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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Road Invariant Extended Kalman Filter for an Enhanced Estimation of
GPS Errors using Lane Markings

Zui Tao, Philippe Bonnifait

Abstract— Satellite positioning is a key technology for au-
tonomous navigation in outdoors environments. When using
standalone computation with mono-frequency receivers, posi-
tioning errors are not in accordance with the required perfor-
mance. Nevertheless, since errors are strongly time-correlated,
a GPS fix is quite informative if a shaping model of the
positioning errors is carefully handled and made possible by
exteroceptive sensors. When driving in a road with a camera
detecting lane markings, the lateral error is directly observable
by using a lane marking map. It can be well modeled by mixing
auto-regressive and random constant models. An algebraic
observability study is conducted to prove that this modeling is
completely observable in a road frame. A new road invariant
Extended Kalman Filter (EKF) is then presented to conserve
the observability of every component of the state vector for
any road whatever its orientation. The filter manages road
changes by using bijective transformations that are detailed.
Real experimental results indicate that the performance of
the estimation process is significantly improved compared to
a classic EKF that is implemented in a fixed working frame
with a less informative error modeling.

I. INTRODUCTION

The ability to estimate the pose of a vehicle with low
cost sensors (e.g., [1] [2]) remains a challenging problem for
autonomous vehicles. A GPS receiver is useful to compen-
sate Dead-Reckoning’s drift and is mandatory for a cold start
initialization of the localization system. However, when using
L1-GPS positioning with broadcast ephemeris (L1 refers to
low cost mono-frequency receivers), errors are not white and
can be affected by strong biases, which are mainly due to
atmosphere propagation delays and multipath, particularly in
urban areas. For this reason, the lane marking aided vehicle
localization coupled with GPS information has been studied
in many works (see for instance [3][4][5][6]) for autonomous
guidance systems. The use of vision sensors (e.g., a camera)
simultaneously with an accurate map makes possible to
estimate the GPS errors. However, the measurement of a
vision sensor is often related to the local geometry of the road
and relative to it. In terms of sensor information availability,
lateral measurements are more frequent than longitudinal
measurements as the firsts ones are done on lane markings
and the seconds ones on intermittent features (e.g., stop line).
Therefore, the observability of the GPS error along the road
axis is weak whereas it is high in the cross-track direction.

In this paper, we present a new way to develop a Kalman
filter for this kind of issue. The first idea is to find an efficient
model of the GPS errors. The second one is to propose
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Fig. 1: Road-oriented frame

an adequate working frame to implement a classical EKF.
A road invariant EKF algorithm is proposed to handle the
enhanced estimation of the GPS errors. This idea is inspired
from the Invariant EKF proposed by Bonnabel et al. [7].
Indeed, the localization problem possesses state invariance
with respect to road rotations and the observability of every
component of the state vector is kept in the road frame. In
this work, the observability of the augmented state space is
studied in the algebraic framework.

The paper is organized as follows. Section II introduces
the system modeling in a road-oriented frame. Section III
demonstrates the observability of the proposed modeling.
Section IV describes the road invariant EKF algorithm and
the localization solver. Outdoor experimental results are
presented and analyzed in section V.

II. SYSTEM MODELING

The working frame in which a localization solver is im-
plemented plays an important role in terms of error modeling
and estimation performance. Often a local ENU (East North
Up) frame is used, but as we consider the use of a camera
that is able to measure the lateral distance with respect to
known lane markings, we propose to consider a modeling of
the system in a road-oriented Cartesian frame.

Definition 1: A road-oriented frame is defined to have the
same origin as the local ENU frame and its x-axis pointing
to the direction of the road in which the vehicle is traveling
(cf. Fig. 1).

The localization process uses Dead-Reckoning sensors
(yaw rate gyro and wheel speeds) and L1-GPS fixes. As
suggested in [8] to manage gyros errors, the GPS error is
modelled by the combination of a random constant with
an autoregressive process. The random constant handles the
bias and the autoregressive process the non-whiteness of the
noise.

The state vector is expressed as follows:

X = [x, y, ψ, εω, εx1, εx2, εy1, εy2]T (1)



where (x, y, ψ) is the 2D pose of the vehicle; εω denotes
the gyro bias; (εx1, εx2, εy1, εy2) are GPS errors on x and y
in the road-oriented frame.

The evolution model of the state vector is given by:

ẋ = v · cosψ
ẏ = v · sinψ
ψ̇ = ω − εω
ε̇ω = 0
ε̇x1 = −εx1/τ1
ε̇x2 = −εx2/τ2
ε̇y1 = −εy1/τ1
ε̇y2 = 0

(2)

In this model, first order auto-regressive models with time
constant τ1 and τ2 are used to model the non-whiteness of
the GPS errors [3]. The error in the x-direction is split into
two components (εx1 and εx2) with different decorrelation
time constants in order to manage the frame transformation
when the road changes (detailed explanation given in section
IV-A). The time constant of εy1 is the same as the one of
εx1. v is the linear velocity measured by the wheel speed
sensors and ω is the angular velocity measured by the yaw
rate gyro.

The last equation of the model associated with εy2 plays a
important role in our localizer. Indeed, it is a random constant
model which is well adapted to estimate the lateral bias of
the GPS fix in the road frame.

The exteroceptive sensors that are considered are a GPS re-
ceiver and a front-looking camera that detects lane markings.
In order to study the structural properties of the modeling
with equations easy to handle, let us suppose that the camera
and the GPS antenna coincide with point M , the origin of
the body frame (cf Fig. 1).

Moreover, we consider at this stage that there is only
one lane marking, locally represented by a line [AB]. The
observation model in this case is given by:

C0 = (y − yA) /cosψ (3)

C0 is the lateral distance measured by the camera in the
body frame [9]. yA is the ordinate of point A in the road-
oriented frame.

The GPS fixes with their shaping errors are linked to the
state by the following model:{

xGPS = x+ εx1 + εx2
yGPS = y + εy1 + εy2

(4)

III. OBSERVABILITY ANALYSIS

The state space given in the previous section is the basic
modeling on which a state observer can be built to estimate
the pose of the vehicle and to merge the information from
different sensors. The last five components of the state vector
with their respective modeling act as shaping filters in the
observer. The question that needs to be answered is: Are
all the components of the state observable when using the
exteroceptive measurements Y = [xGPS , yGPS , C0] and the
proprioceptive inputs U = [v, w]?

A. Algebraic observability

We are facing a non-linear system. In such a case, there are
two main approaches to study the observability of the state.
The most classical one is the local weak observability [10]
that relies on the study of a rank condition after linearization
and Lie derivatives computation. Another approach relies on
the algebraic concept (see [11]).

Theorem 1: (cf. [11]) The state of a system with known
internal dynamics is said to be observable if, and only if,
there is an algebraic equation linking the state vector to the
measured output Y and input U and a finite number of their
time derivatives.

Algebraic observability is therefore a different way to
study observability. It has also the advantage to provide
a analytical way to build a state observer as soon as the
derivatives of the inputs and outputs can be estimated with
a good quality.

In the following, we study the observability of the different
components of the state in the algebraic framework.

B. Observability of vehicle heading ψ and gyro bias εω
By taking the derivative of Eq. (3), we have:

ẏ = Ċ0 · cosψ − ψ̇ · C0 · sinψ (5)

By plugging ẏ = v · sinψ and ψ̇ = ω − εω:

v · sinψ = Ċ0 · cosψ − (ω − εω) · C0 · sinψ (6)

By taking the derivative of Eq. (6), we have:[
v̇ + 2Ċ0 (ω − εω) + ω̇ · C0

]
sinψ =[

C̈0 − C0 (ω − εω)2 − v (ω − εω)
]

cosψ
(7)

If ψ is identically null (the vehicle is traveling parallel
to the lane marking) then ψ̇ = 0 and we have εω = ω (the
gyro bias is then observable). Moreover, in this case, we have
Ċ0 that is identically null and so one can observe that ψ is
identically null.

Now suppose that ψ is not null. Then we can work out:

εω =
v · sinψ − Ċ0 · cosψ

C0 · sinψ
+ ω (8)

C0 is physically non null because the lane markings are
on the sides of the lane.

By plugging Eq. (8) into Eq. (7), one gets a non-singular
expression when the vehicle linear or rotational speeds are
not null or when the vehicle accelerates or decelerates:(

v̇ · C0 − v · Ċ0 + ω̇ · C2
0

)
sin3ψ +

(
C̈0 · C0 − Ċ0

2
)
cos3ψ

+
(
2Ċ0

2 − C̈0 · C0

)
cosψ − v · Ċ0 · sinψ = 0

(9)

From Eq. (9), it is possible to get a function Φψ such as:

ψ = Φψ
(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(10)

ψ is therefore observable.
By using Eq. (10) in Eq. (8), a function Φεω can give εω:

εω = Φεω

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(11)

which is therefore observable.



C. Observability of vehicle position (x, y) and of GPS errors

By taking twice the derivative of Eq. (4), we have:

ẋGPS = v · cosψ − εx1/τ1 − εx2/τ2 (12)

ẍGPS = v̇ · cosψ − v · sinψ · ψ̇ + εx1/τ
2
1 + εx2/τ

2
2 (13)

Since ψ is observable and as we have a linear system with
two unknowns and two equations, we get:

εxi = Φεxi

(
C0, Ċ0, C̈0, ẋGPS , ẍGPS , v, v̇, ω, ω̇

)
i = 1, 2 (14)

So εx1 and εx2 are observable.
With x = xGPS − εx1 − εx2 and Eq. (14), x is observable.
With y = yA + C0 · cosψ and Eq. (10), y is observable.
The expression of εy1 is given as follows:

ẏGPS = v · sinψ − εy1/τ1 (15)

εy1 = (v · sinψ − ẏGPS) τ1 (16)

So εy1 is observable.
With εy2 = yGPS − y − εy1, we can derive that εy2 is

observable.
So far, we have proved that every element in the state

vector X can be expressed by an algebraic function of
the components of Y and U and a finite number of their
derivatives. We can consequently conclude that the state
vector with its associated state space modeling is observable
as long as the vehicle moves or accelerates.

IV. ROAD INVARIANT EXTENDED KALMAN FILTER

The observability of the state has been demonstrated in
a road-oriented frame. However, in reality, the orientation
of the road changes as the vehicle moves from one road to
another. We are now building an EKF that estimates the pose
vector of the vehicle from one road to another, in a sequential
way.

A. Geometrical transformation

RO denotes the local ENU frame and Ri is the working
road-oriented frame, with its x-axis pointing to the direction
of road i. When the vehicle passes from road i to road j,
the working frame changes from Ri to Rj . Let jX denote
the state vector in frame Rj . The transformation from iX to
jX is given by Eq. (17):

jx = ix · cosα+ iy · sinα
jy = −ix · sinα+ iy · cosα
jψ = iψ − α
jεω = iεω
jεx1 = iεx1 · cosα+ iεy1 · sinα
jεx2 = iεx2 · cosα+ iεy2 · sinα
jεy1 = −iεx1 · sinα+ iεy1 · cosα
jεy2 = −iεx2 · sinα+ iεy2 · cosα

(17)

Where α = θj−θi. θi and θj are respectively the orientation
of road i and road j in RO (cf. Fig. 2).

Let iP denote the covariance matrix estimated by the EKF
in the working frame Ri. The transformation from
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Fig. 2: The vehicle travels from road i to road j

to
(
jX,j P

)
is described by the function given in Algorithm 1,

where sα and cα denote sinα and cosα respectively. The
road directions being deterministic, this is simply the linear
transformation of a random vector.

Algorithm 1 Function Ri2Rj_State

Input: iX, iP, θi, θj
1: α = θj − θi

2: jHi =



cα sα 0 0 0 0 0 0
−sα cα 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cα 0 sα 0
0 0 0 0 0 cα 0 sα
0 0 0 0 −sα 0 cα 0
0 0 0 0 0 −sα 0 cα


3: jbi = [0, 0,−α, 0, 0, 0, 0, 0]T

4: jX = jHi ·i X + jbi
5: jP = jHi ·i P ·

(
jHi

)T
Output: jX, jP

Now, the reason why the bias on ix has been modeled
by two components becomes clear. The lateral bias on iy
is modeled by an auto-regressive process plus a random
constant to get a refined estimation process. If one models
the bias on ix by only one component, when the frame
changes from Ri to Rj , there is no way to find a bijective
transformation. When the vehicle pose is converted from one
road frame to another, doing the inverse transformation has
to give the same estimate. Mathematically, it means that
matrix jHi (cf. Algorithm 1) has to be squared and such
that jHi · iHj = I (Identity matrix). It is straightforward to
check that our proposal verifies this property.

Since the output of the filter has to be given in the ENU
frame RO, Algorithm 2 describes the state transformation,
where

(
OX,OP

)
denotes the Kalman filter estimates ex-

pressed in the ENU frame.

B. Road invariant EKF implementation

The filter is implemented as a discrete EKF triggered by
the proprioceptive sensors (typically at a sampling period
Te = 0.01s). The GPS and camera measurements are used
as soon as they are available. The filter is described in
Algorithm 3. iA and iB denote the coordinates of the
detected lane marking [AB] in Ri.



Algorithm 2 Function Ri2RO_State
Input: iX, iP, θi

1: OHi =



cθi −sθi 0 0 0 0 0 0
sθi cθi 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cθi 0 −sθi 0
0 0 0 0 0 cθi 0 −sθi
0 0 0 0 sθi 0 cθi 0
0 0 0 0 0 sθi 0 cθi


2: Obi = [0, 0, θi, 0, 0, 0, 0, 0]T

3: OX = OHi ·i X + Obi
4: OP = OHi ·i P ·

(
OHi

)T
Output: OX,OP

Algorithm 3 Road invariant Extended Kalman filter
1: U =Get (proprioceptive sensors measurements)
2:
(
iX,i P

)
=Predict

(
iX,i P,U

)
3: if GPS data is available then
4:

(
OYGPS ,

ORGPS
)

= Get (GPS measurements)
5:

(
iYGPS ,

iRGPS
)

=RO2Ri
(
OYGPS ,

ORGPS , θi
)

6:
(
iX, iP

)
=Update_GPS (iX, iP ,iYGPS ,iRGPS)

7: end if
8: if Camera data is available then
9: C0 =Get (camera measurement)

10:
(
OX,O P

)
=Ri2RO_State

(
iX,i P, θi

)
11:

(
j,OA,O B

)
=Map_Match

(
OX,O P,C0,Map

)
12: if θi 6= θj then
13:

(
iX,i P

)
=Ri2Rj_State

(
iX,i P, θi, θj

)
14: θi = θj
15: end if
16: iA = RO2Ri_Point

(
OA, θi

)
17: iB = RO2Ri_Point

(
OB, θi

)
18:

(
iX, iP

)
=Update_Camera

(
iX, iP,C0,

iA,iB
)

19: end if
20:

(
OX,O P

)
=Ri2RO_State

(
iX,i P, θi

)
. /*System output*/

21: Go to 1
. /*See Algorithms 1, 2, 4 and 5*/

1) Prediction: When the proprioceptive sensors are avail-
able, the function Predict

(
iX,i P,U

)
consists in computing:

iX = f
(
iX,U

)
⇐⇒



ix =i x+ Te · v · cos
(
iψ
)

iy =i x+ Te · v · sin
(
iψ
)

iψ = iψ + Te ·
(
ω − iεω

)
iεω = iεω
iεx1 = a1 · iεx1
iεx2 = a2 · iεx2
iεy1 = a1 · iεy1
iεy2 = iεy2

(18)

and {
iP = A · iP ·AT +B ·N ·BT +Q

A =
∂f(iX,U)
∂iX

, B =
∂f(iX,U)

∂U

(19)

The measurement noises on v and ω are supposed to
be zero-mean independent white noises, N denotes their
covariance matrix. Q is the covariance matrix of the process
noise. a1 = e−Te/τ1 and a2 = e−Te/τ2 .

2) GPS update: When GPS is available, the measurement
vector OYGPS =

(
OxGPS ,

O yGPS
)

in the ENU frame RO is

M

Bias

xGPS

N

E

yGPS

O

X

Y
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i
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Fig. 3: GPS fix error and frame transformation

transformed into the frame Ri (see Fig 3) by Algorithm 4.
The covariance matrix ORGPS given by the receiver is also
converted.

Algorithm 4 Function RO2Ri

Input: OYGPS ,
ORGPS , θi

1: iTO =

[
cosθi sinθi
−sinθi cosθi

]
2: iYGPS = iTO ·O YGPS
3: iRGPS = iTO ·O RGPS

(
iTO

)T
Output: iYGPS ,

iRGPS

Then, a classical Kalman update step is performed to
update

(
iX,i P

)
with an innovation gating to reject GPS

outliers (e.g., multipath on close buildings). For an accurate
data fusion, the level arm of the antenna with respect to the
body frame has to be taken into account (see [9] for details).

3) Camera update: In order to update the filter, the map
is used as it contains the coordinates of the lane marking.
Map matching is therefore done when camera measurements
are available. Its goal is to find the road that matches with
the detected lane marking. Since the map is defined in RO,
the first step consists in converting the pose in ENU. Map
matching is then applied using the method described in [12].
At this moment, the algorithm checks if the vehicle is in
a different road. In this case, the road working frame is
modified and the state with its covariance matrix is converted.
It just remains to get the coordinates of the lane marking
in the road frame which is described by Algorithm 5 and
to update the state and covariance matrix by applying an
estimation stage of the EKF. In practice, the location of the
camera in the body frame is taken into account to get an
accurate correction (cf. [12]).

Algorithm 5 Function RO2Ri_Point
Input: OA, θi

1: iTO =

[
cosθi sinθi
−sinθi cosθi

]
2: iA = iTO ·O A

Output: iA
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Fig. 4: Test scene and trajectory in the local ENU frame

V. EXPERIMENTAL RESULTS

A. Experimental set-up

In order to evaluate the road invariant Extended Kalman
filter, we use real data from outdoor experiments which were
carried out near Paris France in May 2013. Three tests were
performed on the same road with an experimental automotive
vehicle in urban conditions.

The experimental vehicle was equipped with an IMU
Oxford RT3000 which provided ground truth data at 100Hz
rate. A CAN-bus gateway was used to access to the wheel
speed sensors and the yaw rate gyro. The measured input
[v, w] from the CAN bus was available at 100Hz. A Mobileye
camera was installed behind the windscreen to detect the lane
markings at 10Hz. A low-cost U-blox 6T GPS receiver with
a patch antenna was used. It provided position measurements
at 5Hz with no high-precision GPS measurements.

Fig. 4 shows the test scene in the local ENU frame.
The gray bounds represent buildings which are from Open-
StreetMap to show the urban conditions of the test scene.
The black lines represent the lane marking map expressed
by polylines. It mainly consists of two-lane roadways with
dashed lane markings in the center of the road and solid
ones on both sides of the road. The map has a decimeter-
level accuracy.

The traveling distance for each test was about 2km with a
typical speed of 30 km/h. Let take test 1 as an example. The
red line stands for the test trajectory (Fig. 4). The vehicle
started at t = 0s and stopped at t = 327s. Between t = 80s
and t = 140s , the vehicle passed in a strong urban canyon of
300 meters and the U-blox receiver suffered from multipath
around t = 123s.

B. Localization results

The method proposed in this paper is compared with a
classical loosely coupled EKF implemented in the ENU
frame RO, in which GPS bias on x and y are modeled
using only first order autoregressive processes on the x and
y directions. Indeed, it can be shown that adding a random
constant model on the two directions makes the system
non-observable. As described in Algorithm 3, the output of
the solver is a state converted into RO. The localization

Lateral PE (m) Longitudinal PE (m)

I II III I II III

mean 1.30 0.07 0.04 1.55 -0.32 -0.19

std. dev. 1.12 0.29 0.26 1.18 0.32 0.29

median 0.96 0.10 0.09 1.31 0.30 0.24

95th percentile 3.20 0.68 0.55 3.88 0.88 0.73

max 6.78 1.83 1.37 4.69 1.50 1.36

TABLE I: Error statistics. (I: U-blox; II: ENU EKF; III: road invariant EKF)

median 95th percentile max

Lateral Positioning 10% 19% 25%

Longitudinal Positioning 20% 17% 9%

TABLE II: Improvement by road invariant EKF with respect to ENU EKF

performance is studied in RO by using data replay (both
filters have been implemented in C++ to test them with the
same framework).

Table I gives the global performance metrics of three tests.
U-blox receiver, EKF in the ENU frame (ENU EKF) and
road invariant EKF results are reported. Lateral and longitu-
dinal positioning error (PE) are analyzed and compared. One
can notice that the localization accuracy is highly improved
by using the road invariant EKF with a 95% lateral PE
less than 0.55m. Table II gives the relative improvement
provided by the road invariant EKF with respect to the EKF
in the ENU frame, in terms of median, 95th percentile and
maximum of the lateral and longitudinal PE. Fig. 5 shows the
cumulative distribution of the absolute PE by road invariant
EKF and ENU EKF of the three tests. The road invariant
EKF gives better estimation on both lateral and longitudinal
direction.
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Fig. 5: Cumulative distribution function (CDF) of the positioning errors

Hereafter, result of test 1 is taken to do more analysis.
Fig. 6 shows changes of lateral and longitudinal positioning
errors over time with ±3σ bounds by the road invariant
EKF. One can notice that the uncertainty on lateral posi-
tion increases greatly when the filters loses lane marking
measurements. The road invariant EKF remains consistent
(99.7% probability level) with 94.2% of the data points. The
consistence failure rate of ENU EKF is much higher which
reaches 24.4%.

C. Convergence analysis of the GPS errors

Fig. 7 shows the estimated standard deviation of εx1,
εx2, εy1, and εy2 in RO. It has to be noticed that they
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converge towards constants, except when there is no lane
marking detection. This is an experimental checking of the
observability. By looking at the biases estimates (Fig. 8),
one can see that they remain bounded and in the order of
magnitude of usual L1-GPS errors.

Figure 9 shows that the sums of the estimate biases in both
direction of RO match very well the bias computed with the
ground truth equipment.

VI. CONCLUSION

In this paper, we have proposed a state modeling which
handles well the time-correlated errors and bias of L1-
GPS in a road frame. A road invariant EKF algorithm has
been proposed and tested. In particular, the proposed state
space model is observable and a bijective transformation
between roads guarantees the continuity of the Kalman
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Fig. 9: Estimated biases compared to the reference

filter estimates. The method has been validated with real
outdoor data and works much better than a localization solver
implemented in the ENU frame in terms of accuracy and
consistency because it handles a more refined modeling of
the errors. Future work will focus on further validations of
the road invariant EKF on roads with different geometries.
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