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Evidential Occupancy Grid Mapping with Stereo-vision
Chunlei Yu1,2,3, Veronique Cherfaoui1,2,3 , Philippe Bonnifait1,2,3

Abstract—Occupancy grids have shown interesting properties
to model the environment for intelligent vehicles perception.
In this paper, we present a novel approach to build 2D
occupancy grid maps with stereo-vision. Our approach proposes
a fitted sensor model based on the disparity space to interpret
the stereo-vision information onto an occupancy grid map.
The evidential model deals with sensor uncertainties by using
Dempster-Shafer theory. Our approach exploits the U-disparity
space to model the obstacle information and the V-disparity
space to model the road space information. The fusion of
these two sources of complementary information results to an
enhanced environmental model. In a first data set, experimental
results based on real road data and comparisons with Lidar
grids show that the proposed evidential sensor model can model
efficiently the environment. In a second one, the mapping of a
road environment is reported to show the performance of the
proposed model with another stereo-vision system.

I. INTRODUCTION

An occupancy grid map [1] is a common tool to model
the immediate environment for intelligent vehicles naviga-
tion. The map can be built by interpreting sensor readings
into evenly distributed cells in the space to represent the
presence or absence of obstacles. An occupancy grid is
often constructed using range sensor data because a range
sensor data provides direct obstacle distance information,
which simplifies the modeling and mapping process, as in
[2] with an ultrasound, in [3] and [4] with Lidars. In this
paper, we present a new approach to build occupancy grid
maps using a stereo-vision camera. Building probabilistic
occupancy grid maps with stereo camera has been studied by
some researchers in the robotic field. [5] has proposed a local
occupancy grid mapping using a proposed model in the U-
disparity space, and in [6], the authors proposed an approach
to build occupancy grids using a dynamic programming
method.

When interpreting sensor data into occupancy, uncertain-
ties inevitably arise because of unperceived space and sensors
measurements errors. To tackle these problems, Bayesian
methods are the foundations of usual frameworks. The infor-
mation is transformed into probability to take into account
uncertainties. The above cited works are based on Bayesian
theory except [3], in which the authors proposed to use the
theory of Dempster-Shafer [7] to handle uncertainties.

In this paper, we propose a fitted evidential sensor model
based on the disparity space to interpret the stereo-vision
information onto a 2-dimensional occupancy grid map. We
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have chosen evidential theory because the proposed sen-
sor model interprets the disparity space of two sources of
complementary information: the U-disparity map serves to
model the obstacle information, whereas the V-disparity map
permits to model the Free space information. Moreover, the
framework of the theory of Dempster-Shafer offers powerful
tool to merge different sources of complementary informa-
tion. In this work, we make the hypothesis that the host
vehicle runs on a flat road. The road is considered as Free
space whereas obstacles are considered as Occupied space.

The paper is organized as follows: section II presents the
evidential theory foundations. Section III details the proposed
evidential sensor model for the stereo-vision. Section IV
shows experimental results based on real road data carried out
on two different datasets with different stereo-vision systems.
Entropy and specificity are used to compare the information
management of the stereo-vision mapping with a classical
lidar approach. Finally, conclusions are given is section V.

II. THEORY FOUNDATIONS

In the theory of Dempster-Shafer, a frame of discernment
Ω is defined to model a specific problem. In the occupancy
grid framework, the frame of discernment is defined as:
Ω = {O, F}, referred as the states of each cell. The power
set is defined as 2Ω = {∅, F, O, Ω}. For quantitatively
supporting the cell states, a mass function (also referred
as basic belief assignment BBA) is calculated and provides
four beliefs on the state of the cell [m(F )m(O)m(Ω)m(∅)],
wherem(A) represents respectively the quantity of evidence
that the space is Free,Occupied, Unknown or Conflict. In
this work, the proposed sensor model sequentially assigns
mass to the cell space for every sensor reading. A powerful
application of evidential theory is the fusion of different
reliable sources of information. Letm1 andm2 be two given
mass functions describing the occupancy belief of the same
cell. The result of combination using Dempster’s fusion
rule is: mfusion = m1 ⊕ m2. The normalization process
in Dempster’s rule has the effect of distributing the belief
from the conflict to the other propositions, according to their
respective mass. Based on this property, applying Dempster’s
rule while updating the occupancy grid map with sequential
sensor data can provide obstacle free representation of the
environment because conflicts is mainly related to mobile
objects in the environment or false alarms [4] [8].

III. EVIDENTIAL SENSOR MODEL FOR STEREO-VISION

Our sensor model takes as input the raw stereo-vision
images, and outputs two evidential occupancy grid maps



modeled as evidence distribution over the space. In [5] the
proposed approach needs a pre-processing step to classify the
image pixels as road pixels and obstacle pixels, which is still
an open problem referred to as road detection. Our approach
needs no pre-processing which is an advantage of our model.

Figure 1: Sensor model overview

A. U-Grid sensor model

When applied to intelligent vehicle applications, U-
disparity maps are widely used to detect obstacles [9] [10].
Indeed, with upright obstacle pixel accumulation on the
same disparity value one is able to distinguish obstacles
from ground. Our approach is similar to this idea. The
Occupied mass in the U-Grid comes from the obstacle pixel
accumulation. Figure 2 shows the U-disparity computed from
stereo-vision images at the bottom. One can notice that the
space occupied by upright obstacles contributes to bright
cells in the U-disparity map. In our approach, we compute a
refined obstacle U-disparity map to compute the BBAs for
the U-Grid.

In [11], the authors deduced that the real world height of
the objects could be estimated as:

hi = hc +
(yi − y0) ∗ z ∗ cos θ

f
, (1)

in which hi and hc are the height of object i and camera
respectively in the real world coordinate; θ is the camera tilt
angle and f is the camera focal length; z is the depth of the
object to the camera;y0 andyi are the horizon position and top
of the objects in image coordinate (the origin of coordinates
is assumed at left bottom). In our approach, we push this
formula further to calculate the refined obstacle U-disparity
map. We transform the equation 1 into:

yi =
f ∗ (hi − hc)
z ∗ cos θ

+ y0. (2)

Figure 2: Left top: Original left image with calculated horizon
line in red; Right top: V-disparity map with calculated ground
plane line; Bottom: U-disparity map

Adopting this equation enables to calculate the coordinate
of an object in the image coordinates. If one assumes that
the whole space in the camera environment is the ground
plane, and based on equation 2, one is able to calculate
the accumulation value of the ground pixels providing that
the disparity value changes from [di − 0.5, di + 0.5], for
each u value in the image coordinate. This process allows to
calculate the pure ground U-disparity map for all the ground
pixels. If we perform subtraction operation between the U-
disparity map and the ground U-disparity map, the resultant
U-disparity is defined as refined obstacle U-disparity map,
which contains no ground contribution in the U-disparity
space.

The Occupied evidence is calculated in the U-disparity
space at first. We estimate the accumulation expectation value
by defining a detection threshold [0, H] in the real world
coordinates. For each cell in the U-disparity map, one can
calculate the maximum pixel accumulation expectation VP
by applying Equation 2. Besides in the refined obstacle U-
disparity map, the real accumulation value VO of obstacle
pixels at the cell is already calculated. We adopt the ratio
between these two values as the obstacle confidence: τO =
VO/VP, and the Obstacle evidence for each cell in the U-
disparity space is formulated as:mU (O) = 1− exp(−τO/λ),
where λ is a constant value. Based on Dempster’s theory,
the calculated obstacle evidence can only support the degree
of belief on the Occupied state and it provides no evidence
on the Free state. So the rest of mass besides themU (O) is
totally assigned to Unknown, so themU (Ω) = 1−mU (O).

Please note that obstacle evidence for each cell is in the
U-disparity space. We need to transform the information into
a Cartesian space. The method is detailed in [5]. We adopt
here the same methodology which aims at calculating the
influence area in the real world Cartesian coordinates for



each cell (u, d) in the U-disparity space.

B. V-Grid sensor model

The Free evidence is modeled as a ground plane confidence
map. As discussed in [12], [9], one can deduce the ground
plane model based on V-disparity. In Figure 2 the calculated
ground plane in the V-disparity space is displayed by the
red line. Our approach takes advantage of this property and
deduces a ground plane confidence map. This is a pixel-wise
map which represents the confidence that each pixel lies on
the ground plane. Logically, we suppose that the pixels which
possess stronger confidence to be on the ground plane have
greater evidence to be Free. Under the hypothesis that the
host vehicle moves on a flat road, we can extract the ground
plane parameters by applying the Hough transform in the
V-disparity space.

In the V-disparity space, the ground plane is modeled as
follows:

4 = a ∗ v + b (3)

This is a parametrized line model, as the red line shown in
the V-disparity map in Figure 2.4 is the expected disparity
value so that the pixel can be considered on the ground. To
avoid arbitrary decision, we propose to compute the ground
confidence map based on the disparity difference between
each pixel and the expected disparity value and the confi-
dence is calculated with the Gaussian model. This operation
is performed for each pixel line. Algorithm 1 illustrates the
ground plane confidence map computation process.

Algorithm 1 Ground plane confidence map calculation
input: disparity map (D), V-disparity map
output: Ground plane confidence map
1. Ground plane extraction based on Hough transform, line
parameters a, b.

2. For each image line vi
Expected ground pixel disparity:4i = a*vi + b
For each pixel pij in the line

Disparity difference4d =4i -Dij

Ground confidence for this pixelCij = exp(-42
d/σ

2)
Endfor

Endfor

The algorithm models the ground confidence of the pixels
based on the pixels’ disparity distance from expectation.
Figure 3 shows the resultant ground plane confidence map
projected onto the original left image. The green level in the
map illustrates the various confidence degree for each pixel.
Only pixels with high confidence are displayed.

Integrating the ground confidence map, the V-Grid takes
the confidences as direct support for Free. As a result,
the Free mass of a pixel is: mV (F ) = Cij, Cij is from
Algorithm 1. Since the ground plane confidence map contains
no support on obstacle evidence, the rest of mass goes to
Unknown, so the mV (Ω) = 1 − Cij . Note that, as the mass

Figure 3: Free evidence projection

distribution is computed for pixels, we need to transform this
information into real world Cartesian coordinates. We have
adopted the punctual observation model discussed in [13] to
assure good accuracy. This model assumes that the imaging
process attributes all the probability density to the center of a
pixel. From the point of view of a grid cell, the probability is
uniform within the cell of the calculated position. This model
has the problem of causing discrete evidence information
over the space, but a Gaussian model has been adopted
for the computation of ground plane confidence, we do not
want to add further blurring process into the model. Herein,
within the evidential sensor model, information accumulation
is based on the Dempster’s fusion rule, since there are
pixels which correspond to the same cell in the real world
coordinates, like the pixels on the bottom of image. By
supposing that each of these pixels fall in the same cell as
one different source of information, we can apply Dempster’s
fusion rule.

C. Fusion
Our aim is to build a consistent environmental model

based on two complementary sources of information. The
two sources of information are both reliable, thus allowing
the use of the Dempster’s rule. The fusion process is shown in
Equation 4. For denotation purpose, letmU andmV represent
respectively the mass functions of U-Grid and V-Grid at time
t. The resultant Stereo-Grid is denoted asmStereo.

mStereo = mU ⊕mV (4)

This rule accomplishes the fusion with a normalization
process, which can distribute the belief from the conflict to
Free and Occupied, according to their respective mass. The
complementary U-Grid and V-Grid can be conflicting in some
cases. The normalization process of the fusion strengthens
the highest belief in the result, which is exactly the desired
operation.

IV. REAL ROAD EXPERIMENTAL RESULTS

In this part we report the experimental results based on
real road data. The data sets were collected with two exper-
imental vehicles (called Carmen and Zoe) of the Heudiasyc



Laboratory shown in Figure 4a. For comparison purpose, we
make use of the Lidar installed in the front of the Carmen.
The evidential occupancy grids based on the lidar data were
constructed as a source of comparison.

(a) Carmen (b) Zoe

Figure 4: Experimental vehicles used to test the approach

A. Results and comparison with a Lidar-Grid

The results are shown in 15 meters in width(−7.5, 7.5), 30
meters in height (0, 30) and grid resolution (0.2, 0.2) meters.
λ was set to 0.1 and σ to 2.5, tuned empirically after several
tests. Color brightness level represents the confidence degree.
In the U-Grid, brighter color means more obstacle pixels are
accumulated, and in the V-Grid, brighter color means that
the disparity value of the pixel at this place is closer to the
disparity value of the ground pixels. The same rules apply
for the Stereo-Grid.

Figure 5 shows the grids constructed from the scene
displayed in Figure 2. The car parked on the roadside can be
clearly seen in the U-Grid. In the V-Grid, the mass degree
variation is clearly noticeable because of different ground
confidences and the accumulation effect. In the Stereo-Grid,
one can see the fusion results of the two complementary
information. The grid reflects both the Free and Occupied
information in the environment. Meanwhile, one can remark
the space of conflicting information, such as the space under
the car and under the tree. These space provides contradictory
information in the U-Grid and V-Grid. The normalization
operation in the fusion strengthens the one with highest
belief. The Lidar-Grid is shown for comparing with the
Stereo-Grid. The disadvantage of the Lidar-Grid is the lack of
obstacle information due to the sparse nature of the data, but
the grid can reflect the environment in a very precise manner.
By comparing the Stereo-Grid and the Lidar-Grid, one can
conclude that the evidential occupancy grid constructed by
the proposed approach is accurate.

Figure 6 shows another scene result. There are parked and
on-road cars and a pedestrian on the roadside. From the U-
Grid one can see the car on the road and the pedestrian
on the roadside are both mapped. The resultant Stereo-Grid
correctly shows these information. In the Lidar-Grid, the
pedestrian is not obvious to detect due to the small obstacle
size. However, in the Stereo-Grid this information is more
importantly reflected.

(a) U-Grid (b) V-Grid

(c) Stereo-Grid (d) Lidar-Grid

Figure 5: Evidential Occupancy Grid for environment with
parked car

B. Mapping experiments with the Zoe vehicle

In Figure 7, we show a global map constructed by using
an different stereo-vision system in a private test site of the
university with the robotized Zoe moving at 20 Km/h. The
sequential fusion of all the stereo-grids is done with the
method presented in [3] which outputs mapping of the area.
An image of the test site is also shown in top of the figure.
The blue points in the center of the free space represents
the host vehicle’s trajectory during the data collection. One
can notice that the map is correctly built particularly in the
roundabout.



(a) Scene with a running car and a pedestrian

(b) U-Grid (c) V-Grid

(d) Stereo-Grid (e) Lidar-Grid

Figure 6: Evidential Occupancy Grid for environment with
parked and on-road cars and pedestrain

Figure 7: Global map built in test court of Heudiasyc

C. Quantitative information management study

In order to better analyze the performance of the stereo-
vision evidential mode, we report here a quantitative com-
parison with the classical lidar approach. In the theory of
Dempster-Shafer, one can evaluate the BBAs information
using Specificity and Entropy metrics [14]. The entropy of a
mass function is defined as follows:

Em = −
∑
A⊆Ω

m (A) · ln (pl (A)) , (5)

and the specificity of a mass function as:

Sm =
∑

A ⊆ Ω, A 6= ∅

m (A)

card (A)
. (6)

An informative and non-ambiguous mass function should
have a high degree of specificity and a low degree of
entropy. To illustrate these notions of entropy and specificity,
please consider the following pedagogical examples with the
considered frame of discernment for a given cell:

m1 =

[
∅ F O Ω
0 0.9 0 0.1

]
: Em1

= 0 Sm1
= 0.95

m2 =

[
∅ F O Ω
0 0.1 0.1 0.8

]
: Em2

= 0.0211 Sm2
= 0.6



m3 =

[
∅ F O Ω
0 0.4 0.4 0.2

]
: Em3

= 0.4087 Sm3
= 0.9

Entropy characterizes the inconsistency in the distribution
of the masses. No conflicting information results to zero
entropy in m1, while in m3, as there exists conflicting in-
formation between Free and Occupied, the entropy is large.
Specificity characterizes the degree of dispersion of the
belief. The specificity is larger if the mass distribution is
less doubtful, thus inm1 andm3 the specificity is large.

We report results for a 20 seconds data sequence carried
out with the Carmen vehicle and calculate the average speci-
ficity and entropy for every evidential grid. For comparison
purpose, stereo-vision and Lidar grids were constructed at the
same time index. In Figure 8 and Figure 9, specificity and
entropy are displayed. The green and blue points correspond
to the Stereo-Grid and Lidar-Grid respectively. In general, the
Stereo-Grid has larger specificity than the Lidar-Grid which
means that the masses are concentrated on non-vacuous
propositions in the Stereo-Grid than in the Lidar-Grid. Thus,
less uncertainty about the environment exist in the Stereo-
Grid. In other words, the environment is better characterized.
This can be explained by the fact that the stereo images
contain more information than the sparse Lidar scans. Mean-
while, the Stereo-Grid also has larger entropy than the Lidar-
Grid which means the mass is more dissonant in the Stereo-
Grid than the Lidar-Grid. This is due to the fact that the
Stereo-Grid originates from the fusion of two complementary
grids which may contribute to contradictory information in
some cells close to the obstacles. It is interesting to notice
that the entropy remains very low which indicates a good
modeling of the U and V disparity grids. The lidar has almost
no entropy because the evidential sensor model has been
tailored to avoid this issue.

Figure 8: Specificity for different times when the vehicle is
moving. x-axis: frame index; y-axis: Average Specificity

V. CONCLUSION

In this work, an evidential sensor model has been devel-
oped for a stereo-vision camera based on disparity maps. The
model makes full use of the disparity space and yields two
evidential occupancy grids which provide complementary
information about the environment. The U-Grid from the
U-disparity map contains all information about obstacles in
the scene and the V-Grid from V-disparity map models the
free space information. The fusion of these two grids offers

Figure 9: Entropy. x-axis: frame index; y-axis: Average
Entropy

a complete model of the environment. Experimental results
based on real road data with different systems shows that
the proposed evidential occupancy grid model can correctly
represent the environment, and a quantitative comparison
with occupancy grids from Lidar data indicates that the
Stereo grids are more informative and less ambiguous than
Lidar grids. The main perspectives of this research consist in
studying the influence of the parameters used in the stereo-
vision model and the information fusion between the stereo-
vision and the lidar.
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