership position estimation error (blue) and confidence
upper and lower bounds (gray).

Figure 19 shows the outputs of the CPF. Estimation errors
are of the same level as the set-membership horizon filter
(SMHF). In order to have the same level of confidence
(R = 10−4), bounds are computed with ±3.29σ. Compared
to the proposed approach, confidence domains are smaller, but
remain in the same order of magnitude. Nevertheless, one can
notice that numerous samples show too optimistic confidence
intervals.
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Figure 19. CPF position estimation error (blue) and confidence upper and
lower bounds (gray). Pink areas highlight instants where confidence bounds
are inconsistent.

The graphs of Fig. 20 express in a compact isotropic
representation the consistency of the filters. They show the
positioning error in the horizontal plane. The confidence radius
is computed along the error vector. For the Bayesian filter,
the confidence domain is an ellipse and the confidence radius
is determined by using the covariance matrix eigenvalues.
For the SMHF, the error radius is the distance between the
estimate and the intersection of the bounding box with the
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(a) Set-membership horizon filter (10-position horizon, q = 0)
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(b) Constrained Particle Filter

Figure 20. 2D position error (black) and confidence radius (gray)

error vector. In opposition to Fig. 18, the y-axis is not truncated
in order to appreciate the full range of the parameters. Fig. 20b
highlights frequent inconsistencies for the CPF when the black
curve (estimate) goes out of the gray zone (confidence radius).
Fig. 20a clearly show the consistency of the SMHF.

With the center of gravity of the subpaving as a pose
estimator, the horizontal position error is less than 5.1 m for
95% of the measurement epochs and is less than 2.1 m half
of the time. (Fig. 21). The same figures for the CPF error are
4.5 m 95% and less than 2.3 m half of the time. Globally
speaking the CPF provides less extreme values errors, and
more biased estimates than the SMHF.

The same figure shows that robustifying the SMHF by
relaxing a constraint in he buffer (q = 1) has very little
impact on the performance (5.47 m 95%, 1.8 m 50%). The two
cumulative error distributions match very well (see Fig. 21).
This shows that relaxing 10% of the exteroceptive information
provides the same level of accuracy. Moreover, as shown in
Fig. 22, the confidence radius are roughly the same than the
non-robust SMHF, with some higher peaks in very strong
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urban canyons (eg at t ' 700 s). Detailed error statistics are
reported in table I.

Table I
HORIZONTAL POSITION ERROR (HPE) STATISTICS

CPF SMHF (q=0) SMHF (q=1)
Mean HPE 2.50 m 2.43 m 2.45 m

Median HPE 2.36 m 2.09 m 1.81 m
95th percentile HPE 4.52 m 5.1 m 5.47 m

Max HPE 5.65 m 9.40 m 13.02 m
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Figure 21. Cumulative distribution function of the horizontal position error
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Figure 22. 2D position error (black) and confidence radius (gray) for the
robust SMHF with q = 1 (10 positions in horizon)

Figures 23 and 24 are integrity plots. They represent the
estimated error bounds versus the actual position error. The
bisector cuts the graph in two areas: the upper area corre-
sponds to a safe operation, while the lower one corresponds
to misleading information (i.e. over-confident). Usually, an
alarm limit is plotted to check localization availability. Here,
since there are no specified performance with respect to this
requirements, this threshold is omitted.
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Figure 23. Integrity plot of the constrained particle filter
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Figure 24. Integrity plot of the set-membership horizon filter

One can notice, as stated before, that the CPF is often over-
confident and that the SMHF provides consistent bounds with
ground truth. Indeed, with the SMHF, the true position is
always inside the confidence domain. True position touches
the edge of the confidence domain in 0.15% of the epochs
which is approximately the tuning of the filter. Conversely,
the ±3.29σ confidence bounds of the CPF are violated 41%
of the time.

Figure 24 shows a tendency in the SMHF error bounds to
grow linearly with the actual error, which makes computed
error bounds a good indicator of positioning errors in real-
time. The CPF does not exhibits such a nice characteristic
(Fig. 23).
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VIII. CONCLUSION

A fusion localization method that continuously provides a
vehicle pose estimate with high integrity has been presented
in this article. Since urban environments are difficult for
GPS positioning, extensive use of a precise 3D map of the
drivable space has been done to constrain the localization
problem. Positions are first computed by a tightly coupled
fusion of GPS pseudoranges and the map. The problem is
solved by a set inversion algorithm based on interval analysis
where both pseudoranges and the map are considered as
geometrical constraints on position. Thanks to the 3D map,
position computation with as low as two satellites in view is
possible if a rough prior position is known (i.e if the road
segment is known). Since wrong GPS measurement may lead
to empty or erroneous solutions, and since satellite visibility
can be greatly reduced in urban canyons, this first positioning
step cannot ensure 100% positioning availability. Computed
positions are thus gathered in a data history along with pro-
prioceptive measurements, to enable robust pose estimation in
a second step. Position data history filling strategy uses spatial
criteria to ensure that heading is still observable, even after a
long stop. Road data is introduced in the robust constraint
propagation process to tighten the solutions, to eliminate the
dead-reckoning drift and to reduce positioning ambiguities
after GPS outages. To enable high-rate positioning in real-time
conditions, a quick prediction based on a box particle filter
constrained by the map is performed between pose estimation
results.

Experimental validation was performed in very challenging
GPS conditions, i.e. an urban canyon with at most two
satellites in view half of the time. A constrained particle
filter (CPF) has been implemented for comparison purpose.
Real-time processing tests showed the system’s ability to
provide full positioning availability, pose confidence domains
consistent with ground truth, and positioning errors below
5.1 m 95% of the time. Under the same conditions, the CPF
yield comparable point-positioning results, but only half of the
confidence domains were consistent with ground-truth.

APPENDIX A
FAST q-RELAXED INTERSECTION CONTRACTOR

Computing the q-relaxed intersection of m n-dimensional
boxes is the core step of the robust set inversion algorithm
and the q-relaxed contractor. Unfortunately, this problem has
an O(mn) complexity [13]. When the dimension n of boxes
is fixed, the problem is polynomial with respect to the number
of boxes. In our case, n = 4 because the intersection is done
on ([e], [n], [cosψ], [sinψ]).

A fast contractor for the q-relaxed intersection can be im-
plemented using axis-projection of constraints (Fig. 25). Each
dimension is considered separately. Constraint propagation
is applied to the input box, thus obtaining a smaller box
constrained by only one measurement. The obtained upper
and lower bounds for the considered axis are added to a list
of bounds and associated values: each opening bracket (lower
bound) is associated with the +1 value while each upper bound
is associated with the −1 value. A similar list of bounds is
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Figure 25. One iteration of the axis-projection q-relaxed contractor, with
three constraints (shown in red, green and blue) and q = 1. The result is in
gray.

constructed for each dimension and populated by applying
constraint propagation of each available measurements to the
input box.

For each axis, bounds are sorted in ascending order and
a counter is set to 0. Then, the bounds corresponding to the
axis are examined from the lowest to the highest. Each time a
bound is encountered its corresponding value is added to the
counter. The first bound that makes the counter hit m − q is
set as the axis’s lower bound. The last bound that causes the
counter to fall below m− q is set as the upper bound for the
considered axis. The contracted box is the Cartesian product
of the contracted intervals obtained on each dimension. The
contraction process is iterated until the box size can be reduced
no further.

This contractor is not optimal – i.e it does not reach
the interval hull of the q-relaxed intersection of boxes in
the general case – but its complexity is low: assuming a
sorting algorithm of linearithmic complexity, the fast q-relaxed
intersection contractor performs in O(n · m log(m)). After
contraction, the box is bisected and enqueued so as to narrow
the result further in subsequent processing.
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