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Tightly Coupling GPS with Lane Markings
for Autonomous Vehicle Navigation

Zui Tao1,2, Philippe Bonnifait1,2

Abstract— Tightly coupling GPS pseudorange and Doppler
measurements with other sensors is a way to increase accuracy
and integrity of the positioning information particularly when
it is computed autonomously. Highly accurate digital maps are
also more and more key components for autonomous vehicle
navigation and can enhance the localization system. In this
paper, a video camera is used to get relative information
with respect to lane markings and dead-reckoning sensors
are also integrated to provide positioning information with
high availability. A reduced order state space modeling of the
observation problem is proposed in order to get an efficient real-
time computing system. Thanks to an adequate error model of
the GPS pseudoranges and a measured input state space for-
malization, a Kalman filter with correlated noises is developed.
Experimental results show that this tightly coupled approach
clearly improves the performance in terms of accuracy and
integrity compared to a loosely coupled method that uses GPS
fixes computed by an external receiver.

I. INTRODUCTION

Recently, impressive demonstrations of self-driving cars
using production-based sensors and enhanced maps have
been made on both rural and urban routes [1][2][3]. In
most cases, an on-road assumption and the use of an in-
formative digital map make it possible to realize low-cost
autonomous driving. In the research community of Intelligent
Transportation Systems, generation of detailed digital maps
has done significant progress [4][5] to the point that map-
aided perception [6] and localization are now intensively
considered for autonomous navigation.

Global Navigation Satellite Systems are widely used in
vehicle navigation applications. When integrating GPS with
other sources of information, there are two main kinds of
approaches: a loosely coupled approach which uses directly
the GPS fix and a tightly coupled one which uses the GPS
observables like pseudoranges, Dopplers and carrier phase
measures. Loosely coupled methods have to estimate biases
on the GPS fixes to improve the fusion process. The bias
error is typically due to atmospheric effects and can be hardly
observed by a stand-alone GPS loosely coupled with dead-
reckoning (DR) sensors. In [7], the GPS bias is estimated
using the perception of lanes and crosswalks stored in the
map data. In [8], different GPS bias models are proposed and
compared. However, loosely coupled methods depend on the
GPS receiver and are behind its software processing which is
particularly difficult to model. In this paper, we thus propose
to estimate the bias on every pseudorange.

The benefits of using a map in tight coupling has been
proved for a long time. In [9], a Road Reduction filter is
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developed to calculate pseudorange corrections derived from
the digital road network. Since no perception information
is required, this macro-scale approach introduces a map
pseudo-measurement by projecting the GPS fix onto the road
center-line. A navigation system incorporating this approach
can achieve an horizontal position accuracy of 10m (1σ)
typically [10]. An alternative is to use the map as a heading
sensor by considering that the map precision is often better
than its accuracy [11]. In order to benefit from a highly
accurate map as described in [4] and to remove non-zero
mean errors introduced by map matching on poly-lines, a
vehicle needs to measure its relative position w.r.t. the lane in
which it is traveling by integrating a perception information
such as lane marking detections. With this objective in mind,
this paper proposes a tightly coupled approach that integrates
a camera observations and a lane marking map similar to
the one used in [12] by using an extended Kalman filter
with correlated noises (EKF-CN). Recent results on tightly
coupling can be found in [13][14].

Loosely coupled methods as the one proposed in [12] can
improve the lateral localization accuracy up to a decimeter-
level. The longitudinal error is also controlled thanks to the
heading variation of the trajectory. In the tightly coupling
case, the longitudinal uncertainty can be further corrected by
the pseudoranges whose line-of-sight directions are along the
driving direction as shown in [15].

Important performance metrics are not limited to accu-
racy. Integrity is also crucial for autonomous vehicles. The
integrity risk is defined as probability that the position error
exceeds predefined alert limits. In this paper, the integrity risk
of the estimated position is set to 10−2 (1%). By ignoring
the faults of the sensors and by assuming that the noises
follow Gaussian distributions, the corresponding bound of
the estimated position is ±2.58σ. Therefore, an integrity
failure happens when the estimated horizontal positioning
error (HPE) is beyond this bound centered on the estimate.
As discussed in [16], Bayesian state filtering is often over-
confident, and so we are interested in studying here this issue
and comparing the integrity performance of both loosely and
tightly coupled methods.

The remainder is organized as follows. Section II intro-
duces the system modeling and reminds the lane marking
aided vehicle localization. Section III introduces the GPS
measurement models and a reduced-order Kalman filtering
is proposed for efficient embedded computation. Results of
outdoor experiments are presented and analyzed in section
IV. Conclusions on the proposed tightly coupled method
compared to a loosely coupled one are given in section V.



II. LANE MARKING LOCALIZATION

If the vehicle approximately knows where it is located
in the map, it is possible to implement a lane marking
localization method that corrects DR estimates based for
instance on wheel odometry. We explain in this section the
key concepts to implement such an approach.

A. Frames

A local navigation frame RO tangent to the Earth is
defined to have its x axis pointing to the East, y to the North
and z oriented upwards w.r.t. the WGS84 ellipsoid (Fig. 1a).
By choosing the origin O close to the navigation area, the
vehicle trajectory is locally planar. Two more frames have to
be defined. In Fig. 1b, RM denotes the mobile vehicle body
frame with its longitudinal axis xM pointing forward and its
lateral axis yM pointing left hand. The camera frame RC
is located at the front of the vehicle even if the camera is
located behind the windscreen with a position offset (Cx, Cy)

in RM . Px is the translation from point M up to the bumper.
In the following, the coordinates are expressed by default in
RO.

B. Dead-reckoning

The linear velocity of each rear wheel is measured by
the ABS speed sensors. The linear velocity is calculated by
vm = (vmrl + vmrr) /2, where vmrl and vmrr denote the measured
linear velocity of the left and right rear wheels respectively.

The angular velocity of the vehicle (ωm) is measured by
the ESP yaw rate gyro. An estimate of the pose of the vehicle
is provided by integrating these measurements from an initial
known pose.

Please note that the measurements are affected by noise
(vm = v + γv; ωm = ω + γω) and so the dead-reckoned
estimate drifts with respect to the traveled distance.

C. Lane marking map

The lane marking map used in this paper mainly consists
of two-lane roadways with dashed lane markings in the
center of the road and solid lane markings on the both
sides of the road. Lane markings are expressed by polylines.
The map is expressed in RO and reaches a centimeter-level
accuracy.

D. Camera measurement

Let L denote the lane marking detection located at ordinate
C0 in RC (see Fig. 1b). Its coordinates in RO are given by
(x, y being the position and θ the heading angle):[

xL
yL

]
=

[
Px · cosθ + C0 · sinθ + x
Px · sinθ − C0 · cosθ + y

]
(1)

In Fig. 1b, [AB] represents the detected lane marking
segment. The coordinates of point A and B are (xA, yA) and
(xB , yB) in RO. Let us define a vector V = (xAB , yAB)

T

with xAB = xB − xA and yAB = yB − yA. Point L on
segment [AB] meets:{

xL = xA + λ · xAB
yL = yA + λ · yAB

(2)
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Fig. 1: Frames

with λ ∈ [0, 1]. Plugging Eq. (1) into Eq. (2), we have:{
Px · cosθ + C0 · sinθ + x = xA + λ · xAB
Px · sinθ − C0 · cosθ + y = yA + λ · yAB

(3)

Because xAB ·cosθ+yAB ·sinθ 6= 0 (the detected segment
is not perpendicular to the vehicle), the camera observation
model is derived by Eq. (3) as:

C0 =
(Px · sinθ + y − yA)xAB − (Px · cosθ + x− xA) yAB

xAB · cosθ + yAB · sinθ
+ βc

(4)

where βc is the measurement noise.

E. Map-matching

Map-matching consists to determine which is the lane
marking segment [AB] that the camera has detected. In this
paper, the marking type (e.g. dashed or solid) given by the
video camera is used to map-match the detected lane marking
segment. In a first stage, a set S of candidate segments is
selected based on the following conditions:
• The lane marking type is consistent with the one esti-

mated by the camera;
• The orientation of the segment is close to the heading

of the vehicle;
• The distance dist between point L and the candidate

segment is less than the width of the road.
In a second stage, the segment s which has the minimal dist
is chosen as the map-matching result:

Map_matched_segment = arg min
s∈{S}

{dist} (5)

III. TIGHTLY COUPLING GPS

In this section, we present a strategy for tightly coupling
the GPS raw measurements with the lane marking localiza-
tion.

A. GPS measurements

The GPS raw measurements considered here are L1 pseu-
doranges and Dopplers on the visible satellites.

The position of the GPS antenna with respect to the body
frame is taken into account. xa = x+ cosθ · tx − sinθ · ty

ya = y + sinθ · tx + cosθ · ty
za = z + tz

(6)

Where [x, y, z]T is the 3D position of the vehicle,
[tx, ty, tz]

T is the position of the receiver antenna in RM



and Xa = [xa, ya, za]
T is the position of the receiver antenna

in RO.
For a given satellite i, its position vector Xi

s =
[
xi, yi, zi

]T
is reconstructed from the received navigation message (GPS
data). The corresponding pseudorange is:

ρi = Ri+c ·dtu−c ·dts+δTGD+δrel+δiono+δtropo (7)

with Ri being the geometrical distance between the ob-
served satellite and the receiver antenna

(
Ri =

∥∥Xa −Xi
s

∥∥),
c ·dtu the range equivalent of the receiver clock offset, c ·dts
the range equivalent of the satellite clock offset, δTGD the
timing Group Delay, δrel the range equivalent of the relativity
effect on the satellite clock, δiono the ionospheric delay and
δtropo the tropospheric delay.

For every satellite, the GPS receiver gets also, in its
ephemeris data, some information to compute estimates of
dts, δTGD and δrel. It can also estimate δiono and δtropo
by using classical atmosphere models implemented in open
source software like [17]. By correcting the pseudorange with
these estimated parameters, equation 7 becomes:

ρi = Ri + c · dtu + εipr + βi (8)

where εpr represents the residual (non-white) errors of the
pseudorange. βi is the measurement noise. c is the speed of
light.

The Doppler shift is caused by the relative motion between
the satellite and the receiver antenna. By defining the line-
of-sight vector uilos of satellite i as,

uilos =
(
Xa −Xi

s

)
/Ri (9)

the Doppler shift is measured and linked to the GPS antenna
trough the following equation [18]:

ρ̇i =
(
Vr − V is

)
• uilos + c ˙δtu + βid (10)

Where Vr = [ẋ, ẏ, ż]T is the velocity of the receiver and
V i
s =

[
ẋi, ẏi, żi

]T
is the one of satellite i. • denotes the dot

product. βid is the measurement noise.
For a numerically good computation, the filter estimates

ranges equivalent values of the receiver clock parameters:

d = c · dtu ḋ = c ˙·dtu

B. System modeling

Let us look for a planar model of the system in order to
have an efficient state observer in terms of computations with
a limited number of sensors. The localization problem can
be reduced to 2D by considering za as constant during the
current navigation stage. The main sources of range error are
(see Fig. 2):

• Pseudoranges residuals errors εpr;
• Inaccurate satellite position estimates due to the use of

real-time navigation messages εSat;
• The fact that the evolution area is not exactly planar εz .

x

yz

o

Broadcast orbit

Real position

Ionosphere

Troposphere

Fig. 2: Range-error sources

We propose to estimate a range-error parameter ε that
results from the combination of εSat, εpr and εz . A first
order auto-regressive shaping filter is used by (the subscript
k being the time stamp):

εik = a · εik−1 + αεk−1 (11)

Where αε is the driving noise.
Let us consider a front-wheel drive vehicle with the

assumption of a slip-free motion of the rear wheels. The
speed vector is therefore collinear to xM .

With n satellites in view, the state vector X becomes:

X =
[
x, y, θ, b, d, ḋ, ε1, · · · , εn

]T
(12)

Where b is the bias of the gyro.
With a 2D unicycle kinematic model, the evolution model

is given by:

X̂k = f
(
X̂k−1, U

m
k , αk

)
⇔



xk = xk−1 + T · vmk · cosθk−1

yk = yk−1 + T · vmk · sinθk−1

θk = θk−1 + T · (wm
k − bk−1)

bk = bk−1 + αb
k

dk = dk−1 + T · ḋk−1 + αd
k

ḋk = ḋk−1 + αḋ
k

ε1k = a · ε1k−1 + αε1
k

...
εnk = a · εnk−1 + αεn

k
(13)

Where Um = [vm, ωm]
T denotes the measured input

vector and T the sampling period. A random constant model
has been considered to handle the bias b.

The wheel speed sensor measurement noise υv and the
gyro measurement noise υω are supposed to be zero-
mean independent white noises. N denotes their covari-
ance matrix. The covariance of the model noise αk =[
αb
k αd

k αḋ
k αε1

k . . . αεn
k

]T
of equation (13) is de-

noted by Q.

C. GPS measurement validation

At time instant k, when the GPS measurements are avail-
able, a validation step is performed on the measurements of
every satellite to avoid the use of badly tracked satellites and
to reject multipath.

For a Doppler measurement, the validation process is:
• C/N0 gating: Check that C/N0 is high enough (e.g. 38

dBHz).



• Elevation mask: The elevation angle of satellite i is
calculated using Xi

s and the current estimate X̂k|k−1.
The elevation mask angle is usually set to 15 degrees.

• Innovation gating: Check the Normalized Innovation
Squared [19].

A Doppler is in general more reliable than a pseudor-
ange. Therefore, a pseudorange can be used only when
its corresponding Doppler measurement is valid. For every
pseudorange, its innovation ηi is computed and used to
validate or reject the measurement.

By denoting Ak =
∂f(X̂k−1|k−1,U

m
k )

∂X
, Bk =

∂f(X̂k−1|k−1,U
m
k )

∂Um ,
the tightly coupling solver is described by Algorithm 1
in which the Dopplers are used at first. Additionally a
Mahalanobis distance threshold is set to reject the mismatch
before using C0 to update the state vector. The process is
time-triggered with the CAN bus data which has the highest
rate. The latencies of the GPS and camera measurements are,
in the current implementation, neglected. Since the camera
provides essentially lateral corrections, neglecting its latency
has almost no impact on the accuracy.

Algorithm 1 An iteration stage of the method

In out: X̂ , P //estimated state and covariance matrix
1: Um = [vm, ωm]

T
=Get(DR measurements)

2: X̂ = f
(
X̂, Um

)
3: P = Ak · P ·ATk +Bk ·N ·BTk +Q
4: if New GPS data is available then
5:

[
ρ1,...,n, ρ̇1,···n

]
=Get(GPS measurements)

6: Good_Doppler=∅ Good_Pr=∅
7: for j = 1, . . . , n do
8: if (ρ̇j is valid) then // Please refer to Section

III-C
9: Add(ρ̇j) to the Good_Doppler list

10: end if
11: end for
12:

[
X̂, P

]
=Update(X̂ ,P ,Good_Doppler)

13: for j = 1, . . . , n do
14: if (ρ̇j is valid )&(ηi < Threshold) then
15: Add(ρj) to the Good_Pr list
16: end if
17: end for
18:

[
X̂, P

]
= Update(X̂ ,P ,Good_Pr)

19: end if
20: if New camera measurements are available then
21: [C0,k, laneType] =Get( camera measurements )
22: [AB]=Map_match

(
X̂, C0,k, laneType,map

)
23: if ([AB] is consistent with the vehicle state) then
24:

[
X̂, P

]
= Update

(
X̂, P, C0,k, [AB]

)
25: end if
26: end if

One can note that the filter uses a measured linear velocity
vm in the Doppler observation model (Eq. 10). Therefore, the
estimation process has correlated noises. Please refer to [20]
for more details about the EKF-CN equations.

Model noises variances Measurement noises variances

V ar
(
αb
)

= 5× 10−10 V ar (βc) = 0.16

V ar
(
αd
)

= 1× 10−3 V ar (β) = S · 10
−C/Ni

0
10

V ar
(
αḋ
)

= 1× 10−4 V ar (βd) = 0.05

V ar (αε) = 1× 10−4
V ar (γv) = 1× 10−4

V ar (γω) = 2.5× 10−3

TABLE I: Tuned EKF-CN parameters (International System Units)

IV. EXPERIMENTAL RESULTS

Outdoor experiments have been carried out near Paris
France in May 2013. Three tests were performed on the same
road, in urban conditions, with an automotive experimental
vehicle. Test 1 and Test 2 were conducted in the morning
and test 3 in the afternoon. During the test, the vehicle
passed in a strong urban canyon of 300 meters with satellites
outages and multipaths. The traveling distance of every test
was about 2km with a typical speed of 30 km/h in the straight
lines. The experimental vehicle was equipped with an IMU
Oxford RT3000 which provided ground truth data at 100Hz
rate. A CAN-bus gateway was used to access to the wheel
speed sensors and to the yaw rate gyro. The measured input
[vm, wm]

T from the CAN bus were available at 100Hz. A
Mobileye camera was used to detect the lane markings at
10Hz. A low-cost U-blox 6T GPS receiver with a patch
antenna providing pseudoranges and Dopplers measurements
at 5Hz was used.

The measurement noise βi in Eq. (8) is supposed to be
white and zero mean. As it is not stationary as indicated
in [21], its variance σ2

i is modeled by a Wieser’s model in
which the measured carrier-to-noise density ratio C/N0 is
used as a quality indicator:

σ2
i = S · 10

−C/Ni
0

10 (14)

Where S = 60000m2Hz. Table I specifies every model
and measurement noise.

10 satellites were in view during the different tests. The
GPS satellite visibility was sometimes very constrained due
to the urban canyon and due to buildings near the test area.

Localization performance can be studied in terms of lon-
gitudinal and lateral performances. Fig. 3 shows the lateral
and longitudinal positioning errors of test 2 for loosely and
tightly coupling. After t = 350s, the vehicle is back to the
parking lot where lane markings are not stored in the map
and so the localization system is not map-aided in this area.

The bias on every pseudorange is initialized to zero.
For each subplot of Fig. 4, the abscissa expresses time on
seconds, the ordinate gives every estimated bias εi on meters.
Satellites 4 and 13 are under the elevation mask (15◦) and
so their measurements are not used in the localization solver.
Moreover, the measurements of satellite 26 became available
only after 100s and were lost after 200s. The estimated biases
are quite smooth, in the order of few meters and stay bounded
during all the trial.

Table II gives performance metrics for both the loosely
coupled solver (LC) proposed in [12] and the tightly coupled
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solver (TC) proposed in this paper.
Fig. 5 shows the cumulative distribution of horizontal

positioning errors of the three tests by four methods: stand-
alone GPS, loosely coupling DR/GPS/Map, tightly coupling
DR/GPS and tightly coupling DR/GPS/Map. It is noticeable
that tightly coupling GPS with DR improves the accuracy
compared with stand-alone GPS. The accuracy of the tightly
coupled method is further improved by integrating the lane
marking map. The 95th percentiles of the four methods are
respectively 0.88m, 1.54m, 2.12m and 4.64m. 96.8% of the
tightly coupling result reaches sub-meter accuracy.

The loosely coupled method relies on the GPS fixes
computed by stand-alone GPS receiver. When the GPS
receiver suffers from big errors during a long time, the

Test 1 Test 2 Test 3 Global

Std. dev. (m2)
LC 0.46 0.31 0.93 0.62

TC 0.25 0.24 0.28 0.26

Max (m)
LC 2.67 1.62 5.29 5.29

TC 1.59 1.11 1.63 1.63

Median (m)
LC 0.36 0.33 0.33 0.34

TC 0.31 0.33 0.32 0.32

95th percentile (m)
LC 1.56 1.02 3.06 1.54

TC 0.87 1.03 0.90 0.88

Integrity failure rate
LC 22.8% 13.3% 31.6% 22.1%

TC 3.9% 4.6% 15.1% 7.6%

TABLE II: Horizontal positioning error statistics
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Fig. 5: Cumulative distribution function (CDF) of the HPE for the
different methods

loosely coupled solver is not able to estimate the biases
efficiently. Although the 95th percentile is 1.54m, the biggest
error reaches 5.29m.

Fig. 6a shows the global integrity performance of the
loosely and tightly coupled methods. The gray area cor-
responds to the overconfident occasions of the filters. The
global failure rate of the loosely coupled method is about
22% (Table II). The tightly coupled method reduces the
integrity failure rate to 7.6% which is the same order as
the predefined integrity risk of 1% even if it is a bit higher.
The tightly coupled method is therefore more reliable. Now
let us evaluate the precision of the results by considering the
distribution of the estimated 2.58σ bound. Fig. 7 shows the
tightly coupled method provides confidence domains that are
smaller than 1.26m during 95% of the time which is a good
improvement compared to the 2.06m of the loosely coupled
one. As confidence is in practice compared to a threshold
to indicate “use” or “don’t use” to the client application,
it is important, in terms of availability of the positioning
information, to provide as small as possible confidence
zones. To resume this integrity analysis, one can notice
the confidence domains computed by the tightly coupled
approach are smaller than the ones of the loosely coupled
approach and they are more reliable in the sense that the
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ground truth is more often included in the confidence zone.

V. CONCLUSION

In this paper, we have proposed and studied a method to
merge raw GPS measurements and lane marking measure-
ments. In order to reduce the dimension of the state vector,
the linear and angular velocity are used as measured input.
The vehicle is also assumed to travel on a flat surface thanks
to the use of a navigation frame close to the navigation
area. An error model has been proposed to estimate the
errors on GPS pseudoranges. A tightly coupled EKF-CN
solver has been developed to reduce the calculation and
improve the real-time performance. For testing the approach,
DR sensors from the ABS and ESP systems, a L1-GPS
receiver and the lane marking measurements from the lane
departing warning system of the experimental vehicle have
been used. Outdoor experiments have been carried out to
compare the loosely coupled and tightly coupled methods.
The tightly coupled method gives a better accuracy and a
better reliability. This system provides a very cost-effective
solution for the localization task of autonomous vehicles.
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