
Risk Assessment for Collision Avoidance Systems

Adam Houénou, Philippe Bonnifait, Véronique Cherfaoui

To cite this version:
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émanant des établissements d’enseignement et de
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Risk Assessment for Collision Avoidance Systems
Adam Houénou∗, Philippe Bonnifait+ and Véronique Cherfaoui+

Abstract—Collision Avoidance Systems need to perform scene
analysis and risk assessment in order to react conveniently.
Based on the information provided by the perception system,
scene analysis has to predict the evolution of the current
driving situation for the near future. Thanks to the predicted
trajectories of the relevant traffic participants, the risk of
collision on the ego vehicle can be calculated. In many cases, a
predicted trajectory is not defined with explicit equations but
is given as a set of sampled poses, each one corresponding to
a different future time instant. A predicted trajectory being
always uncertain, confidence has to be estimated on the so
predicted poses. We present a method that propagates the
known error covariance matrix of the current pose of the ego
vehicle by considering local approximations of the predicted
trajectory. This allows to estimate the risk of collision of the ego
vehicle with a considered target object. The proposed approach
uses a Monte Carlo simulation to approximate the probability
that the ego vehicle and the object come into collision at a given
future time instant. Each sample time of the whole prediction
horizon is considered as a potential collision time so that a curve
describing the variation of the risk of collision is obtained. This
allows the system to have a better comprehension of the scene
and to react proportionally to the threat. The overall approach
has been tested with simulated data and the consistency of
results is shown.

I. INTRODUCTION

Driver Assistant Systems in general and more specifically
Collision Avoidance Systems (CASs) are very active fields
of research and development. Recent years have seen many
of those systems on the market of series vehicles. A CAS
usually performs in low speed scenarios but enhancements
are under research in order to cover more scenarios. A CAS
needs to predict any eventual collision as soon as possible
and must warn the driver or take autonomous actions in order
to avoid it or mitigate its consequences. For this purpose, it
has to rely first on an accurate perception system that uses
sensors, communication devices and data fusion algorithms
to detect and track obstacles in the surrounding of the ego
vehicle. Then, it is crucial to perform a correct scene analysis
which consists in predicting the evolution of the scene. Then,
it is possible to assess the risk of collision of the ego vehicle.
Depending on the risk assessment result, various criteria can
be used to decide the relevant actions that have to be finally
executed.

This paper first focuses on the scene analysis part. Based
on the estimated current and past states of the scene, the
goal here is to understand the current driving situation and
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to use this result to predict the most probable evolution of the
scene. In a previous work [1], we described a trajectory pre-
diction method based on the combination of two predictions
made with different approaches. The first prediction uses
a deterministic approach. Its assumes a kinematic motion
model to predict the trajectory of a vehicle. The second
prediction is based on a maneuver recognition algorithm,
a trajectory generation process and a cost function used to
select the best trajectory. A combination rule allows the
final prediction to take advantage of the good accuracy of
the motion model approach for short term prediction and
of the better accuracy of the maneuver recognition method
for longer term prediction. Section II gives a reminder of
this prediction method in order to make this paper more
intelligible.

Based on this information, the CAS has to evaluate the threat
on the ego vehicle in the near future in order to be able to
avoid an eventual collision with any potential obstacle. This
is the task of the risk assessment module that takes as inputs
the predicted trajectory of the ego vehicle and the predicted
trajectories of the detected objects. Since these predictions
are not deterministic, it is necessary to estimate their uncer-
tainty. A first contribution of this paper is the presentation
of a method that propagates the estimated uncertainty of the
current pose of a given vehicle along its predicted trajectory
that is time sampled and that has no closed-form. This is
done by local linearizations of the predicted trajectory and
a sequential estimation of the covariance matrices of its
consecutive future sample poses. This is described in section
III.

Many risk assessment approaches exist in the literature [3],
[6], [5], [7], [8] but the notion of risk of collision is usually
related to the time-to-collision (TTC) or other derived time
metrics. The smaller the TTC, the higher the risk. The pre-
dicted trajectories being uncertain, the TTC is also uncertain.
The proposed approach consists in sampling the prediction
time horizon and considering each sample time as a potential
TTC. Then, for each sample time and each target object, the
probability that the ego vehicle is in collision with the object
is calculated. This gives a pseudo-continuous evolution of the
risk of collision with each obstacle on the whole prediction
horizon which allows the system to define various levels of
criticality based on the pairs TTC/probability of collision.
The risk assessment method is presented in section IV and its
principle is compared to known approaches in the literature.
Section V shows the evaluation of the overall risk assessment
method in simulated scenarios and the results are discussed.
Finally, section VI concludes the paper.



II. TRAJECTORY PREDICTION

From the driver’s control commands to the actual trajectory
of the vehicle, there are complex interactions including
the vehicle’s dynamic and the road’s structure. Predicting
the trajectory of a vehicle (either the ego-vehicle or any
detected vehicle) is not a deterministic task because the
driver’s control commands are quite unpredictable and many
parameters are difficult to measure in normal conditions
e.g. tire friction on the road. In some works [11], [8], [2],
the prediction is made by assuming a kinematic model of
the vehicle’s motion. Unfortunately, such motion models as
constant velocity or constant yaw rate movement are accurate
only for a short term, except if the driver’s command actually
remains unchanged for a long time which is unlikely. During
a lane change maneuver for instance, the movement changes
a lot and the prediction can quickly be very wrong. In other
papers, a Maneuver Recognition Module (MRM) is used to
compute a predicted trajectory that takes into account the
possible changes in the vehicle’s behavior with respect to the
recognized maneuver. In most cases [6], [4], [12], [10], the
MRM is based on a set of learning trajectories. The current
recorded sequence of the vehicle’s trajectory is compared to
that database according to various possible techniques and
the most likely future trajectory is obtained from the closest
trajectories in the database.

In [1], we proposed a new method that mixes both approaches
in order to take advantage on the high accuracy of the motion
model method for short-term prediction and to respect, for
long-term prediction, the possibly changing dynamic of the
vehicle during specific maneuvers. Our MRM is not based
on a data set; it uses the last measurements of kinematic
parameters and the knowledge of the road geometry to decide
whether the vehicle will stand in its current lane or if it is
doing a lane change maneuver. This is done by comparing
local parabolic models of the lane’s center-line and of the
trajectory.

Knowing the vehicle’s current state and its future lane, several
possible maneuver’s end points are generated by sampling
in a limited area. Then, a set of trajectories are generated
by joining the current vehicle’s position to each end point.
The trajectories are calculated so that their longitudinal and
their lateral components are quintic time polynomials in the
Frenet frame along the center-line of the vehicle’s current
lane. The MRM-based predicted trajectory is selected as the
best one, with respect to a cost function that penalizes time-
taking trajectories and trajectories with high pick of lateral
acceleration, synonym of low comfort in the cockpit. Fig.1
shows an example of generated trajectories and the selected
one for a lane change maneuver. Even though the trajectories
are defined with explicit polynomials, the conversion from
the Frenet frame to the working Cartesian frame does not
have an analytical solution if the shape of the road is not
a straight line or a perfect circle (see appendix of [1] for
the conversion method). So, the trajectory is sampled and
the conversion is made point by point. The MRM-based
trajectory prediction (denoted Tman in the following) is thus
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Figure 1. MRM-based trajectory prediction

Figure 2. Cubic spline used to combine Tmdl and Tman. At short term,
Tfin is closer to Tmdl and progressively gets close to Tman as the
prediction time increases.

a sequence of predicted poses with their associated time
instant.
The assumed motion model is the Constant Yaw Rate and
Acceleration (CYRA) movement. It is defined with a six-
component state vector X = [x, y, θ, v, a, ω]

T where (x, y)
is the position in the considered Cartesian frame, θ the yaw
angle, v and a the longitudinal velocity and acceleration
and ω the yaw rate. Defining X0 as the current estimated
state, Eq.1 gives the closed-form of the predicted trajectory
(denoted Tmdl in the following). Index 0 expresses the current
estimated values.

Tmdl :



x (t) = a0
ω2

0
cos (θ (t)) + v(t)

ω0
sin (θ (t)) + cx

y (t) = a0
ω2

0
sin (θ (t))− v(t)

ω0
cos (θ (t)) + cy

θ (t) = ω0 · t+ θ0

v (t) = a0 · t+ v0

a (t) = a0

ω (t) = ω0

(1)

where cx and cy are constant values obtained from the current
state’s values.{

cx = x0 − v0
ω0
sin (θ0)− a0

ω2
0
cos (θ0)

cy = y0 + v0
ω0
cos (θ0)− a0

ω2
0
sin (θ0)

The final predicted trajectory, denoted Tfin is a linear com-
bination of Tman and Tmdl:

Tfin (t) = f (t) · Tmdl (t) + (1− f (t)) · Tman (t) (2)

where f (t) is a predefined function as the one depicted in
Fig.2. Fig.3 shows an example of a trajectory prediction.



Figure 3. Example of a trajectory prediction at a given time during a lane
change. Tmdl gets wrong as time increases.Tfin is closer to the actual
trajectory than each of Tman and Tmdl.
One can notice that since we do not have an explicit
expression of Tman, Tfin is also a set of predicted sampled
poses. The problem is now to estimate the covariance matrix
of the prediction error of each future pose.

III. PROPAGATION OF UNCERTAINTY

Let’s define ξ = [x, y, θ]
T as the pose of a considered vehicle

at a given time. (x, y) is the position in the working Cartesian
frame and θ is the yaw angle. The estimated current pose
ξ0 and its error covariance matrix Σ0 are known from the
tracking system. Let ξN = {ξ1, ξ2, · · · , ξk, · · · ξN} be the set
of predicted poses with a sampling period denoted Te. If the
predicted trajectory was known in a closed-form as ξk+1 =
g (ξk) + α, with g (ξ) a known function and α the model
noise, the covariance matrix of ξk+1 could be calculated with
a first order expansion:

Σk+1 = J · Σk · JT +Q (3)

where Σk and Q are respectively the covariance matrices of
the error on ξk and of α. J = ∂g

∂ξ (ξk) is the Jacobian of
function g in point ξk. In our case, such a g function is not
known. So, we first consider a new state vector X defined as

X =

[
ξ

ξ̇

]
=


x
y
θ
vx
vy
ω


vx and vy are respectively the velocities along x-axis and y-
axis, ω is the yaw rate. The error covariance matrix of X is
denoted P. The initial (current) values X0 and P0 are known
from the tracking system. Then, we assume a constant yaw
rate and velocity movement between two consecutive samples
Xk and Xk+1, so that vx,k, for instance, is given by:

vx,k =
xk+1 − xk

Te

If one integrates along the trajectory with xk+1 = xk +
Te.vx,k and develops this expression, one can check that we
have xk+1 = xk+1. Therefore, starting from X0, and having
the same reasoning for all the state parameters, we get exactly
the same points of the predicted trajectory.
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Figure 4. Illustration of the propagation of an initial uncertainty along a
predicted trajectory.

The linear state evolution is:

Xk+1 = A.Xk + α (4)

where

A =


1 0 0 Te 0 0
0 1 0 0 Te 0
0 0 1 0 0 Te
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5)

and the zero-mean white model noise α is added to handle
the fact that this model is an approximation of the real
movement (Fig.4). In practice, the covariance matrix Q of
α is chosen constant with its first three diagonal elements
null because the noise does not affect the next pose (the
first three state elements) which is already known from the
trajectory prediction. The error covariance matrix of Xk+1 is
given by:

Pk+1 = A · Pk ·AT +Q (6)

The covariance matrix Σk+1 of ξk+1 is finally extracted as
the upper left block of Pk+1.
Fig.4 shows a simplified example (with only position and
velocity) of the propagation of the initial uncertainty along
a predicted trajectory. In this example:

P0 =


1 0.81 0 0

0.81 1 0 0
0 0 1 0.64
0 0.64 0 1

 , Q =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


The model noise here, is chosen pretty large in order to easily
check the increase of the uncertainty, depicted by ellipses in
the figure.

IV. ESTIMATION OF THE COLLISION RISK

The risk of collision is computed separately for each obstacle
in a limited area around the ego vehicle. In [6], the predicted
trajectory of each considered object (ego vehicle or target
object) is used as mean value of a Gaussian Process [9]



and several random trajectory samples are generated for that
object. Then, the fraction of the ego vehicle’s trajectories that
collide with one or more trajectories of a considered object
gives the risk of collision with that object. This approach
gives an idea of the collision risk on the whole predicted
trajectory but does not provide an estimation of theTTC nor
the point of the collision which are yet prime indicators, in
the sense of collision avoidance.
In [3], the predicted trajectories are used to define a time
function representing the distance between the ego vehicle
and the considered obstacle. The smallest positive zero (if
any) of this function stands for the TTC. Then, the predicted
poses of both objects at that time and their variances are
used to generate several Gaussian random poses. Finally, the
fraction of poses that depict a collision gives the probability
collision at that time. Here, the variances of the future poses
are considered equal to their initial values (current time).
This approach uses a deterministic method to determine the
TTC, which might be a fail since the predicted trajectories
are not certain. The actual TTC may potentially be different.
Moreover, the variances actually increase in time.
In [5], the authors proposed a method to compute the
probability of collision of two objects at a given moment,
knowing an estimate of their respective poses at that time
and the corresponding error covariance matrices. The poses
are considered as Gaussian variables and the probability that
the objects (named n and m) share the same space is:

Pcoll =

ˆ
D

pn (ξ) pm (ξ) dxndyndθndxmdymdθm (7)

where the probability density functions pn and pm are
Gaussian:

pi (ξ) =
1(√

2π
)3√|Σi|e− 1

2 ((ξ−ξi)T Σ−1
i (ξ−ξi))|i = {n,m}

and

D =
{
(xn, yn, xm, ym) ∈ R4, (θn, θm) ∈ [0, 2π[2 |Sn ∩ Sm 6= ∅

}
Sn and Sm being the areas respectively occupied by objects
n and m. If Sn = Sm = ∅, Eq. 7 has an analytical solution,
otherwise it does not exist. Since we consider objects with
non null surface, the probability is computed numerically
via a Monte-Carlo (MC) simulation, consisting in generating
random poses for each object and computing the ratio of
pairs of poses corresponding to a collision.
In a similar way to the previously cited paper, our approach
is also based on a Monte Carlo simulation but it overcomes
the weaknesses mentioned before. Its main steps are the
following:

1) For each considered object (including ego vehicle),
propagate the initial uncertainty along its predicted
trajectory (see section III)

2) For each future time sample, compute the probability
of collision of the ego vehicle with each target object.

The probability is approximated by generating random
poses for the ego vehicle and for the object, based
on their predicted poses and associated covariance at
this time. Then, the ratio of cases corresponding to a
collision is the probability of collision.

3) For each target object, output the set of probability
values (corresponding to the different future time sam-
ples).

Instead of estimating the actual TTC for each target object,
each future time sample is considered as a potential TTC
and the probability of collision is computed. This approach
allows to have a larger view of the evolution of the scene and
to set up different strategies, according to the probability of
collision for specific values of TTC.

V. SIMULATION AND RESULTS

The risk assessment approach has been tested in simulation.
Two different use cases were evaluated, with the goal of
checking the evolution of the probability of collision of the
ego vehicle with each encountered object. Both simulation
last 12s. There are 3 vehicles, the ego vehicle named V0

and two target vehicles named V1 and V2. The curves
representing the evolution of the risk of collision for the next
4s are plotted all along each simulation, as shown in Fig.5
and Fig.6. The upper sub-graphs shows a bird view of the
scenario at the mentioned time instant. We skip the letter
“V ” in the name of the vehicles for a better readability of
the figures. So, “0” stands for V0, “1” for V1 and so on.
The middle and the bottom sub-graphs depict the risk of
collision of V0 respectively against V1 and V2. Both scenarios
happen on a straight road with 2 lanes, each 3.5m wide.
The simulator provides position, velocity and orientation data
for each vehicle, at a rate of 10Hz. At each sample time,
a 4s trajectory prediction is made for each object. Then,
the predicted trajectories are sampled, also on a 10Hz rate
and the probability of collision of V0 against each vehicle
is computed for each corresponding pair of future sample
poses. For the MC algorithm, only 100 drawings are made
per predicted pose. This value may seem low but gives
realistic results as discussed in the following subsections.
Moreover, it is a good compromise to afford a real-time
execution. One may try a higher number of drawings to have
a better approximation of the integral in Eq. 7, if the required
computational resources are available.

A. Scenario 1: Collision during an overtaking

In the first scenario, the velocities of V0, V1 and V2 are
respectively 80km/h, 50km/h and 40km/h. At the beginning,
all the vehicles are in the bottom lane. V0 follows V1 which
follows V2. Then, V0 starts an overtaking on V1 by making
a lane change to the upper lane. While it gets close to V1,
the latter suddenly starts a lane change in order to overtake
V2. A collision happens in the upper lane, between V0 and
V1 at time 7.4s. Fig.5 shows the risk of collision at different
moments of the simulation.
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Figure 5. Probability of collision during simulation N°1

As it can be noticed from Fig.5, the pick of probability of
collision for V1 is always around time 7.4s (when reading
the figure, please add the prediction time to the current
simulation time) and the value of the pick increases as the car
gets closer to the moment of the collision. This is the desired
behavior because it allows a CAS to react proportionally
to the time before the collision. This also means that the
trajectory prediction method and the collision risk estimation
are consistent.

By checking the values of the curve for V1, we have about
50% and 65% respectively 2s and 1.5s before the collision,
which are medium levels of alert and leaves enough time to
make a maneuver in order to avoid the collision. 1s before
the collision, the probability reaches 80% and reaches 100%
around 0.8s meaning that the collision is very soon and that
there are very few chances to avoid it if no action is taken
immediately.

Regarding V2, the risk of collision is not null despite the fact
that it is not in the same lane as V0. Indeed, when they are
predicted to be almost side by side or at least pretty close to
each other, the variances of the predicted poses leave a few
chances to have a collision. Nevertheless, the maximal pick
is 40% and the mean value along the whole simulation is less
than 20% which means that the risk of collision between V0

and V2 remains, as expected, low.

B. Scenario 2: Front to front collision narrowly avoided

In the second scenario, V0 follows V1 in the bottom lane
while V2 is driving in the upper lane but in the opposite
direction. They respectively drive at 50km/h, 40km/h and
40km/h. Then, V0 starts a lane change in order to overtake
V1.

A collision has almost happened between V0 and V2 shortly
later but has narrowly been avoided because V0 came back
to the bottom lane just in time. The goal here, is to check the
behavior of the system when the driving behavior changes.
Fig.6 shows the risk of collision at different moments of the
simulation.

In this scenario, there was no collision and, as expected, the
risk of collision with V2 never reached 100%. It even remains
quite low despite the fact that both vehicle happened to be
driving in opposite directions in the same lane. This is so
because at the beginning, even though they were in the same
lane, they are pretty far from each other (more than 150m in
the first sub-figure of Figure 6).

Later, the lane change made by V0 has been detected early
making their predicted trajectories not meet. However, as the
vehicles get closer, the risk of collision increases. The pick
values reached in the two bottom sub-figures of Figure 6
show that they were close to a collision. Please notice that
the trajectory prediction is crucial to obtain a realistic result.
For V1 the analysis is similar to the one for V2 in the first
scenario.
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Figure 6. Probability of collision during simulation N°2

VI. CONCLUSION

This paper presented an approach to assess the risk of
collision of the ego vehicle in a dynamic scene. This, first
includes object trajectory predictions. So, we reminded a
trajectory prediction method which was used later in the
evaluation of the approach. In order to calculate the risk of
a predicted collision, it is crucial to know the uncertainty of
the predicted poses. A method was presented to propagate the
estimated uncertainty of the current pose of a vehicle along its
predicted trajectory. Then, a method to approximate the risk
of collision between two objects at a given time was shown.
It is based on a Monte Carlo strategy. The global idea of the
risk assessment is to have a pseudo-continuous evolution of
the probability of collision on the whole prediction horizon
so that it possible for a Collision Avoidance System to
set up different action strategies depending on the value of
the probability at specific future time instants. The overall
approach was tested in two different scenarios and the results
show that the output is very realistic which should allow
to reduce false alarms in a CAS when the driving behavior
changes before a coming collision.
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