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Marek Kurdej, Julien Moras, Véronique Cherfaoui, Philippe Bonnifait. Controlling Rema-
nence in Evidential Grids Using Geodata for Dynamic Scene Perception. International Journal
of Approximate Reasoning, Elsevier, 2014, 55 (1), pp.355-375. <10.1016/j.ijar.2013.03.007>.
<hal-00831608>

HAL Id: hal-00831608

https://hal.archives-ouvertes.fr/hal-00831608

Submitted on 7 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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60205 COMPIÈGNE CEDEX, France

Abstract

This article proposes a perception scheme in the field of intelligent vehicles.
The method exploits prior map knowledge and makes use of evidential grids
constructed from the sensor data. Evidential grids are based on occupancy
grids and the formalism of the Dempster–Shafer theory. Prior knowledge is
obtained from a geographic map which is considered as an additional source
of information and combined with a grid representing sensor data. Since the
vehicle environment is dynamic, stationary and mobile objects have to be dis-
tinguished. In order to achieve this objective, evidential conflict information
is used for mobile cell detection. As well, an accumulator is introduced and
used as a factor for mass function specialisation in order to detect static cells.
Different pieces of information become obsolete at different rates. To take this
property into account, contextual discounting is employed to control cell rema-
nence. Experiments carried out real-world data recorded in urban conditions
illustrate the benefits of the presented approach.
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1. Introduction

The research field of this paper is the domain of intelligent vehicles, which
have been a hot topic for at least a few decades. The need to perceive and
understand the surrounding environment is crucial for multiple tasks, such as
navigation, planning and other Advanced Driver Assistance Systems (ADAS),
which aim at improving safety in road and urban environments. The incon-
testable appeal of possible applications collides with numerous theoretical and
practical problems. A difficulty resulting from robot perception is that the
sensors which are at one’s disposal have partial view of the scene and provide
imperfect data. Multi-sensor data fusion is one way to improve the field of
view of a perception system and to improve the quality of data. Moreover, the
availability of more and more detailed and precise geographic databases gives
an opportunity to incorporate prior map knowledge into a perception system.
Geodata can be fused with sensor data in order to infer more refined information
about the vehicle environment. The semantic information from this data can be
used to perceive and to analyse the dynamics of different objects in the scene.
The contribution of this paper is to propose a new perception scheme based
on the fusion of data coming from embedded sensors and a digital map and on
managing the remanence of scene objects in an evidential grid representation.
The formalism of Dempster–Shafer theory is used to manage uncertainties.

This article is organised as follows. Section 2 presents the background and
the general idea of the proposed method. Tools and basic notions, such as
evidential grids, are explained in Section 3. Further, details on the information
fusion are given in Section 4. Different aspects are presented: from the spatial
fusion of grids and combination of prior knowledge through the temporal fusion,
accumulation method and specialisation until contextual discounting. Section 5
serves as a detailed description of the experimental setup and of the data used
in tests. It also includes a description of the sensor model, which is independent
of the presented method. Section 6 presents the results which show how the
proposed method addresses the occultation problem and various dynamics of
scene. Finally, Section 7 concludes the paper and presents ideas for future
work.

2. Problem statement

An efficient perception scheme for intelligent vehicles has to address many
issues in order to provide desired outcomes. This is possible using multi-sensor
data fusion and/or temporal fusion. Temporal fusion exploits the fact that the
vehicle moves and so the data from one sensor can be combined at different
moments, therefore at different positions. In this way, the field of view can be
enlarged, so that the limitations of the sensors become less stringent. As seen in
Figure 1a, raw sensor information is semantically poor and needs more elaborate
processing to achieve useful results. Figure 1b shows how a perception system,
using available sensors, is able to distinguish various types of objects. Similarly,
the use of multiple data sources and fusion algorithms improves the accuracy
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and the integrity of data. Having accurate data is of course important, but it
is essential to maintain data integrity. This means that such data are complete
and consistent, and uncertainties are quantified.

Another important question is the notion of scene dynamics: static environ-
ments are much less demanding than the dynamic ones, and a robust method
has to deal with this problem explicitly. The complexity of a typical scene is
in general high, so that it is necessary to simplify the perception system and to
add more semantic information.

(a) Data interpretation of a lidar point cloud. (b) Perception system goal.

free space stopped objects moving objectsbuildings unknown space

Figure 1: Bird’s eye view of a scene example.

2.1. Method description

In this article, we propose a method which tackles these issues. The main
idea is to accumulate temporal information and to incorporate prior knowledge
from maps in a grid which covers a part of the environment. The intention is
similar to the Simultaneous Localisation and Mapping, Moving Object Track-
ing (SLAMMOT) problem [2, 3], where moving objects are detected, with the
difference that no tracking is performed. One can remark that moving versus
static object detection is not provided by any optical sensor, but is the result of
the fusion process. Indeed, our perception system does not include any sensor
like a radar, which uses Doppler effect.

The difficulty of dealing with the dynamics of the scene arises from two main
reasons. The system carrier (robot, vehicle) is a moving actor in interaction with
other objects in the scene. These objects themselves can be mobile: momentarily
stopped or on the move. Temporal fusion and data accumulation serve a double
purpose. On the one side, they allow to filter the sensor noise and, on the
other hand, to conserve some pieces of information. Preserved information can,
for instance, concern the zones of vehicle environment that are not subject

3



to occultations. An important assumption is made: the scene dynamics is
limited. It means that one can fix a forgetting factor which bounds the process
of information conservation. This factor is closely attached to and acts on the
data remanence: adapting this parameter changes the persistence of a given
stimulus after its disappearance. The term stimulus corresponds to sensor data,
and the persistence represents the time during which these data are present in
the perception grid.

2.2. Geodata exploitation

The principal novelty of the method is the use of meta-knowledge obtained
from a digital map. This approach is at odds with the SLAMMOT methods,
because it uses maps prepared beforehand. More and more maps are accessible
nowadays. They are even more precise, accurate and complete than ever. The
proposed method tries to enhance the dynamic perception of the environment
by considering maps as an additional source of information on a par with other
sources, e.g. sensors. So far, the prior information obtained from maps can be
used to predict the trajectories of dynamic objects [4]. In contrast, this article
focuses on maps as prior knowledge serving the purposes of perception. The
proposed idea is to control different perception dynamics in the same scene,
thanks to the map. For example, perceived buildings should not be forgotten
quickly. On the contrary, mobile objects with a short “lifetime” in the scene
should be updated rapidly, so discarded (almost) as soon as they disappear. In
this context, “lifetime” means the time that an object spends in the environment
represented by a single cell of perception grid. As a consequence, this method
allows to manage the occulted zones and objects. It could as well be used in
a closed-loop localisation system, perceived landmarks would be associated to
the reference map data. A similar approach is presented by Hentschel et al.,
where a GPS receiver is coupled with a laser-based sensor and a 2D reference
map containing static line features [5]. Some other researchers have already
used maps and geodata for various purposes. Several works have successfully
exploited such data for mobile navigation [6, 7]. Cappelle, Dawood et al. defined
a 3D city model as a source of prior knowledge for vision-based perception and
navigation [6, 8].

2.3. Use of the Dempster–Shafer theory

The Dempster–Shafer theory (DST) proposed by Dempster [9] and devel-
oped, among others, by Shafer and Smets [10, 11, 12] gained its popularity
thanks to various interesting properties. The most important reasons that con-
vinced the authors to use the DST are as follows. The vehicle environment
contains many occultations and barely observed or non-observed zones. The
representation of the unknown, inherent to the DST and missing in the theory
of probability permits to handle this notion in a way. Fusion operators defined
in the DST are able to manage uncertainties and conflict between information
sources. Recent work of Klein et al. has shown by introducing a particular con-
flict criterion that a proper conflict analysis may be helpful to identify singular,

4



or outlying, information sources [13]. There has been also substantial research
work on data association problems, such as multi-target tracking, which exploits
conflict management [14].

In a perception system, it is desirable to have a tool to manage different lev-
els of detail, since the obtained information cannot be always interpreted clearly
and precisely. In the DST, this tool is at the core of the theory. A frame of dis-
cernment can be as refined as the most detailed data obtained from the sensors,
but still, it remains possible and easy to combine information which is more
general by affecting masses on non-singletons. There are also well-established
methods to deal with multiple frames of discernment [15]. Such management
of levels of detail would be impossible or at least difficult with an accumulation
schema. There are already some works which take advantage of the theory of
evidence in the context of mobile perception [16, 17]. In other domains, the
Dempster–Shafer theory has been used as well, e.g., for visual tracking. Klein
et al. presented a hierarchical combination scheme that makes use of existing fu-
sion rules and source classification with respect to their reliability and precision
[18].

3. Dynamic perception using evidential grids

In the proposed approach evidential grids are used to represent 2D environ-
ment. The grids used by the method are called “perception grids”. In general,
these are occupancy grids like those proposed by Elfes [19] for robot navigation.
Initially, they were used merely for indoors robotics and could differentiate be-
tween free and occupied space only. The original idea used purely probabilistic
scheme, whereas Pagac et al. [20] proposed evidential grids based on DST [9].
The basic concept motivating this article is to develop this approach. Refining
the frame of discernment enabling the storage of additional information and
adding supplementary data makes this solution a promising approach towards
scene understanding. Among many advantages of the grids, the most important
are presented below.

Object-based approaches, which consist in detecting, recognising and track-
ing objects in the scene, although useful and semantically rich, are difficult to
manage except in the case of well-known environments. In opposition, grid-
based approaches can handle any kind of environment. Grids can also serve
as a basis for further processing steps, which can be object-based. Evidential
grids use the theory of evidence and benefit from its properties like natural rep-
resentation of the unknown and well-developed theoretical tools. Last but not
least, the use of evidential grids allows for the fusion of multiple sensors in a
straightforward manner. A grid can be constructed for each data source, and
all grids can be combined together into one SensorGrid (cf. Section 3.5) before
further processing. In this article, only one lidar sensor is used, hence there is
no need for a multi-sensor fusion step. Yet, it is worth noting that this step is
easily realisable.

Despite multiple benefits, occupancy and evidential grids present some chal-
lenges. Various computational problems, such as large needs for computing
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power are to be mentioned. They can be however diminished on highly efficient
modern architectures, exploiting, for instance, many-core systems by parallel
computation. Other issues can arise due to necessary coordinate transforma-
tions and the transit between local (robot-centred) and global (world-centred)
reference frames.

An occupancy grid models the world using a tessellated representation of
spatial information. In general, it is a multidimensional spatial lattice with
cells storing some stochastic information. In case of an evidential grid, each
cell represents a box (a part of environment) X × Y where X = [x−, x+], Y =

[y−, y+] stores a mass function mΩ
G{X, Y }. In this notation, mΩ,(t)

G {X, Y }(A)
is the mass on Ω of element A for the grid G at time t and at position {X, Y }.
Some parts of this notation will be omitted in the following when no risk of
confusion exists.

exteroceptive
sensor 3

SourceGrid 3
(local)

SourceGrid 3
(global)

exteroceptive
sensor 2

SourceGrid 2
(local)

SourceGrid 2
(global)

exteroceptive
sensor 1

SourceGrid 1
(local)

SourceGrid 1
(global)

localisation
sensor

maps GISGrid (global)

spatial

fusion

SensorGrid

temporal

fusion

discounting

PerceptionGrid

Figure 2: Method overview.

3.1. Map-aided perception system architecture
The high complexity of a perception system deserves a profound considera-

tion on the architecture of the system. There are few works on the architecture
of systems using grid-based approach, but some insightful studies of similar top-
ics have been realised by Durekovic and Smith [21] and by Benenson and Parent
[22]. Among many foreseeable architectures, the chosen one is considered to be
the simplest and the most effective.

Figure 2 presents a general overview of our approach. Starting on the left-
most side, the diagram shows the data sources. The method employs different
evidential grids for the storage of: prior information, sensor acquisitions and fu-
sion result. Every processing step will be detailed in Section 4, which contains
as well the description of the evidential grids and the fusion method.

All system inputs mentioned on Figure 2 are necessary in the proposed
perception system:

� at least one exteroceptive sensor,
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� localisation sensor (GNSS receiver, proprioceptive sensor, IMU),

� vector map containing geometric information (roads, buildings).

The presented approach is based on the hypothesis that all information sources
are available. If multiple sensors are at hand, the method is adapted to use
them and takes advantage of this supplementary information.

An exteroceptive sensor gives a partial view of the vehicle environment. The
sensor is assumed to distinguish free and occupied space and model it in 2D x, y
or 3D x, y, z coordinates. The coordinates can be relative to the robot or world-
referenced. A typical exteroceptive sensor capable of satisfying this assumption
is a lidar (laser range scanner), a radar, or a stereo camera system.

A proprioceptive sensor like an Inertial Measurement Unit (IMU) or an
odometer hybridised with a GNSS receiver are needed to provide the vehicle
pose. Provided pose is assumed to be reliable, accurate and precise. The pose
should be globally referenced and is needed to situate the vehicle in the envi-
ronment. A hypothesis is made that the pose reflects accurately the real state
of the vehicle.

Lastly, our method tries to exploit at large the information contained in
geographical maps, so we assume that the maps are sufficiently detailed and
contain valuable and accurate data. At the minimum, the map data have to
contain buildings and road surface description.

3.2. PerceptionGrid

One of the evidential grids used in the system is the PerceptionGrid. It has
been introduced to store the results of information fusion. PerceptionGrid is as
well the output of the perception system and could be used in further steps, e.g.
for navigation. Mass functions of each cell use the frame of discernment (FOD)
ΩPG = {F, I, M, S, U}. The choice of such a FOD is motivated by the
objectives to be achieved. Respective classes represent: free space F , mapped
infrastructure (buildings) I, mobile moving objects M , temporarily stopped
objects S and unmapped infrastructure U . ΩPG is a common, most refined,
frame used during data processing when the frames of discernment in question
differ. As the PerceptionGrid retains the result of information fusion, the need
to store previous data disappears.

3.3. GISGrid

GISGrid is intended to contain all the data exploited from maps. It allows
to perform a contextual information fusion incorporating some meta-knowledge
about the environment. GISGrid uses the FOD ΩGG = {B, R, T}. Class
B corresponds to the area occupied by buildings, R to the road surface, and
class T models intermediate space, e.g. pavements, where mobile and stationary
objects as well as small urban infrastructure can be present. This grid is created,
for instance, by projecting map data onto a two-dimensional world-referenced
grid. This is the step where the meta-information from maps is included. For
example, this meta-knowledge can ban the existence of mobile objects where
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buildings are present and, conversely, it indicates the possibility to find these
objects on roads. The exact construction method of the GISGrid depends on
available geodata. It will be presented in Section 5.2.

The FOD ΩGG is different from the common frame ΩPG. Some rules in the
theory of evidence, such as Dempster’s rule, do not allow the direct combination
of BBAs expressed on different frames of discernment. It is then necessary to
express every belief assignment on a common frame of discernment before the
combination. In this article, the mapping rGG is used when needed:

rGG : 2ΩGG → 2ΩPG

rGG ({B}) = {I}
rGG ({R}) = {F, S, M}
rGG ({T}) = {F, U, S, M}
rGG(A) =

⋃
θ∈A

rGG(θ) (1)

∀A ⊆ ΩGG and A /∈ {{B}, {R}, {T}}

and the mass is transferred as follows:

mΩPG

GG (rGG (A)) = mΩGG

GG (A) ∀A ⊆ ΩGG (2)

The mapping rGG indicates that, for instance, building information B fosters
mass transfer to class I. On the road surface R, the existence of free space F as
well as stopped S and moving M objects is possible. Lastly, on the intermediate
area T , the existence of mapped infrastructure I can be excluded, but the
presence of the other classes cannot.

3.4. SourceGrids

For each exteroceptive sensor, such as a lidar, an evidential grid called
SourceGrid is created. In our case, only one grid of this kind is used, but the
system architecture permits the use of multiple sensors. For each acquisition, a
new grid is computed.

Each cell of the SourceGrid stores a mass function mSi defined on the frame
of discernment ΩSi . Typically for a lidar, ΩSi = {F, O}, where F refers to the
free space and O to the occupied space. The basic belief assignment depends
on the model of the actual sensor. Details about the sensor model used in this
article will be given in Section 5.3.

The frame of discernment ΩSi is distinct from ΩPG and a common frame
for all sources has to be found. Hence, a refining rSi is defined as stated in
equation 3.
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rSi
: 2ΩSi → 2ΩPG

rSi
({F}) = {F}

rSi
({O}) = {I, U, S,M}
rSi(A) =

⋃
θ∈A

rSi(θ) (3)

∀A ⊆ ΩSi
and A /∈ {{F}, {O}}

rSi
makes it possible to perform the fusion of SourceGridi containing instan-

taneous grid obtained from sensor i with other grids. Equation 4 expresses the
refined mass function.

mΩPG

Si
(rSi

(A)) = m
ΩSi

Si
(A) ∀A ⊆ ΩSi

(4)

3.5. SensorGrid
The evidential SensorGrid contains the combined instantaneous information

from all sensors and the prior knowledge from the maps. This grid is globally
referenced and uses the same frame of discernment ΩPG as the PerceptionGrid.
SensorGrid is the output of the spatial fusion and the input of the temporal
fusion, both described in the following sections.

4. Spatio-temporal fusion

4.1. Spatial fusion
As stated before, the proposed method uses maps in order to ameliorate the

perception scheme. The maps are the source of prior information which can
be used to gain more insight about the vehicle environment. The fusion of the
information from GISGrid with the sensor data stored in the SourceGrids (cf.
Figure 2) is performed on a cell-by-cell basis. At first, all grids are transformed
in order to use common frame of discernment ΩPG. Conjunctive rule of com-

bination (denoted ∩ ) is used to combine the SourceGrids, indexed from 1 to
Ns. Then, a normalised version of this operator is applied to the result and to
the GISGrid, as expressed by equation 5.

m
ΩPG, (t)
SG =

 Ns

∩
i=1

m
ΩPG, (t)
Si

⊕mΩPG

GG (5)

The conjunctive normalised rule of combination (also called Dempster’s rule
and denoted ⊕) was chosen because the geodata from maps and the sensor
data are considered to be independent. Furthermore, the sources are supposed
reliable, even if errors are possible. At the end of this stage, the resulting grid,
SensorGrid, is the combination of the sensor data from SourceGrids with the
prior knowledge from GISGrid.
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4.2. Temporal fusion

The temporal fusion serves the role of combining current sensor acquisition
with preceding perception result. The sensor information input has been al-
ready combined with prior information as described before. The general form
of information fusion operation is expressed by Equation 6.

m
(t)
PG = αm′

(t−1)
PG ~m

(t)
SG (6)

Fusion steps combine the PerceptionGrid from preceding epoch αm′
(t−1)
PG with

the SensorGrid from current epoch m(t)
SG using fusion operator ~ which belongs

to the family of conjunctive operators. PerceptionGrid used for the fusion
operation is the result of the process, including the conflict analysis1 and mass
function specialisation denoted by the apostrophe in m′PG, as described in the
following paragraphs. Notation αm represents the discounting operation as
presented in Section 4.3.

4.2.1. Conflict analysis
To exploit dynamic characteristics of the scene, we propose the analysis

of inflicted conflict masses. The idea presented in [23] is used here to manage
conflict masses. This need arises from the fact that the environment is dynamic.
Some authors have elaborated different conflict management to detect changing
areas [24]. Two types of conflict are therefore distinguished.

In the proposed fusion scheme, ∅FO denotes the conflict induced when a
free cell in PerceptionGrid is fused with an occupied cell in SensorGrid.
Analogically, ∅OF indicates the conflict mass caused by an occupied cell in
PerceptionGrid fused with a free cell in SensorGrid. Conflict masses are
given by:

m
(t)
PG (∅OF ) = m

(t−1)
PG (O) ·m

(t)
SG ({F})

m
(t)
PG (∅FO) = m

(t−1)
PG ({F}) ·m

(t)
SG (O) (7)

where m(O) =
∑
A⊆{I,M,S,U}m(A). In the ideal case where no noise is present

in the input data, conflicts ∅FO, ∅OF represent, respectively, appearance and
disappearance of an object.

4.2.2. Static cell characterisation
Mobile object detection is a crucial issue in dynamic environments. To

meet this need, an accumulator ζ is introduced. Secondly, a mass function
specialisation using ζ is performed to distinguish temporarily stopped objects
from those that are moving.

1 Actually, αm′(t−1)
PG represents the result of the prediction model: grid from time t− 1, is

used to obtain the predicted state of the world at time t. Hence, both mass functions mSG and
mPG describe the same instant of environment state, and so the conflict analysis is justified.
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ζ is defined in each cell in order to include temporal information on the cell
occupancy. For this purpose, a gain δ ∈ [0, 1] and an decrement-to-increment
ratio γ have been chosen. Section 5.4 explains what factors influence the compu-
tation of these parameters and sheds some light on their physical interpretation.

ζ(t) = ζ(t−1) + δ [mPG(O) · (1−m∅)− γ · (1−mPG(O))] (8)

Value of ζ is consequently clamped into range [0, 1] so that it could be used in
a specialisation matrix.

ζ(t) = max
[
0, min

(
1, ζ(t)

)]
(9)

Accumulator ζ behaviour is described in Section 4.2.4. ζ brings a piece of
evidence about a more specific set, here the static classes. ζ values are used
to specialise mass functions in PerceptionGrid using equation 10. Masses on
elements of m(t)

PG are transferred to m′
(t)
PG according to specialisation matrix

S(t) as presented by equation 10. It is noteworthy to mention that S(t)(A,B)
represents the ratio of the mass attributed to set B that will be transferred to
set A.

m′
(t)
PG (A) =

∑
B⊆ΩPG

S(t)(A,B) ·m
(t)
PG(B) ∀A ⊆ ΩPG (10)

A specialisation matrix S(t) is used to do the mass transfer. Matrix S(t) is
identically zero except for the following elements:{

S(t)(A\ {M} , A) = ζ(t)

S(t)(A, A) = 1− ζ(t)
∀A ⊆ ΩPG and A 3 {M}

S(t)(A, A) = 1 ∀A ⊆ ΩPG and A 63 {M} (11)

The idea behind the specialisation matrix and the accumulator is that mov-
ing objects are differentiated from static or stopped objects. The mass at-
tributed to sets {U, S, M} or {S, M} will be transferred to {U, S} or {S},
respectively. Additionally, the value of the transferred mass is proportional to
the time that the cell in question stayed occupied.

4.2.3. Fusion rule
The fusion rule ~ from Equation 6 is based on the conjunctive rule of com-

bination, but it has been influenced by Yager’s fusion operator [25]. An effort
has been made to adapt it for mobile object detection. Yager’s operator has the
advantage of not attributing more mass than given by the sources to any class
except for the unknown Ω (which is the case with normalised rules).

As indicated above, some modifications to the conjunctive rule have to be
performed in order to distinguish between moving and stationary objects. These
changes consist in transferring the mass corresponding to a newly appeared ob-
ject to the class of moving objects M as described by equation 12. Fusion rule ~
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has no longer the commutative nor associative properties, but the temporal fu-
sion is performed sequentially and the order is imposed.

(m1 ~m2) (A) =
(
m1

∩ m2

)
(A) ∀A ( Ω and A 6= M

(m1 ~m2) ({M}) =
(
m1

∩ m2

)
({M}) +

(
m1

∩ m2

)
(∅FO)

(m1 ~m2) (Ω) =
(
m1

∩ m2

)
(Ω) +

(
m1

∩ m2

)
(∅OF )

(m1 ~m2) (∅FO) = 0

(m1 ~m2) (∅OF ) = 0 (12)

The above mentioned steps conduct to the construction of a PerceptionGrid,
which is the system output. Such a PerceptionGrid contains rich information
on the environment state. It includes the knowledge on mobile and static cells
divided in classes.

4.2.4. Temporal fusion behaviour analysis
The temporal fusion step described in the previous paragraphs is the core

part of the proposed fusion scheme. This operation is also a complex one and
requires additional comments. Figures 3 and 4 present the behaviour of the
proposed fusion scheme in different contexts: road and intermediate space, re-
spectively.2

In both figures, parts (a) show the evolution of the mass function of the
SourceGrid, i.e. the sensor acquisition. Performed simulation models a single
cell that stays free for 5 iterations, or sensor cycles. Then, the cell stays occupied
until iteration no. 24 and, finally, becomes free again. This situation can be
interpreted as an appearance of an object which stays for a longer time and
leaves its place in the end.

Parts (b) represent the mass function of the GISGrid, so the prior informa-
tion obtained from maps. In the road context, the major part of the mass is
attributed to the FMS class (free space, moving or stopped object), shown as
dotted red line. In contrast, in the intermediate space context, the affected class
is the FMSU (free space, moving or stopped object, or unmapped infrastruc-
ture), depicted by dash-dot blue line.

Parts (c) and (d) consitute the most important part of the comparison. They
present the evolution of the PerceptionGrid mass function with different values
of parameter δ.

Looking at Figures 3c and 3d, one can observe that the evolution of free space
mass F (solid green line) follows a well-known pattern. During the iterations
1 to 5, as the sensor detects the cell as free repeatedly, the F mass augments
due to conjunctive rule behaviour. When the cell is detected as occupied in

2Not all the subsets of the frame of discernment have been shown on these figures, so the
sum of visible masses may be less than 1.
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the 6th cycle, the pieces of information in SourceGrid and PerceptionGrid
become contradictory and create a conflict, which is transferred to moving ob-
jects class M (dotted red line with plus signs). The mass of movable (moving
or stopped) class MS (dotted black line with squares) is affected as well due to
the discounting operation.

The cell stays occupied until iteration 25. During this period, accumulator
ζ increases progressively, which causes the mass transfer from MS to stopped
class S (dotted magenta line with diamonds)3. The M mass diminishes as the
cell stays occupied and finally approaches zero.

When the cell gets free again at iteration 25, a high peak in unknown Ω =
FIMSU mass value is observed. This behaviour arises because of the transfer
of ∅OF conflict mass to Ω set4 . At the same moment, the accumulator ζ starts
to decrease. In the next cycles, the free mass F grows steadily and the other
(occupied) classes diminish rapidly. ζ drops to zero at a much faster rate than it
grew before. Such a behaviour is of course attended and should be interpreted
as if a stopped object started to move.

Parts (c) and (d) present how the change in the accumulator gain δ impacts
the mass evolution. Higher value of δ accelerates the classification of a cell as
a stopped one, class S. Similarly, higher value of γ ratio would accentuate the
drop of the accumulator value when a stopped object leaves the cell (iteration
25 onwards).

The above description is valid for both Figures 3 and 4 with minor dif-
ferences. Firstly, in the intermediate space, classes stopped S and unmapped
infrastructure U cannot be distinguished by the fusion itself and the difference
in values comes mostly from the discounting. Namely, the behaviour of masses
MS and S in the road context corresponds to the classes MSU , SU and U in
the intermediate space.

4.3. Discounting

The belief function theory makes it possible to model one’s opinion about
the reliability of an information source using discounting. The point is that
more reliable sources get assigned heavier weights than the less reliable ones.
The result of discounting of the basic belief assignment (bba) m is a new bba
αm (both defined on the FOD Ω), which is obtained by:

αm(A) = (1− α) ·m(A) ∀A ⊆ Ω, A 6= Ω
αm(Ω) = (1− α) ·m(Ω) + α (13)

3 The mass transfer from class MS to S is just one example. Actually, all the classes that
contain class M are affected and a part of their masses get transferred to their subset without
the M class, e.g., from MSU to SU .
4 One could argue that the fusion rule is unnecessarily non-symmetrical here, and the

∅OF conflict could be transferred to the free class F . However, it seems prudent to postpone
the growth of the free mass, especially in the case of the presented application. Namely, an
intelligent vehicle should compensate for aberrant input data obtained from not completely
reliable sources.
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(c) PerceptionGrid. γ = 5, δ = 0.05
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(d) PerceptionGrid. γ = 5, δ = 0.15

Figure 3: Fusion rule behaviour in the road context.
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(b) GISGrid.
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(c) PerceptionGrid. γ = 5, δ = 0.05
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(d) PerceptionGrid. γ = 5, δ = 0.15

Figure 4: Fusion rule behaviour in the intermediate space context.
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Factor α, called the discounting factor may be considered as the level of distrust
in this particular sensor.

4.3.1. Temporal discounting
The trust assigned to the information on the PerceptionGrid depends on

the time elapsed since the acquisition of the data because the environment is
dynamic. The term temporal discounting denotes this particular discounting
operation [26]. Then, temporal discounting can be used to partially “forget”
information which is no longer valid. In the frame of mobile perception, the
environment changes rapidly and discounting becomes indispensable to avoid
keeping obsolete information.

Discounting factor α still models the level of reliability assigned to the source,
but it serves also another purpose. In temporal discounting, α represents the
speed with which information becomes obsolete. This process is often called
“information ageing”. Some authors proposed that α is a function of elapsed
time ∆t = tcurrent − tacquisition and a remanence characteristic ρ of the event E
(information arrival) [26], expressed as a time value in seconds:

α = 1− exp
∆t

−ρ(E)
(14)

Often data arrives at regular intervals and the processing starts instantly, so α
can be fixed to a constant value.

4.3.2. Contextual discounting
Mercier et al. in [27, 28] introduced and further developed contextual dis-

counting — a type of discounting that makes it possible to adapt the forgetting
rate to the context. When more detailed information regarding the confidence
ascribed to the sources is available, contextual discounting permits to model
this fact. Together with temporal discounting, it can be modelled that different
pieces of information become obsolete at different rates. Since meta-knowledge
of the robot environment states that some objects (like buildings) do not change
rapidly, whereas other do (mobile objects: cars, pedestrians), the contextual dis-
counting process takes these facts into account.

To perform contextual discounting, the frame of discernment Ω has been
partitioned5, each element of partition containing classes with similar dynam-
ics (similar changing rate). We have based the choice of the partition Θ on
common sense and divided Ω using the coarsening Θ = {θstatic, θdynamic}.
This choice can be different depending on, among other things, the meta-
knowledge possessed about the environment. In the presented method, factor
αdynamic was attributed to the free space as well as stopped and moving objects
θdynamic = {F, S, M}. Discount rate αstatic was assigned to the static objects
θstatic = {I, U}.

5However, it is not necessary when using the contextual discounting as described in [28].
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Figure 5: Effect of uniform temporal discounting on different classes. Evolution of mPG as a
function of time; α = 0.05. The masses on the dynamic and static classes are superposed as
they decrease at the same rate.
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Figure 6: Effect of contextual temporal discounting on different classes. Evolution of mPG as
a function of time; αdynamic = 0.01, αstatic = 0.1. The mass on the dynamic class decreases
more rapidly than the mass on the static class.
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Next, a mass function has to be created for each element θ of the partition
Θ and its corresponding discount factor α as follows:

mθ (∅) = 1− α
mθ (θ) = α

mθ (A) = 0 ∀A ⊆ Ω, A 6= ∅, A 6= θ (15)

The discounted mass function is then computed using the disjunctive com-

bination (denoted ∪ ) of the input mass function and each function mθ. By
definition of the contextual discounting, factor αθ is responsible for discounting
the masses on classes being the complement of θ.

In our case, the role of the contextual discounting is to control the remanence
of different classes. Higher remanence is attributed to static, slowly evolving
classes and lower level of persistence can be assigned to rapidly changing, dy-
namic contexts. Remanence level ρ, if known, can be used to calculate discount
factor α for the complement of θ using some decreasing function f : R → [0, 1]
like αc = 1

1+ρ . Nevertheless, discount factors α can be learnt using the learning
algorithm presented in [27]. In this case, learnt factors α would serve to quantify
the remanence ρ.

The discounted mass function αmPG is calculated using:

αm
(t)
PG = m

(t)
PG

∪ mθstatic
∪ mθdynamic (16)

Figure 6 presents the evolution of various mass functions when contextual
discounting is applied. The example uses partition Θ = {dynamic, static} and
discount factors αdynamic = 0.01, αstatic = 0.1. To compare, a classical dis-
counting, presented in Figure 5, behaves differently. With uniform discounting,
all masses are being forgotten at the same rate. Contextual discounting allows
to slowly forget classes of high remanence and to discount more rapidly less
remanent classes.

5. Experimental setup

5.1. Data
The data used in this article were acquired thanks to the collaboration with

the French National Geographic Institute (IGN). Experiments took place in the
12th district of Paris and the overall length of the test trajectory was approx-
imately 3 kilometres. Other experiments have been performed using the PAC-
PUS platform [29] of the Heudiasyc laboratory and Carmen vehicule (shown in
Figure 8). The Applanix sensor based on a GPS, an odometer and an IMU
provided one of the system entries, namely the vehicle pose. The pose given
by Applanix is supposed precise and of high confidence. As the exteroceptive
sensor, an IBEO Alaska XT lidar was used. It provided a point cloud of 800
impacts at a frequency of 10Hz.

The vector maps were provided by the IGN and contain 3D models of road
surfaces and buildings (see Figure 7). Successful tests were also performed with
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(a) Vehicle trajectory. (b) Road surface polygons.

(c) Buildings.

Figure 7: Visual representation of the dataset.

free editable 2D maps from the OpenStreetMap project [30], but their use was
limited to building data. The maps were accurate and up-to-date.

5.2. GISGrid construction

The map data may be represented by two sets of polygons B andR, see equa-
tions 17 and 18. Each polygon bi is described by mi vertices in 2D Cartesian co-
ordinates. x coordinate denotes longitude and y coordinate indicates latitude of
a vertex. A polygon is composed of segments (x1, y1)–(x2, y2), (x2, y2)–(x3, y3),
. . . , (xmi−1

, ymi−1
)–(xmi

, ymi
), (xmi

, ymi
)–(xm1

, ym1
).

� Buildings:

B =

{
bi =

[
x1x2 . . . xmi

y1y2 . . . ymi

]
, i ∈ [0, nB ]

}
(17)
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Figure 8: Test vehicle Carmen with the lidar sensor in front.

� Road surface:

R =

{
ri =

[
x1x2 . . . xmi

y1y2 . . . ymi

]
, i ∈ [0, nR]

}
(18)

The polygons satisfy the condition:

B ∩R = ∅

A level of confidence β is defined for each map source and is possibly different
for each context6. Let x̃ = x−+x+

2 , ỹ = y−+y+
2 , then:

mGG{X,Y }(B) =

{
βB if (x̃, ỹ) ∈ bi
0 otherwise

(19)

∀i ∈ [0, nB ]

mGG{X,Y }(R) =

{
βR if (x̃, ỹ) ∈ ri
0 otherwise

(20)

∀i ∈ [0, nR]

mGG{X,Y }(T ) =

{
0 if (x̃, ỹ) ∈ bi ∨ (x̃, ỹ) ∈ rj
βT otherwise

(21)

∀i ∈ [0, nB ],∀j ∈ [0, nR]

mGG{X,Y }(Ω) =


1− βB if (x̃, ỹ) ∈ bi
1− βR if (x̃, ỹ) ∈ ri
1− βT otherwise

(22)

∀i ∈ [0, nB ],∀j ∈ [0, nR]

6In our case, however, βB = βR = βT = β.
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5.3. Lidar sensor model

This section describes the way in which the data obtained from the sensor
are transformed into the SourceGrid. If another exteroceptive sensor is used,
one has to define an appropriate model. The model used here is based on the
one described in [17].

(a) Camera view of the scene. (b) SourceGrid projected into a Cartesian
frame. Colour code: white – occupied, black
– free, grey – unknown.

1

1

1

(c) Example of one angular segment of a lidar acquisition. Red dots represent
laser impacts, diagrams show mass attribution.

Figure 9: Multi-echo lidar sensor model.
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5.3.1. SourceGrid construction
Once the sensor model is defined, it can be used to build a SourceGrid

from each lidar scan. A lidar is a polar sensor, so a polar grid model is used
to compute the occupancy of the cells. The sensor precision is higher than the
grid resolution and the grid is sensor-centred.

Each row of the polar SourceGrid corresponds to one angular sector. In one
sector, several echoes are possible due to the following reasons:

� several echoes from one direction were received;

� projection of 4 layers on 2D plane provided echoes located at different
distances;

� lidar angular resolution is higher than the grid resolution, i.e. several
lidar directions are projected on the same column (angular segment) of
the polar grid.

It is worth noticing that this grid sensor model takes into account the sensor
multi-echo capabilities. This means that the sensor can provide several echoes
for one angle and one layer. Each angular sector Φ = [φ−, φ+] of the grid is
processed independently. We define a basic belief assignment (bba) for each cell
computed from the sensor scan points. One cell is a box R × Φ, R = [r−, r+].
Let

ZΦ =

{
zi =

[
ri
φi

]
, φi ∈ Φ, i ∈ [0, n]

}
be the set of n scan points in the angular sector Φ. Then, the bbas of the
SourceGrid are defined as illustrated by Figure 9c and given by equations:

mS {Φ, R} (O) =

{
µO if ri ∈ R
0 otherwise

∀i ∈ [0, n] (23)

mS {Φ, R} (F ) =

{
µF if min(ri) < r+

0 otherwise
∀i ∈ [0, n] (24)

mS {Φ, R} (Ω) =


1− µF if min(ri) < r+

1− µO if ri ∈ R
1 otherwise

∀i ∈ [0, n] (25)

Values µO, µF represent the confidence in the measurement for the given sensor
[17, Section III.B]. An example of a SourceGrid where multi-echoes are observed
is given in Figure 9b.

5.3.2. From SourceGrid to SensorGrid
Each SourceGrid can be projected onto the SensorGrid using the pose pro-

vided by the proprioceptive sensor. Figure 10 illustrates the general idea of the
process. The polar SourceGrid is converted to Cartesian coordinates using a
bi-linear interpolation. Next, a transformation of the Cartesian SourceGrid is
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applied in order to obtain a world-referenced grid. This transformation consists
of one rotation and one translation. The rotation is done with a bi-linear trans-
formation, because one cell may be partially projected on many cells. Bi-linear
transformation can interpolate values, so, in the transformed cell, masses are
set to mean values of the neighbourhood of the polar cell. Such a method can
cause a phenomena of edge smoothing, but well chosen grid size renders this
effect negligible. In our implementation, this transformation and interpolation
have been performed using the image processing library OpenCV [31].

local polar grid

local Cartesian grid

global Cartesian grid

Figure 10: Transformations: from local polar grid to global Cartesian grid.

5.4. Parameters
The size of the grid cell in the occupancy grids was set to 0.5 m, which is

sufficient to model a complex environment with mobile objects. The discount
rates α describing the speed of information becoming obsolete were defined
empirically. We have defined the map confidence factor β by ourselves and
set it to 0.98, but ideally, it should be given by the map provider. β describes
data currentness (age), errors introduced by geometry simplification and spatial
discretisation. β can also be used to depict the localisation accuracy. Parameters
δ (accumulator gain) and γ (decrement-to-increment ratio) used for static object
detection determine the sensitiveness of this detection process.

To compute the values δ and γ, let consider an object of a length L moving
at a speed Vmin which is the minimum speed one would be able to detect. This
configuration is illustrated by Figure 11.

The exteroceptive sensor provides scans with a constant frequency f . One
can compute the maximum number of sensor cycles ipoint necessary for a point
of an object to pass through a cell of size ∆ as follows:

ipoint =
∆ · f

Vmin
(26)

The object of length L occupies at least L
∆ cells, so, analogically to Equa-

tion 26, we can compute the number of cycles iobject during which this object
occupies one cell:

iobject =
L · f

Vmin
(27)
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Figure 11: Illustration of geometrical distances used for the parameter computation.

δ is computed in such a manner that the accumulator ζ grows up to 1 in iobject
cycles.

δ · iobject = 1 (28)

And then, from Equations 27 and 28:

δ =
Vmin
L · f

(29)

For a typical moving car at a minimal speed Vmin = 1 m/s with a length
L = 3 m and the sensor scan frequency f = 15 Hz, one obtains δ = 0.02.

Coefficient γ is determined in a similar way to δ, but in this case we consider
the inter-object distance d between two successive objects. The fact that the
accumulator ζ should reach 0 before the following object enters into this cell
implies:

δ · γ =
Vmin
d · f

(30)

So we obtain:

γ =
L

d
(31)

Setting an inter-obstacle distance to d = 0.5 m, one computes decrement-to-
increment ratio γ = 6.

Table 1 lists all the parameter values used for the construction of SourceGrid
(see Section 5.3.1) and the fusion operation (see Section 4).
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Parameter name Value
Map confidence level β 0.98

Cell size ∆ 0.5 m
Accumulator gain δ 0.02

Decrement-to-increment ratio γ 6
Free space confidence µF 0.7

Occupied space confidence µO 0.8

Table 1: Parameter values used in the experimental setup.

(b)(a)

(c) (d)

I

U

S

M

F

Ω

Figure 12: (a) Scene. (b) GISGrid with superposed vehicle outlines. (c) PerceptionGrid
without prior information. (d) PerceptionGrid with prior map knowledge. Right: colour
code.
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(a) Camera acquisition

(b) PerceptionGrid without map (c) PerceptionGrid with map

Figure 13: PerceptionGrid comparison and scene snapshot. Using classical (uniform) dis-
counting. Colour code as in Figure 12.
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(a) Scene representation by a camera image.

(b) PerceptionGrid – pignistic probability.

Figure 14: Camera acquisition and the pignistic probabilities of PerceptionGrid. Coordinates
in meters in ENU frame.
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(a) betP(F ) (b) betP(F ) > 0.7

(c) betP(M) (d) betP(M) > 0.7

(e) betP(S) (f) betP(S) > 0.35

Figure 15: PerceptionGrid. Left column: pignistic probability (betP) for different classes.
Right column: a simple decision rule example – threshold on pignistic probability.
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6. Results

To assess the performance of our method, two cases have been considered.
Firstly, when maps are present and prior information can be exploited. Secondly,
when no maps are available and only mobile and static detection is done. A
comparison of perception results for these two cases has then been shown. In
this way, we show the interest of using a map-aided approach to the perception
problem. All tests have been performed on real-world data recorded in an urban
environment in Paris, France.

The perception results for a particular instant of the tested approach are
presented on Figure 12. The visualisation of the PerceptionGrid has been
obtained by attributing a colour to each class with proportional to the mass
value and calculating the mean colour. The presented scene contains two cars,
one visible in the camera image and one invisible, both going in the direction
opposite to the test vehicle, and a bus parked on the road edge. Bus and
car positions are marked on the grids by green and red boxes, respectively.
The position of the test vehicle is shown as a blue box. Classes of ΩPG are
represented by different colours as described at the right side of Figure 12.
GISGrid in Figure 12b visualises the prior knowledge obtained from maps by
showing the position of the road surface, in white, and buildings, in blue.

The advantage of using map knowledge is richer information on the detected
objects. A difference between moving cells (red, car) and stopped ones (green,
bus) is clearly visible. Also, stopped objects are distinct from infrastructure
when prior map information is available (cf. Figures 12c and 12d). In addition,
thanks to the prior knowledge, stationary cells, in cyan, modelling infrastructure
are distinguished from stopped cells (road objects).

Figure 12 shows the effect of temporal discounting, which is particularly
visible on the free space behind the vehicle. On the other hand, the parked bus
is still in evidence despite being occluded by the passing car. Masses attributed
to grid cells are being discounted, so the mass on the free class F diminishes
gradually.

In Figure 13, there is a clear difference between the perception of buildings
when the map data is available and when it is not. When no map is present,
buildings are confused with barriers and bicycles. With prior information from
the maps, the proposed approach easily distinguishes between the two.

Following paragraphs use the pignistic probability that has been introduced
by Smets in [32] as a method of transforming masses into probabilities. This
mechanism is used in order to show an example of a decision rule that can be
executed on an evidential grid.

betP(A) =
∑
B⊆Ω
B 6=∅

m(B)

1−m(∅) ·

|A ∩B|
|B| (32)

Equation 32 is valid for any A being a subset of the frame of discernment.
In the above results, we have filtered only the cells that have been reached by

the sensor at least once in order to put forward the sensor information. Below,
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Figures 14 and 15 show all the cells. Both these figures present the same scene.
Ahead at the left side, one can observe a moving white car, whereas closer at the
left, a column of vehicles parked on the road surface. Figure 14a shows the scene
captured by a FishEye camera. On Figure 14b, we present the singleton pignistic
probabilities of the masses contained in PerceptionGrid. Vehicle position and
its direction are represented on this figure by a red cross and a black arrow,
respectively. We have changed the colour code, so that the classes of interest
could be easily visible in the figure. The corresponding colours are as follows:
F – white, I, U – blue, M – red and S – green. Other colours are the result
of the fact that the pignistic probabilities (and their corresponding colours) are
mixed together.

To better understand the information contained in the PerceptionGrid, we
display, in Figure 15, the pignistic probabilities at a grid level of a few classes
of interest. The left column contains images which are a visualisation of the
pignistic probability for a given class. The right-column images give an example
of a simple binary decision rule based on a threshold of the value of pignistic
probability. These figures highlight the ability of the method to distinguish
different classes.

One can spot the effect of the discounting, especially, in Figures 15a and 15b.
Namely, the space far behind the ego-vehicle is no more recognised as free,
since it has been observed for a long time. Figures 15d and 15f demonstrate
the performance of the proposed approach in classifying moving cells M and
stopped cells S. One can remark as well a few outliers due to the sensor noise.

Obtained results constitute only the first level of a perception system. Fully
exploiting these data would mean performing further processing on the resulting
grid. Clustering the cells into more meaningful object-level information and
tracking these objects would be the next step towards the scene understanding.

7. Conclusion and perspectives

The article has presented a mobile perception scheme based on prior knowl-
edge from vector maps. Map data allows to infer more refined information about
the environment. A modified fusion rule taking into account the existence of
mobile objects has been defined.

The remanence can be controlled using classical tools of the theory of be-
lief functions. Contextual discounting has been used in order to represent the
variation in information lifetime of objects present in the environment. At the
end, there are few parameters to tune: mainly remanence level for each context.
Moreover, they are easy to interpret and can be learnt given reference data.

Consequently, one of the perspectives for future work is the use of reference
data to learn algorithm parameters, to choose the most appropriate fusion rule
and to quantitatively validate the results. It is envisioned that the hypothesis
of accurate maps will be removed. Considerable work on creating appropri-
ate error models for the data source will be needed. Moreover, we anticipate
distinguishing between navigable and non-navigable free space. This step will
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entail the introduction of an additional class in the frame of discernment of the
PerceptionGrid. Such an improvement will be a step towards the use of our
approach for navigation system in autonomous vehicles. Map information will
be used to predict object movements. Lastly, more work is to be done to fully
explore and exploit 3D map information.
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