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Map-aided Evidential Grids for Driving Scene Understanding†

Marek Kurdej*, Julien Moras~, Véronique Cherfaoui*, Philippe Bonnifait*

Abstract— Evidential grids have recently shown interesting
properties for mobile object perception since the Dempster–
Shafer framework allow them to handle efficiently partial
information which is a frequent situation when driving in
complex urban areas. This article deals with a lidar perception
scheme that is enhanced by geo-referenced maps used as an
additional source of information in a multi-grid fusion frame-
work. The paper presents the key stages of such a data fusion
process. An adaptation of the conjunctive combination rule is
presented to refine the analysis of the conflicting information.
The method relies on temporal accumulation to make the
distinction between stationary and moving objects, and applies
contextual discounting for modelling information obsolescence.
As a result, the method is able to better characterise the state
of the occupied cells by differentiating moving objects, parked
cars, urban infrastructure and buildings. Another output of this
approach is the capability to separate the navigable space from
the non-navigable one. Experiments carried out on real traffic
conditions with an equipped car illustrate the performance of
such an approach.

Index Terms— dynamic fusion, geo-referenced maps, mobile
perception, prior knowledge, evidential occupancy grid, au-
tonomous vehicle

I. INTRODUCTION

Autonomous driving has been an important challenge
in recent years. Navigation and precise localisation aside,
perception of nearby environment is an important charac-
teristic of a self-drivable vehicle. The level of difficulty in
autonomous driving increases in urban environments, where
a good scene understanding makes the perception crucial.
On the one hand, there are several reasons that make cities a
demanding environment. Poor satellite visibility deteriorates
the precision of GPS positioning. Objects’ trajectories are
hard to predict due to high variation in speed and direction.
Also, the sheer number of mobile objects poses computa-
tional problems, e.g. for tracking algorithms.

On the other hand, more and more detailed and pre-
cise geographic databases become available. This source
of information has not been well examined yet, hence
our approach of incorporating prior knowledge from digital
maps in order to improve perception scheme. A substantial
amount of research has focused on the mapping problem
for autonomous vehicles, e.g. Simultaneous Localisation and
Mapping (SLAM) approach [2], but the use of maps for
perception is still understudied.

† This article is an elaborated version of [1], which was presented in
the 5th Workshop on Planning, Perception and Navigation for Intelligent
Vehicles at IEEE/RSJ International Conference on Intelligent Robots and
Systems, Tokyo, Japan, 2013.

* UMR CNRS 7253 Heudiasyc, University of Technology of Compiègne,
France. E-mail: firstname.surname@hds.utc.fr

~ ONERA. E-mail: firstname.surname@onera.fr

In this article, we propose a new perception scheme
for intelligent vehicle navigation. The information fusion
method is based on Dempster–Shafer theory of evidence
[3]. The principal innovation of the method is the use of
meta-knowledge obtained from a digital map. The map is
considered as an additional source of information on a par
with other sources, e.g. sensors. We study the advantage
of including prior knowledge into an embedded perception
system of an autonomous car. To model the vehicle environ-
ment, our approach uses multiple 2D occupancy grids [4],
or precisely their evidential version adaptation [5].

Digital maps have been used as prior knowledge for
already a few years [6]. The use of navigable road maps for
localisation [7], [8], perception [9], navigation and driving
[10] was proved to be of high value. Not only highly accurate
and precised specialised maps, but also those which are
open-sourced have been successfully employed, e.g., Open-
StreetMap [11], [12]. A considerable amount of research
works have contributed to the map updating problem [13].

Our method aims to capture complex and dynamic vehicle
environments, so that they can be used as world represen-
tations for safe navigation. In particular, it is important to
make the vehicle able to distinguish static objects attached
to infrastructure (e.g. road sign) from mobile road users
(e.g. cars, cyclist, pedestrian). In this last category (called
“movable” in the following), the perception mechanism can
be enhanced in order to make the difference between stopped
and moving objects. Indeed, if a movable object has been
detected on the side of the carriageway, it can be a pedestrian
and the vehicle may reduce its speed in anticipation of a
possible collision. Another objective of the proposed scheme
is to characterize the free space nearby the vehicle by
using exteroceptive sensors and refine this information by
highlighting, thanks to a map of the area, the navigable space
on which the vehicle can plan a safe path.

This paper describes a unified approach to a variety
of problems in spatial representation using the Dempster–
Shafer theory of evidence. The theory of evidence was
not combined with occupancy grids until recently to build
environment maps for robot perception [5]. Only recent
works take advantage of the theory of evidence in the context
of mobile perception [14]. There is also some research on
efficient probabilistic and 3-dimensional occupancy grids
[15]. Some authors have also used a laser range scanner as
an exteroceptive source of information [14]. Some works use
3D city model as a source of prior knowledge for localisation
and vision-based perception [16], whereas our method uses
maps for scene understanding. Geodata are also successfully
used for mobile navigation [17].
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This article is organised as follows. Section II gives
necessary theoretical background of the Dempster–Shafer
theory of evidence. In section III, we describe the details of
the proposed method, starting with the description of needed
data and the purpose of each grid. Further, details on the
information fusion are given. Data-dependent computation
which are not in the heart of the method are described in
section IV-A. Sections IV-B and IV-C present the results
obtained with real-world data. Finally, section V concludes
the paper and presents ideas for future work.

II. DEMPSTER–SHAFER THEORY OF EVIDENCE

The Dempster–Shafer Theory (DST) is a mathematical
theory specially adapted to model the uncertainty and the
lack of information introduced by Dempster and further
developed by Shafer [3]. DST generalises the theory of
probability, the theory of possibilities and the theory of
fuzzy sets. In the Dempster–Shafer Theory (DST), a set
Ω = ω1, . . . , ωn of mutually exclusive propositions is called
the frame of discernment (FOD). In case of closed-world
hypothesis, the FOD presents also an exhaustive set. Main
difference in comparison to the theory of probability is the
fact that the mass of evidence is attributed not only to
single hypotheses (singletons), but to any subset of the FOD,
including an empty set.

As stated in the previous paragraph, beliefs about some
piece of evidence are modelled by the attribution of mass
to the corresponding set. This attribution of mass, called a
basic belief assignment (bba), or a mass function, is defined
as a mapping:

m(·) : 2Ω 7→ [0, 1] (1)∑
A⊆Ω

m(A) = 1 (2)

m(∅) = 0 (3)

In order to combine various information sources in the
DST, there are several rules of combination. Combined mass
functions have to be defined on the same FOD Ω or transform
to a common frame using refining functions. A refining is
defined as a one-to-many mapping from Ω1 to Ω2.

r : 2Ω1 7→ 2Ω2 \ ∅ (4)
r(ω) 6= ∅ ∀ω ∈ Ω1 (5)⋃

ω∈Ω1

r(ω) = Ω2 (6)

r(A) =
⋃
ω∈A

r(ω) (7)

The frame of discernment Ω2 is then called the refinement
of Ω1, and Ω1 is the coarsening of the Ω2.

When combined pieces of evidence expressed by bbas are
independent and both are reliable, then the conjunctive rule
and Dempster’s combination rule are commonly used.

In the following, let us suppose that m1,m2 are bbas
defined on some finite frame of discernment Ω. Then, the

∅ a b Ω = {a, b}
m1 0 0.2 0.6 0.2
m2 0 0.7 0.1 0.2

m1 ∩©m2 0.44 0.34 0.18 0.04
m1 ⊕ m2 0 0.61 0.32 0.07
m1 ∪©m2 0 0.14 0.06 0.8

αm1 0 0.18 0.54 0.28
betP1 0 0.3 0.7 1

TABLE I
EXAMPLE OF FUSION RULES, DISCOUNTING WITH α = 0.1 AND

PIGNISTIC PROBABILITY.

conjunctive rule of combination denoted by ∩© is defined
as follows:

(m1 ∩©m2)(A) =
∑

A=B∩C
m1(B) ·m2(C) (8)

The combination using the conjunctive rule can generate
the mass on the empty set m(∅). This mass can be interpreted
as the conflict measure between the combined sources.
Therefore, a normalised version of conjunctive rule, called
Dempster’s rule and noted ⊕ was defined:

K = (m1 ∩©m2)(∅) (9)

(m1 ⊕ m2)(A) =
(m1 ∩©m2)(A)

1−K
(10)

(m1 ⊕ m2)(∅) = 0 (11)

In the DST, a discounting operation is used in order to,
e.g. model information ageing. Discounting in its basic form
requires to set a discounting factor α and is defined as:

αm(A) = (1− α) ·m(A) ∀A ( Ω (12)
αm(Ω) = (1− α) ·m(Ω) + α (13)

Decision making in DST creates sometimes a necessity of
transforming a mass function into a probability function [18].
Smets and Kennes proposed so called pignistic transforma-
tion in [19]. Pignistic probability betP has been defined as:

betP(B) =
∑
A∈Ω

m(A) · |B ∩A|
|A|

(14)

where |A| is the cardinality of the set A.
Table I presents an example of different combination

rules, pignistic transform and discounting operation. The
Dempster–Shafer theory will serve as in further sections
as the main modelling and information fusion tool in the
perception system.

III. MULTI-GRID FUSION APPROACH

This section presents the proposed perception scheme).
We use three evidential occupancy grids to model prior
information, sensor acquisition and perception result. The
grid construction method is described in section III-B. We
detail all data processing steps in section III-D. Figure 1
presents a general functional overview of our approach.
Following sections correspond to different blocks of this
diagram.
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Fig. 1. Method overview.

A. Heterogeneous data sources

There are three sources in our perception system: vehicle
pose, exteroceptive acquisition data and vector maps. Fig-
ure 1 illustrates all system inputs. The proposed approach is
based on the hypothesis that all these information sources
are available. Other hypotheses on the input data are done.
Firstly, a globally referenced vehicle pose is needed to situate
the system in the environment. The pose provided by a
proprioceptive sensor has to be reliable and as precise as
possible. It is assumed that the pose reflects closely the
real state of the vehicle. Secondly, an exteroceptive sensor
supplies a partial view of the environment. This sensor ought
to be able to at least distinguish free and occupied space, and
model it in 2D x, y or 3D x, y, z coordinates. The coordinates
can be globally referenced or relative to the vehicle. A typical
exteroceptive sensor capable of satisfying this assumption
is a Lidar (laser range scanner), radar, or a stereo camera
system. Lastly, our method tries to exploit at large the
information contained in vector maps, so we assume that
the maps are sufficiently rich and contain valuable accurate
data. Typically, map data should contain information on the
location of buildings and the model of road surface.

B. Occupancy grids

An occupancy grid models the world using a tessellated
representation of spatial information. In general, it is a multi-
dimensional spatial lattice with cells storing some stochastic
information. In our case, each cell representing a box (a part
of environment) X×Y where X = [x−, x+], Y = [y−, y+]
stores a mass function.

1) SensorGrid (SG): In order to process the extero-
ceptive sensor data, an evidential occupancy grid is com-
puted when a new acquisition arrives, this grid is called
SensorGrid. Each cell of this grid stores a mass function
on the FOD ΩSG = {F,O}, where:

F free space,
O occupied space.

The basic belief assignment reflects the sensor model.

2) PerceptionGrid (PG): To store the results of in-
formation fusion, an occupancy grid PG has been introduced
with a FOD ΩPG = {N, W, I, U, S, M}. The choice of
such a FOD is directly coupled with the objectives that we
try to achieve. Respective classes represent:
N free navigable space,
W free non-navigable space,
I mapped infrastructure (buildings),
U unmapped infrastructure,
S temporarily stopped objects,
M mobile moving objects.

ΩPG is a common frame used for scene understanding. By
using PG as a cumulative information storage, we are not
obliged to store preceding SensorGrids.

3) GISGrid (GG): This grid allows the system to per-
form a contextual information fusion incorporating the meta-
knowledge about the environment. GISGrid uses frame of
discernment ΩGG = {B, R, T}. This FOD represents:
B buildings,
R roads,
T intermediate space (e.g. pavements).

The grid can be obtained, for instance, by projection of
map data, buildings and roads, onto a 2D grid with global
coordinates (see Figure 5 for an example). However, the
exact method of creating GG depends on available GIS
information. Section IV-A.2 presents how GG is constructed.

Figure 2 demonstrates how the above grids fit together in
the general scheme. It names the input sources involved at
each step and shows necessary grid transformations.

C. Combining prior knowledge

In our method, prior information contained in maps
serves to ameliorate the perception scheme. We have cho-
sen to combine the prior knowledge with the sensor data
of SensorGrid. However, the Dempster–Shafer Theory
does not allow to combine sources with different frames of
discernment. The frame of discernment ΩSG is distinct from
ΩGG used in GISGrid. Hence, one needs to find a common
frame for both sources. In order to enable the fusion of



SensorGrid (SG) and GISGrid (GG), we define refining
rSG to transform SensorGrid:

rSG : 2ΩSG 7→ 2ΩPG (15)
rSG ({F}) = {N, W} (16)
rSG ({O}) = {I, U, S, M} (17)

rSG(A) =
⋃
θ∈A

rSG(θ) (18)

and refining rGG to transform GISGrid:

rGG : 2ΩGG 7→ 2ΩPG (19)
rGG ({B}) = {I} (20)
rGG ({R}) = {N, W, S, M} (21)
rGG ({T}) = {N, W, S, M, U} (22)

rGG(A) =
⋃
θ∈A

rGG(θ) (23)

Above defined refinings allows us to combine prior knowl-
edge included in GISGrid with instantaneous grid obtained
from sensor(s). The refined mass function can be expressed
as:

mΩPG

SG (rSG (A)) = mΩSG

SG (A) ∀A ⊆ ΩSG (24)

mΩPG

GG (rGG (A)) = mΩGG

GG (A) ∀A ⊆ ΩGG (25)

Then, Dempster’s rule described in section II is applied to
each cell in order to exploit the prior information included
in GG:

m′ΩPG

SG, t = mΩPG

SG, t ⊕ mΩPG

GG (26)

We have chosen to use the Dempster’s rule of combination,
since the GIS data and the sensor data are independent.
Besides, we suppose that both sources are reliable, even if
errors are possible. In the end of this stage, we obtain a grid
being a combination of the sensor data, SensorGrid, with
the prior knowledge from GISGrid.

D. Temporal fusion

The role of the fusion operation is to combine current
sensor acquisition with preceding perception result. The
sensor acquisition input is already combined with prior in-
formation as described in preceding paragraphs. We propose
to exploit dynamic characteristics of the scene by analysing
produced conflict masses. As the preceding perception result
PerceptionGrid is partially out-of-date at the moment
of fusion, the contextual discounting operation is employed
to model this phenomena [20]. Moreover, an accumulator of
occupancy is introduced and a mass function specialisation
is performed to distinguish mobile, but temporarily stopped
objects.

1) Computing conflict masses: To distinguish between
two types of conflict which arise from the fact that the
environment is dynamic, the idea from [21] is used. ∅FO
denotes the conflict induced when a free cell in PG is fused
with an occupied cell in SG. Similarly, ∅OF indicates the
conflicted mass caused by an occupied cell in PG fused with
a free cell in SG.

Conflict masses are calculated using the formulas:

mPG, t (∅OF ) = mPG, t−1 (O) ·mSG, t (F ) (27)
mPG, t (∅FO) = mPG, t−1 (F ) ·mSG, t (O) (28)

where m(O) =
∑
A⊆{I, U, S,M}m(A) and m(F ) =∑

A⊆{N,W}m(A). In an error-free case, these conflicts
represent, respectively, the disappearance and the appearance
of an object in a given cell.

2) PerceptionGrid specialisation using an accumu-
lator: Mobile object detection is an important issue in
dynamic environments. We propose the introduction of an
accumulator ζ in each cell in order to include temporal
information on the cell occupancy. For this purpose, incre-
mentation and decrementation steps δinc ∈ [0, 1], δdec ∈
[0, 1], as well as threshold values γO, γ∅ have been defined.

ζ(t) = min
(

1, ζ(t−1) + δinc

)
(29)

if mPG(O) ≥ γO
and mPG (∅FO) +mPG (∅OF ) ≤ γ∅

ζ(t) = max
(

0, ζ(t−1) − δdec
)

(30)

if mPG (∅FO) +mPG (∅OF ) > γ∅

ζ(t) = ζ(t−1) (31)
otherwise (32)

local polar SensorGrid

PerceptionGrid

local Cartesian SensorGrid

global Cartesian ScanGrid

polar to Cartesian transformation

GNSS pose

local to global transformationrotation

GISGridglobal Cartesian SensorGrid

prior knowledge combination

+

+

information fusion

+ IMU

Fig. 2. Illustration of grid transformations.



Using ζ values, we impose a specialisation of mass
functions in PG using the equation:

m′PG, t (A) = S(A,B) ·mPG, t(B) (33)

where specialisation matrix S(·, ·) is defined as:

S(A\ {M} , A) = ζ ∀A ⊆ ΩPG and {M} ∈ A
S(A, A) = 1− ζ ∀A ⊆ ΩPG and {M} ∈ A
S(A, A) = 1 ∀A ⊆ ΩPG and {M} /∈ A
S(·, ·) = 0 otherwise

(34)

The idea behind the specialisation matrix and the accu-
mulator is that the mass attributed to set N,S,M or S,M
is transferred to set N,S or S, respectively. The transferred
mass value is proportional to the time that the cell stayed
occupied. In this way, moving objects are differentiated from
static or stopped objects.

3) Fusion rule: An important part of the method con-
sists in performing the fusion operation of a discounted
and specialized PerceptionGrid from preceding epoch
αm′PG, t−1 with a SG combined with prior knowledge from
current epoch m′SG, t. The discounting operation is pre-
sented in section II and the specialisation is described in
the preceding paragraph. In the section III-C, combination
of prior knowledge with SensorGrid is demonstrated.

mPG, t = αm′PG, t−1 ~m′SG, t (35)

The fusion rule ~ is a modified conjunctive rule adapted to
mobile object detection. There are of course many different
rules that could be used, but in order to distinguish between
moving and stationary objects some modifications had to be
performed. These modifications consist in transferring the
mass corresponding to a newly appeared object ∅FO to the
class of moving objects M as described by the equation 36.
Please remind that ∩© denotes the conjunctive fusion rule.

(m1 ~m2) (A) = (m1 ∩©m2) (A)

∀A ( Ω ∧A 6= M

(m1 ~m2) (M) = (m1 ∩©m2) (M) + (m1 ∩©m2) (∅FO)

(m1 ~m2) (Ω) = (m1 ∩©m2) (Ω) + (m1 ∩©m2) (∅OF )

(m1 ~m2) (∅FO) = 0

(m1 ~m2) (∅OF ) = 0 (36)

All the above steps allow the construction of a PG con-
taining reach information on the environment state, including
the knowledge on mobile and static objects.

E. Fusion rule behaviour

Proposed fusion scheme behaves differently depending on
the context. In this section, we describe briefly the behaviour
of the fusion rule. For an in-depth analysis, the reader is
invited to read [22]. Context stands for prior knowledge
information contained in GISGrid. To demonstrate the
effect of the fusion operator, we have chosen two particular
cases, which clearly represent different contexts.

Building context: In the building context, the fusion rule
behaves as Yager’s rule, which consists in transferring the
conflict mass to unknown class Ω [23]. This behaviour
is relevant, since it is assumed that no mobile obstacles
are present in this context. Therefore, only free space and
infrastructure are to be distinguished.

Road and intermediate space: The conflict management
adapted to the perception scheme directs mass attribution to
moving obstacles (class M ). The introduction of occupied
space counter and PerceptionGrid specialisation (see
section III-D.2) permits to transfer a part of the mass from
“moving or other” class to “other”, where other is context-
dependent.

F. Illustrative examples

This section aims to present the behaviour of our per-
ception system on a pedagogical example. The example
is composed of three 1D-grids (for simplification, here)
evolving in time, and so the scenario has to be read from
top to bottom, line by line. Colours are determined by the
mass function of the cell according to the legend. Please note
that a mass function can contain more than one focal element
so the effective colour is a mix of corresponding classes.

In the scene (see Figure 3), there are 3 pedestrians: one
crossing the road, one staying on the road and one staying
on the pavement. GISGrid represents our prior knowledge
obtained from the digital map. Both sides are known to be
pavement (intermediate space T ) and the middle is supposed
to be the road surface R. SensorGrid is a representation
of current sensor data. The sensor provides in this situation
only free/occupied information. PerceptionGrid is the
step-by-step result of the perception system. Its initial state
is a complete ignorance (all mass attributed to unknown Ω).
As the moving pedestrian walks, the movement is detected
in different grid cells. Behind the pedestrian, previously
occupied cells become gradually free. Free, navigable and
non-navigable, cells have their masses increased as the sensor
confirms the same information. The information relative to
the two stopped pedestrians is processed differently thanks
to the map information. The one on the road is considered
as a movable MS object at first, since initially the cell was
unknown. Then, as time evolves, it is considered as stopped,
which illustrates how the accumulator and the specialisation
work. This change is visible as the colour changes from
purple to blue. The other pedestrians on the pavement are
seen as moving or stopped or unmapped obstacle MSU at
the beginning. At the end, the one staying on the pavement is
detected as a stopped obstacle or as unmapped infrastructure
SU . Indeed, it is impossible to distinguish between a stopped
pedestrian and, for instance, a light post. The pedestrian
crossing the road is quickly detected as moving M .

IV. EXPERIMENTAL RESULTS

A. Experimental setup

1) Dataset: The data set used for experiments was ac-
quired in the 12th district of Paris using our vehicular
platform Carmen (see figure 4). The overall length of the
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Fig. 3. Example with three pedestrians. T represents the intermediate space and R – road surface.

Fig. 4. Vehicle Carmen with Alaska XT lidar embedded in the front
bumper.

trajectory was about 9 kilometres. The vehicle pose comes
from a system based on a NovAtel SPAN-CPT inertial
measurement unit (IMU). The system provides precise posi-
tioning with high confidence. Our main source of information
about the environment is an IBEO Alaska XT lidar able to
provide a cloud of about 800 points 10 times per second.
The digital maps that we use were provided by the French
National Geographic Institute (IGN) and contain 3D building
models as well as the road surface. We also performed
successful tests with freely available OpenStreetMap project
2D maps [12], but here we limited the use to building data.
We assume the maps to be accurate and up-to-date.

2) GISGrid construction: The map data can be repre-
sented by two sets of polygons defining the 2D position of

buildings and road surface by, respectively,

B =

{
bi =

[
x1x2 . . . xmi

y1y2 . . . ymi

]
, i ∈ [0, nB ]

}
(37)

R =

{
ri =

[
x1x2 . . . xmi

y1y2 . . . ymi

]
, i ∈ [0, nR]

}
(38)

Our dataset satisfies the condition: B∩R = ∅. An example
of GISGrid is presented in Figure 5 juxtaposed with an
aerial photo with 3D building models. Classes B,R, T char-
acterise the meta-information inferred from geographic maps.
Set A denotes then all other strict subsets of Ω. For instance,
on the road surface R, we encourage the existence of free
navigable space N as well as stopped S and moving M
objects. Analogically, building information B fosters mass
transfer to I . Lastly, T denotes the intermediate area, e.g.
pavements, where mobile and stationary objects as well as
small urban infrastructure can be present. T can contain free
non-navigable space W as well. Please note that neither
buildings nor roads are present, so the existence of mapped
infrastructure I can be excluded, but the presence of the
other classes cannot. Also, a level of confidence β is defined
for each map source, possibly different for each context
(in our case: βB = βR = βT = β). Let mGG{X,Y }
be the mass function in the cell at coordinates {X,Y } =
{[x−, x+], [y−, y+]} and x̃ = x−+x+

2 , ỹ = y−+y+
2 , then:

mGG{X,Y }(B) =

{
βB if (x̃, ỹ) ∈ bi
0 otherwise

(39)

∀i ∈ [0, nB ]

mGG{X,Y }(R) =

{
βR if (x̃, ỹ) ∈ ri
0 otherwise

(40)

∀i ∈ [0, nR]



Fig. 5. Paris 12th district cityhall. Left: GISGrid constructed using our dataset. Right: 3D view of the area, source: Google Earth. Buildings in blue,
roads in khaki, intermediate space in gray.

mGG{X,Y }(T ) =

{
0 if (x̃, ỹ) ∈ bi ∨ (x̃, ỹ) ∈ rj
βT otherwise

(41)
∀i ∈ [0, nB ],∀j ∈ [0, nR]

mGG{X,Y }(Ω) =


1− βB if (x̃, ỹ) ∈ bi
1− βR if (x̃, ỹ) ∈ ri
1− βT otherwise

(42)

∀i ∈ [0, nB ],∀j ∈ [0, nR]

mGG{X,Y }(A) = 0 (43)
∀A ( Ω and A /∈ {B,R, T}

3) Sensor model: This section describes the way in
which the data obtained from the lidar are transformed into
SensorGrid. If another exteroceptive sensor is used, one
has to define an appropriate model. The model used in the
presented method is based on the one described in [14] which
takes into account the measurement uncertainties and occlu-
sions. As demonstrated in Figure 2, the sensor provides a
polar grid. This grid undergoes several transformation before
being fused into PerceptionGrid. Our lidar model uses
frame of discernment ΩSG with two classes: free F and
occupied O. Each scan point (lidar impact) results in a grid
cell being set with high value of occupied mass. All the
cells before the first cell in each angular sector have their
main part of the mass attributed to free. Small portion of
the mass is set to Ω in order to take into account sensor
resolution and grid discretisation errors. The state of other
cells, those between obstacles and behind obstacles, cannot
be determined and so all the mass goes to the unknown Ω.

4) Parameters: The size of the grid cell in the occupancy
grids was set to 0.5 m, which is sufficient to model a
complex environment with mobile objects. We have defined
the map confidence factor β by ourselves, but ideally, it
should be given by the map provider. β describes data cur-
rentness (age), errors introduced by geometry simplification

and spatial discretisation. β can also be used to depict the
localisation accuracy. In our case, β = 0.005, since we
suppose our maps precise and accurate. Other parameters,
such as counter steps δinc, δdec and thresholds γO, γ∅ used
for mobile object detection determine the sensitiveness of
mobile object detection and were set by manual tuning.

B. Results of obstacle detection

The results for a particular instant of the approach tested
on real data are presented on Figures 6 and 7. The reported
scenes were recorded while the vehicle was moving to
illustrate the performance in real urban traffic conditions,
typically at the speed of 40 km/h.

Topmost images show camera captures, middle images
present PerceptionGrid in a fixed Cartesian frame,
zoomed in around the vehicle location. The visualisation
of PG has been obtained by attributing to each class a
colour proportional to the pignistic probability betP and
calculating the mean colour. Images containing grids contain
some markers to show the vehicle position (small red cross)
and vehicle speed vector (black arrow). Light dashed white
lines show the approximate camera’s field of view limits in
order to link the image with the grid. Please notice that the
field of view of the lidar is wider than the one of the camera
and is not shown for clarity. Bottommost images reflect
the result of a decision rule done by thresholding pignistic
probabilities (see Equation 14). The different thresholds were
set to 0.5 except for class S for which the threshold was
0.35, since we wanted to magnify the effect of detection of
obstacles stopped for a short moment.

Figure 6 presents quite a complex scene with multiple
moving vehicles and a few stopped ones. The two moving
motorcycles and the moving car on the opposite lane are
clearly detected as shown by red cells on the bottom figures.
Behind these moving cells, the state of the space is unknown,
which is consistent with the lidar capabilities. The car in
front, waiting at a traffic light, has been detected as stopped
(see the blue cells right in the direction of the arrow).



(a)

(b)

(c)

Fig. 6. Scene 1 evolution: time goes from left to right. From top to bottom: (a) scene capture, (b) PerceptionGrid pignistic probability, (c) simple
decision rule to detect free space, moving and stopped obstacles, Colour code for figures (3): green – navigable free space, white – non-navigable free
space, red – moving objects, blue – stopped objects, black – unknown. Infrastructure (classes U and I) has not been visualised in the bottom figures.

Similarly, cars parked on the left side road are detected as
stopped (blue cells in the bottom right of the grids). One can
notice that even if these vehicles are hardly visible on the
camera images, they have been detected by the perception
system. When the size of the objects become small, the
lidar can miss them. This can induce some artefacts in the
perception scheme making for instance posts of traffic signs
oscillating between moving and stopped. This explains the
isolated red/blue cells in the grid.

Figure 7 presents another complex scene containing three
cars moving in the opposite direction (visible only in some
photos), one parked car, one parked bus and a motorcycle
going in the same direction as the equipped vehicle. Moving
cars (in red) are well-distinguished in the bottom images.
Navigable (green) and non-navigable (white) spaces are well
characterised and clearly separated. The partially visible bus
and the car parked on the left (blue) are well detected as
well.

The additional information provided by the map clearly
enhances the driving scene understanding. The system is
able to make a clear difference between moving (red cells)
and stopped (blue) objects. Also, we have noticed on other

sequences that stopped objects are perceived distinctly from
infrastructure when prior map information is available. In
addition, thanks to the prior knowledge, stationary objects
such as infrastructure are distinguished from stopped objects
on the road. This is a behaviour similar to one of Capelle et
al. system that uses 3D city models [24].

Finally, the effect of discounting is noticeable particularly
behind the vehicle, as the information about the environment
is being forgotten with different rates thanks to the map. The
grid cells get discounted, so the mass on the different classes
diminishes gradually. The thresholded plots show that the
stopped information is more remanent as some blue cells
are left behind.

C. Results of free space detection
Figure 8 is the result of cumulating subsequent grids

for navigable and non-navigable free spaces after having
executed the pignistic decision rule. These figures show all
the cells that were detected as free either on the road or on
the pavement at least at one moment of the test sequence.
These cells are shown in green for navigable space and in
white for non-navigable space. In violet, we superposed the
prior map information about road surface from GISGrid. In



(a)

(b)

(c)

Fig. 7. Scene 2 evolution. Same display as Figure 6.

such a way, one can identify areas that the vehicle perceived
during the test. More interestingly, one can clearly recognise
on Figure 8(b) the places where cars or other vehicles were
parked. On the other hand, the non-navigable free space on
Figure 8(a) (in white) exhibits zones that are normally useless
for navigation but that could be useful for safety manoeuvres
like the avoidance of a pedestrian collision.

V. CONCLUSION AND PERSPECTIVES

A new mobile perception scheme based on prior map
knowledge has been introduced. Geographic information
is exploited to reduce the number of possible hypotheses
delivered by an exteroceptive source. A modified fusion

rule taking into account the existence of mobile objects
has been defined. Furthermore, the variation in information
lifetime has been modelled by the introduction of contextual
discounting.

In the future, we anticipate removing the hypothesis that
the map is accurate. This approach will entail considerable
work on creating appropriate error models for the data
source. This will be a step towards the use of our approach
in autonomous navigation. Another perspective is the use
of reference data to validate the results, choose the most
appropriate fusion rule and learn algorithm parameters. We
envision using map information to predict object movements.
It rests also a future work to exploit fully the 3D map



(a) Whole test sequence area. (b) Zoom on navigable space N .

Fig. 8. Free spaces N (in green) and non-navigable (in white) cumulated over the complete test sequence. Road surface from maps in violet. Both axes
in meters.

information.
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