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SUMMARY

Detection and identification of faulty measurements like multipath is of prime importance for radio-
navigation. A method based on interval analysis and constraint propagation is presented in this paper and
applied to GPS positioning. This method is able to detect and identify erroneous measurements in real-time
simultaneously with the computation of the positioning domain. With bounded-error measurements (GPS
pseudoranges on visible satellites here), fault-detection is guaranteed not to trigger false alarms. A q-relaxed
robust estimation method is studied. By the use of a breadth-first exploration strategy and of measurement
consistency counters, the algorithm can promptly signal a detected fault during the set-inversion process. It
can also be stopped at any time of the evaluation, and can instantly return the solution subpaving and the
list of identified erroneous measurements. We demonstrate than the method is able to handle simultaneous
faults as long as they are fewer than the degree of relaxation. The method has been evaluated with real GPS
pseudodistances in an urban environment with a low-cost high-sensitivity GPS receiver providing numerous
faulty multipath measurements and we report experiments. As the application of this method deals with road
vehicles, a 3-D map of the drivable space has also been used to constrain the vehicle location to improve the
performance of the method. Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the estimation of the global position of road vehicles is very sensitive to faulty
measurements. In open sky conditions, GPS (Global Positioning System) faults may arise from
satellite or control segment failures. Augmentation systems (like WAAS in the USA and EGNOS
in Europe) have been designed to protect users against such system failures. Another source of
erroneous measurements is the alteration of the signal propagation by the environment close to the
user. Indeed, time-of-flight signals are classically assumed to follow a direct path from the satellite to
the receiver. However, especially in urban environments where direct path can be frequently blocked
by obstacles (such as buildings or trees), the receiver may acquire only a reflected ranging signal.
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It is called a non line-of-sight (NLOS) propagation. This measurement is then a fault (also called
an outlier), since the observation model is based on the hypothesis of direct propagation. Generally
speaking, faulty measurements are sensor data that cannot be explained by the observation model,
either because they correspond to extreme noise values, or because they result of phenomenons that
have not been modeled.

Fault Detection and Identification (FDI) methods are nowadays implemented in some GPS
receivers to provide receiver autonomous integrity monitoring (RAIM). RAIM is used in
aeronautical navigation to detect, identify and eliminate erroneous measurements before computing
Protection Levels (PL), which are bounds on the positioning error that may result from undetected
faults given a target integrity risk. FDI is a key stage in this process and its capability to detect
faults with little latency is very important to alert client applications in real-time. FDI is a more and
more important stage in positioning integrity since it can be implemented to do adaptation which is
a more elaborate processing than a simple fault exclusion. Indeed, FDI can also be used to enable
the use of NLOS measurements [1]. When a multipath is detected, the identified corresponding
measurement can be tagged before the positioning computation stage. If there are not enough
available measurements to do the computation and instead of rejecting the NLOS measurements,
the solver can exploit them with adequate observation models that take into account reflections on
nearby buildings like, for instance, the “urban trenches model” [2]. Positioning availability is then
deeply enhanced.

FDI methods are often based on range residuals [3] or parity space [4]. They rely essentially on
exploiting data redundancy. Usually, a first fault detection stage is applied. If a fault is detected,
an identification step is performed. The measurement that is an outlier candidate is then removed
from the processing and, if enough redundancy remains, the process is iterated until the data
are consistent. Finally, a PL confidence domain is estimated under the hypothesis that just one
undetected outlier remains after the FDI process. The protection zone is often computed by
considering that the minimal detection bias is affecting the measure which has the strongest impact
on the position.

Interval-based FDI methods are an interesting alternative to the cited methods since they can
perform fault detection and identification simultaneously with positioning domain computation.
Indeed, interval based methods have successfully been applied to model based diagnosis, as they
enable to take model uncertainties into account and can handle nonlinear equations. Interval
observers can be used to detect change of operation mode [5], and a guaranteed quasi-linear
parameter-varying approximation has been introduced to deal with non-linear systems in [6]. A
parity space approach where the parity matrix depends on uncertain parameters has been presented
in [7]. Interval-based consistency tests can also be combined with causal reasoning to achieve
fault isolation of a complex process [8]. These methods have been employed in various domains,
like fault-detection for robot manipulators [9], or height-aided GPS localization [10] with fault-
detection results consistent with standard RAIM methods. Other set-membership methods, based
on zonotopes for instance, have been used to compute uncertainty in GPS networks [11] and to
monitor industrial processes [12].

Moreover, set-membership methods can be robustified in order to handle outliers without
providing empty solutions, for linear bounded-error estimation [13], and to perform a distributed
estimation in a network of sensors [14].
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In this paper, we compute a position domain in which the user is located using an interval based
method that is robust to the presence of erroneous GPS measurements. The method performance
is increased thanks to the use of a 3D map of the drivable space. Along with the computation
of the localization confidence domain, the algorithm enables to detect and identify the faulty
measurements. The main contribution of this research is to present and evaluate on real data an
algorithm that performs a short response time FDI within a set-inversion process thanks to the use
of measurement compatibility counters. As soon as a fault is detected, an alert is set with little
latency even if the set-inversion has not yet been completed. Moreover, when the computation is
stopped because of real-time constraints, the position solution and a list of the identified erroneous
measurements are always immediately available. We demonstrate than the method is able to handle
simultaneous faults as long as they are fewer than the degree of relaxation. We focus here on a
snapshot localization problem (i.e. epoch by epoch) but the method can be applied to measurements
that are stored in a limited memory buffer in which time dependency of position is modeled and
considered like done in [15] for confidence domains computation. Therefore, in the following of the
paper and for the sake of clarity, only an observation model is considered with no evolution model.

The paper is organized as follows. Interval analysis methods for robust bounded-error estimation
are first presented. Then, a way to detect and identify outliers from robust set-inversion results is
shown, and an algorithm than enables quick interruption of computation with fault detection result is
presented. Its properties in terms of detection and isolation are demonstrated. Finally, experimental
results are reported with real raw GPS measurements affected by frequent multipath in a challenging
urban environment.

2. ESTIMATION USING INTERVAL ANALYSIS

2.1. Interval analysis

Interval analysis [16, 17] involves intervals and their multidimensional extension, interval vectors
(or boxes). In opposition to arbitrary sets, intervals and boxes are easy to represent and manipulate.
The set of real intervals [x] = [x, x] is denoted IR, and the set of n-dimensional boxes is IRn. In
this paper, a box is denoted [x] = [x,x], where vectors x and x are respectively the lower and upper
bounds of [x].

Interval arithmetic allows performing computations on intervals and boxes thanks to the interval
extension of classical real arithmetic operators +,−,× and ÷.

[x] + [y] = [x+ y, x+ y], [x]− [y] = [x− y, x− y],

[x] · [y] = [min
(
xy, xy, xy, xy

)
,max

(
xy, xy, xy, xy

)
]

In the same way, elementary functions such as tan, sin and exp can be extended to intervals. This is
done by returning the smallest interval covering the range of the input through the function.

The image of a box by a function f : Rn → Rm is generally not itself a box, but an arbitrary set.
This problem is solved using the so-called inclusion functions: The interval function [f ] from IRn

to IRm is an inclusion function for f if the image of [x] by f is included in the image of [x] by [f ],
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i.e.
∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]).

The box hull 2S of a set S is the smallest box that includes S. Since the union of boxes is
not generally a box, the box union operator t returns the box hull of the union of two boxes:
[x] t [y] = 2([x] ∪ [y]).

The width of a box is the width of its longest interval component: w([x]) = maxi w([xi]). The
volume of a box is defined as the product of the widths of each of its interval components:
volume([x]) =

∏
i w([xi]).

2.2. Contraction and propagation

When the components of a vector x are linked by relations or constraints, one can define a constraint
satisfaction problem (CSP). It consists in finding the solution set X = {x ∈ [x]|f(x) = 0}, where
[x] is the domain of the variables and f(x) = 0 represents the constraints, and can also represent
inequalities by introducing slack variables [17].

A contractor C for a CSP is an operator that computes a smaller domain [xc] = C([x]) without
affecting the solution set, i.e. X ⊂ [xc] ⊂ [x]. There are many ways to implement a contractor, one
of them is the forward-backward contractor based on constraint propagation [18].

2.3. Set inversion and subpavings

The set inversion problem consists in determining the set X such as f(X) ⊂ [y], where [y] is a
known interval vector of m measurements. To approximate compact sets in a guaranteed way,
subpavings can be used. A subpaving of a box [x] is the union of non-empty and non-overlapping
subboxes of [x].

Using interval analysis, the solution X = f−1([y]) can be approximated between two subpavings
X and X such that X ⊂ X ⊂ X . The SIVIA algorithm allows performing such a set inversion, by
recursively bisecting an initial box [17].

Algorithm 1 implements a SIVIA that only computes an outer approximation X of the solution
set in a given domain [x0], since we are seeking to characterize the positioning confidence domain.
It uses a list of boxes L managed by push and pull functions. If L is a queue, the algorithm employs
a breadth-first strategy. ε controls the sharpness of the subpaving X . A contractor C([x]) is used to
apply the constraint from measurements on each box. It may either reduce the size of a box without
losing any solution, or return an empty box if the initial box is incompatible with the measurements.
Boxes larger that ε after contraction are bisected and enqueued to be processed again.

More extensive implementations of SIVIA that also compute an inner approximation of the
solution set can be found in [17].

Figure 1 illustrates the use of SIVIA for localization. A robot measures uncertain distances
from 4 beacons. In a bounded error context, each measured distance is represented by an interval.
Measurements uncertainty is depicted by the thickness of arcs in Fig 1a. Each distance is a constraint
on the robot’s position. These constraints are implemented in a paver which uses the SIVIA
algorithm to compute the set of possible positions (Fig. 1b). The union of red and yellow boxes
is an outer approximation of the solution-set. Red boxes are guaranteed to be inside the solution-set.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (0000)
Prepared using acsauth.cls DOI: 10.1002/



5

Algorithm 1 SIVIA(in: [x0], C, ε)

X := ∅ // empty subpaving
push([x0],L)

while L is not empty
[x] := pull(L)

[x] := C([x]) // contract the box
if width([x]) < ε then

X := X ∪ [x]

else if [x] 6= ∅ then
([x1], [x2]) := bisect([x])

push([x1],L); push([x2],L)

endif
end
return X

(a) Robot positioning problem with 4 ranging beacons.
Width of arcs represents measurement uncertainty.

(b) Position solution-set computed with SIVIA: screen-
shot of a paving program.

Figure 1. Set-inversion results for a robot localization example.

2.4. Robust set-inversion

The presented set-inversion method is likely to return an empty solution set in the presence of
erroneous measurements. Robustness to outliers can be achieved by computing the set of solutions
that are compatible with at least a given number of measurements instead of the set of solutions
compatible with all the measurements.

The q-relaxed intersection of m sets Xi, denoted
⋂{q}

i∈{1,. . . ,m}Xi, is the set of points included
in at least m− q sets. Figure 2 illustrates this notion, from q = 0 that corresponds to the classical
intersection up to q = m− 1 which is the union. The q-relaxed intersection of m measurement
constraints is the set of positioning solutions compatible with at least m− q measurements.

If a contractor Ci is available for every measurement, then a q-relaxed contractor C{q} can be built.
It is presented in Algorithm 2.
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Figure 2. q-relaxed intersection of three sets.

Algorithm 2 C{q}: q-relaxed contraction (m measures)

for i = 1 to m { [xi] := Ci([x]) }

[xc] := 2

 {q}⋂
i∈{1,. . . ,m}

[xi]


return [xc]

Figure 3 shows the results of the presented SIVIA algorithm with the q-relaxed contractor. Four
constraints are provided by ranging beacons, one of which is faulty and gives an erroneous distance
measurement. SIVIA is first employed with the C{1} contractor to compute an outer approximation
of the 1-relaxed intersection of the three constraints. The obtained solution subpaving is consistent
with ground truth. Two extra constraint relaxations are performed to illustrate the method behavior.
When using C{2}, three disconnected solution subsets appear and, when relaxing a third constraint,
the solution set becomes very large. The provided domains always contain the real solution since
the number of faults is less than the degree of relaxation.

2.5. GOMNE

Using the q-relaxed intersection for robust set inversion requires to know an upper-bound on the
number of erroneous measurements and ideally a rough idea of this number in order to have an
accurate estimation as shown by the example above. Since setting an a-priori bound is not always
possible, another strategy consists in estimating the number of outliers during the computation.
This strategy is known as the Guaranteed Outlier Minimal Number Estimator (GOMNE) [19].
Computation starts with no constraint relaxation, and the number q of relaxed GPS measurements
is increased until a non-empty solution is found for q = qmin. Indeed, an empty solution-set with a
q-relaxed set-inversion indicates that there are at least q + 1 outliers in the measurements vector.

The number of outliers qmin detected by GOMNE is only guaranteed as a lower bound, but
their actual number can be larger. Thus, in case of undetectable errors, the computed solution
may still be wrong after GOMNE iterations. This is the case in Fig. 4b, where GOMNE fails to
compute a position solution-set consistent with the ground truth. Indeed, there is an erroneous
measurement (4a), but the error is small enough so that there is no inconsistency between the 4
distance constraints. The solution-set with q = 0 is thus non-empty, and GOMNE fails to find the
presence of an outlier. A common practice is to first determine a lower bound qmin of the number
of outliers with GOMNE, and then perform a new robust set-inversion with a (qmin + r)-relaxed
intersection, where r is the number of undetected errors to take into account. Figure 4c shows the
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(a) q = 1

(b) q = 2

(c) q = 3

Figure 3. Results of q-relaxed set-inversions in the localization problem with 4 ranging beacons.

result of GOMNE with a margin of one undetected outlier. The obtained solution subpaving is here
consistent with ground truth.
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(a) Localization problem with one faulty beacon.

(b) Failure of GOMNE: the faulty measurement has not
been detected and the real location (denoted by the cross)

is not inside the computed domain.

(c) GOMNE with an additional margin of one undetected
outlier. The real location is inside the computed domain.

Figure 4. Results of GOMNE in a localization problem with an erroneous measurement.
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Whatever the robust set-membership estimation technique used (q-relaxed intersection with a
priori known number of outliers or GOMNE with additional undetected errors margin), the q-
relaxed mechanism is the core part. For this reason, the following focuses on q-relaxed intersection.
Moreover, this technique fits well with real-time constraints.

3. FAULT DETECTION AND IDENTIFICATION

After having reviewed some robust estimation techniques, let us now study how they can be
enhanced to perform the FDI process simultaneously with the set-inversion.

3.1. Principle

The basic idea of the method is to compute a solution set and then to analyze the compatibility of
the measurements with this set.

In practice, it is necessary to compute a solution with robustness. Otherwise, the solution can
be empty, which prevents fault identification. As said before, the robust method considered is the
q-relaxed set inversion, which enables computing a solution-set robust to a specified number of
outliers. This solution set is represented by an outer subpaving X ⊃ X .

The method that we propose to detect faults is to check if the boxes of the solution subpaving
are compatible with each measurement. It is also possible to identify the faulty measurements.
Geometrical configuration and measurement uncertainty make detection and identification not
always possible.

The compatibility of every box of the subpaving is evaluated through inclusion tests with
every elementary measurement. A box [x] is said incompatible with the measurement [yi] and the
observation model fi if [fi]([x]) ∩ [yi] = ∅. A box [x] is said incompatible with the measurement
vector [y] if it is incompatible with at least one component of [y].

Theorem 1. The presence of an outlier is detected when the outer subpaving only contains boxes
incompatible with the measurement vector.

Proof
In the absence of outliers, every measurement respect the observation model, i.e f(xtrue) ∈ [y]

where xtrue denotes the real position.

f(xtrue) ∈ [y]⇒xtrue ∈ f−1([y])

⇒xtrue ∈
{q}⋂

i∈{1...m}

f−1i ([yi])

⇒xtrue ∈ X

⇒∃k | xtrue ∈ [x]k , [x]k being a box of the subpaving

⇒∃k | [f ]([x]k) ∩ [y] 6= ∅

By contraposition, if ∀k | [f ]([x]k) ∩ [y] = ∅ then an outlier is present.
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Theorem 2. A measurement is identified as an outlier when the outer subpaving only contains boxes
incompatible with this measurement. This holds true as long as the number of outliers nout remains
lower or equal to the degree q of the q-relaxation.

Proof
Let us prove it by contraposition, and consider a measurement [yi].

As nout ≤ q, xtrue ∈ X ⇒ ∃k | xtrue ∈ [x]k ⇒ ∃k | fi(xtrue) ∈ [fi]([x]k).

Moreover, since [yi] is not an outlier, fi(xtrue) ∈ [yi].
The boxes [fi]([x]k) and [yi] share a common point, so ∃k | [fi]([x]k) ∩ [yi] 6= ∅.
By contraposition, if nout ≤ q and ∀k | [fi]([x]k) ∩ [yi] = ∅, then [yi] is an outlier.

Please notice that no hypothesis on the number of outliers has been done for detection, and that
only an hypothesis on the maximum number of outliers is needed for identification. The method is
therefore able to manage several simultaneous outliers.

Figures 5, 6 and 7 contain detection and identification tables on pedagogical examples. These
tables report the results of compatibility tests for each box, with incompatible boxes represented by
zeroes. The last row corresponds to FDI results for the solution subpaving.

f-1(y1)
Xq=1

f-1(y2)
f-1(y3)

b1 b2
b4

b3

Box \ Measurement [y1] [y2] [y3] [y]

b1 1 0 1 0
b2 1 1 1 1
b3 1 1 0 0
b4 0 1 1 0

FDI result 1 1 1 1

Figure 5. Detection and identification table with no erroneous measurement. The final row describes if the
measurements are compatible with the computed subpaving.

In Fig. 5, the compatibility of a box with [y] (last column of the table) is basically computed using
a logical AND between the elements of the corresponding row. For instance, box b2 is compatible
with the three measurement intervals and box b1 is compatible with the single measurements [y1]

and [y3], but not with [y2] nor all the measurements together [y]. The FDI results for the solution
subpaving are obtained by applying a logical OR between the elements of each column, zeroes
corresponding to detection in the last column and identification in the others. Since the lower-right
element equals one, no erroneous measurement is detected.

In Fig. 6, there is no box in the subpaving that can fulfill the constraints of all the measurements
since the lower-right element equals zero. The presence of an outlier is thus detected. However,
since there is at least a box compatible with each measurement in the solution subpaving, it is not
possible to identify the faulty measurement. The detection and identification table contains also
extra information. For instance, if there is no more than one outlier at a time, one can conclude that
the faulty measurement is either [y2] or [y3].
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b1
b2

b3

Box \ Meas. [y1] [y2] [y3] [y]

b1 1 0 1 0
b2 1 0 1 0
b3 1 1 0 0

FDI result 1 1 1 0
detection

Figure 6. Detection and identification table with an outlier detected.

b2b1

Box \ Meas. [y1] [y2] [y3] [y]

b1 1 1 0 0
b2 1 1 0 0

FDI result 1 1 0 0
identification detection

Figure 7. Outlier identified: [y3]

In Fig. 7, the presence of an erroneous measurement is detected like in Fig. 6. Moreover, the
outlier can be identified in this particular case. Indeed, there is no box in the subpaving that can
satisfy the constraint from measurement [y3]. The latter is thus identified as the faulty measurement.

3.2. Optimized implementation

One of the main drawbacks of the previous method is that the processing is long to interrupt, since
a post-processing has to be performed on the solution subpaving to carry out fault identification.
It is unfortunate, as the set inversion process can be interrupted at any time to quickly provide an
approximate solution. The ability to provide a solution with a reduced and guaranteed latency is a
basic requirement for real-time systems.

We present in this section a way to prepare as much as possible the fault identification process
during the exploration of the solution space. The idea is to use measurement compatibility counters.
As it slows down each iteration of the set inversion algorithm, this implementation reduces the
number of bisections per second. However, as the bisection loop terminates, only few quick
operations are needed to get the solution subpaving and the list of identified outliers.

RSIVIAExtCount (Alg. 3) computes a subpaving that covers the q-relaxed solution, and, in the
meantime, keeps track of the compatibility of the subpaving with the measurements through the use
of counters. Set-inversion can be interrupted at any time, and outlier detection and identification can
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(a) No outlier

(b) Fault detected, unidentified outlier

(c) Outlier identified: y3

c(all)=1   c(y1)=3   c(y2)=3   c(y3)=3

f-1(y1)
Xq=1

f-1(y2)
f-1(y3)

1 3 1 2 3
3 2

1
2

c(all)=0   c(y1)=3   c(y2)=1   c(y3)=2

1 3
1 3

1  2

c(all)=0   c(y1)=2   c(y2)=2   c(y3)=0

1  21 2

Figure 8. Outlier detection and identification with compatibility counters

then be done by checking the counters values. To reduce the number of inclusion tests, each box is
augmented with a compatibility bit-field, which indicates which measurements are compatible with
it.

When there is no solution (i.e. an empty set), there are more outliers in the measurements than
q, which is the maximum number anticipated. Each counter equals zero in this case. If one wants
to get a non empty result, it is possible to restart the estimation process with more relaxation (e.g.
q := q + 1). This is the GOMNE strategy presented in Section 2.5.

Otherwise, the values of the counters are examined to check the presence of outliers. If the global
counter call is equal to zero, then the presence of an outlier is detected, since there is no box in
the solution that is compatible with all the measurements. One can notice that call corresponds to
the lower-right element of a detection and identification table (see Fig. 6). It is then possible to
check if an outlier has been identified, simply by studying the values of individual measurement
compatibility counters ci, which keep track of the number of boxes in the subpaving that are
compatible with each measurement. If the counter ci is null, then the measurement yi is identified
as an outlier, like in the last row of a detection and identification table (see Fig. 7). Figure 8 shows
the counter values and outlier detection results after a 1-relaxed set inversion on simple examples.

This implementation of fault detection and identification inline with set-inversion not only enables
reducing the latency when the computation is stopped, but also monitoring outliers during the
computation by instantaneously setting a “fault-detected” flag to the client application (Fig. 9). This
is another advantage of this approach since it provides valuable information for online optimization
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Algorithm 3 RSIVIAExtCount
(in: [x], {Ci, i = 1 . . .m}, [f ], [y], q, ε; out: Sx)

for i = 1 to m { // Initialize measurements compatibility counters
. ci := 1; call := 1; [x].ci := 1
}
L := {[x]}
Sx := ∅
while L 6= ∅ and not timeout {
. [x] := pull(L) // Pick a box from the list
. for i = 1 to m { // q-relaxed contraction with measurements
. . [xi] := Ci([x])
. }

. [xc] := 2

 {q}⋂
i∈{1,. . . ,m}

[xi]


. for i = 1 to m { // Update inclusion-test results bit-field
. . if [fi]([xc]) ∩ [yi] 6= ∅ then [xc].ci := 1
. . else [xc].ci := 0
. }
. // Update counters
. if [xc] 6= ∅ then {
. . if w([xc]) < ε then { // Box is too small
. . . Sx := Sx ∪ [xc]
. . . for i = 1 to m { // Update compatibility counters
. . . . ci := ci + [xc].ci − [x].ci
. . . . call := call +

∏
i

[xc].ci −
∏
i

[x].ci

. . . }

. . }

. . else { // Bisect and enqueue sub-boxes

. . . ([x1], [x2]) = bisect([xc])

. . . push([x1],L); push([x2],L)

. . . for i = 1 to m { // Update compatibility counters (2 boxes)

. . . . ci := ci + 2 · [xc].ci − [x].ci

. . . . call := call + 2
∏
i

[xc].ci −
∏
i

[x].ci

. . . }

. . }

. }

. else {

. . for i = 1 to m {

. . . ci := ci − [x].ci

. . . call := call −
∏
i

[x]ci

. . }

. }
}
// Compute the solution set
Sx := Sx ∪ L
if call = 0 then outlier detected
for i = 1 to m {
. if ci = 0 then [yi] is an outlier
}
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Start Fault detected Measurement #4
identified as outlier

End of computation

timeSolution-set refinement

Figure 9. Chronogram of the RSIVIAExtCount algorithm execution in presence of an erroneous
measurement.

of the set-inversion computation. Indeed, once a measurement has been identified as an outlier,
computing a q-relaxed solution set with all the measurements is equivalent to compute a (q − 1)-
relaxed solution with all the measurements but the identified outlier. The robust set inversion
algorithm can therefore dynamically discard measurements as they are identified as outliers and
thus speed up the computation by reducing the number of constraints to satisfy.

4. APPLICATION TO GPS MULTIPATH FDI

In this section, we report experimental tightly-coupled GPS and map positioning results obtained
with a real-time implementation of the algorithm in C++.

4.1. Tightly coupled GPS with map constraints

A tightly coupled approach consists in using raw time-of-flight measurements (pseudoranges
affected by the unknown receiver clock offset) from a GPS receiver and performing data fusion for
localization. In this paper, a low-cost high-sensitivity GPS receiver (a uBlox LEA4T) provides the
pseudoranges used to constrain the estimate of the user position. Satellites positions are computed
using broadcast ephemeris. Measurement noise is taken into account by representing pseudoranges
with intervals. A common practice (not used in this paper) to reduce the number of erroneous
GPS measurements consists in filtering out pseudoranges whose signal-to-noise ratio (SNR) is too
low, and only keeping pseudoranges from satellites whose elevation is sufficiently high. Without
any additional information, the pseudoranges from at least four satellites are required for snapshot
positioning. Fault detection is possible with five satellites, and at least six satellites are needed for
fault identification.

Tightly coupled fusion enables to reduce the required number of GPS measurements, by using
other information in the localization process. Assuming the vehicle only evolves on roads, a strong
constraint on position is provided by a 3D map of the drivable space (charted by the french Institut
Géographique National). The 3D map is a triangle mesh model of the surface of the road.

Positioning is done with the previously presented robust set-inversion algorithm, where a first
contractor enforces the road constraint, and a q-relaxed GPS contractor is made from individual
GPS pseudorange constraints (Fig. 10). The contractors for GPS and 3D map are respectively based
on interval constraint propagation and on a polygon clipping algorithm, and can be found in [15].

4.2. Computation frame

Since intervals are used to characterize the solution set by a subpaving, results are dependent on the
coordinate system. An efficient choice is to perform the computations in a “East, North, Up” local
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Figure 10. Tightly-coupled positioning with GPS and map constraints

Figure 11. Working frame used to do the computation: x is East, y is North and z is Up.

tangent frame (See Fig. 11) that enables very efficient altitude contraction with the map constraint
since roads have often little slope. This frame is kept fixed for a navigation area of few kilometers.
An optimization with respect to the interval approach is to align the x-axis with the direction of the
current road. It has the advantage to align one side of every facet with the frame but this strategy is
time consuming, because it needs to change continuously the coordinates of the vertices of the map
and those of the satellites. We believe it is preferable to save processing power to refine set-inversion
rather than doing such a coordinates transformation.

4.3. Experiments

The dataset consists in three loops around the mairie of the 12th arrondissement in Paris, covering 3
kilometers in 16 minutes (Fig. 12). It is very challenging for GPS since the narrow streets with high
buildings prevent good reception of the satellites’ signals, and are source of erroneous measurements
due to multipath and non-line-of-sight signal propagation. In order to test the presented algorithm in
the presence of a lot of outliers, we set the pseudorange SNR filtering threshold to a very low value
of 20 dBHz (the standard being at 37 dBHz). Pseudorange measurements errors were modeled by
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Figure 12. Path followed around the mairie of the 12th arrondissement in Paris.

±3 m intervals which are relevant for the sensor used as shown in [20]. Please notice that there is
no hypothesis on the zero-mean or the whiteness of the noise as often done when using Kalman
filtering.

In order to evaluate the accuracy of the computed estimates, an Applanix inertial navigation
system has been used as ground truth.

4.4. Experimental results

The algorithm is able to report a lower bound of the number of outliers by using the GOMNE
strategy. This is the number of detected outliers shown in Fig. 13 (top of the bars) and in the left
histogram of Fig. 14. At some difficult parts of the trial, e.g at t=510s, the algorithm detects the
presence of at least 3 simultaneous outliers in the GPS measurements.

Outliers identification is performed with the compatibility counters presented in the previous
section. Figure 15 reports the values of each measurement compatibility counter for 8 epochs
between t=385 s and t=420 s. For the sake of clarity, the counter values are normalized by the
number of boxes in the solution subpaving. Identification of an erroneous measurement occurs when
the corresponding counter value is zero. The figure shows identification of one outlier at t=385 s and
t=410 s, and of two simultaneous outliers are at t=400 s. The number of identified outliers at each
epoch is reported by the filled bars of Fig. 13, and summed up in the right histogram of Fig. 14.

Figure 16, illustrates the successful detection and identification of two simultaneous outliers at
time t=400 s. The lines-of-sight of the satellites corresponding to the identified wrong measurements
are indicated by thick red lines.

Due to the lack of redundancy and due to satellite geometry, fault detection may fail, and even
lead to wrong exclusion. This happens at time t=445 s where a single fault is detected and identified
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Figure 13. Number of detected (top of the bars) and identified (filled bars) outliers at each epoch.
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Figure 14. Histograms of the number of detected (left) and identified (right) outliers during the trial.
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Figure 16. 3D view of the position solution at t=400 s. The solution subpaving is in green. Lines-of-sight
to the used satellites are represented. Two outliers have been identified, the corresponding lines-of-sight are

shown in thick red lines.

Figure 17. 3D view of the position solution at t=445 s, where since 4 out of 5 measurements are erroneous.
Fault identification fails and reports only a single erroneous measurement (in thick red). The circle represents

ground truth position.

with the measurements compatibility counters, but leads to an erroneous solution set (Fig. 17). In
fact, at that particular epoch, four out of the five received signals are very weak, which indicates that
the corresponding pseudoranges are erroneous. In a standard setting, these measurements would
have been filtered out by the SNR threshold. With 4 wrong measurements out of 5, it is not possible
to compute a solution consistent with the ground truth.

It is very difficult to obtain a ground truth for multipath detection. We tried to implement the
method presented in [20] but, in the strong canyon-like environment of the reported trial, the method
failed often because there were not enough satellites in view and to many simultaneous multipath.
Therefore, we study hereafter the accuracy of the computed solution. Indeed, a good accuracy is
closely linked to a good FDI stage. As the algorithm computes a solution in the form of a set, a
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Figure 18. Northing and easting error (in meters) when using the subpaving’s center of gravity as a position
estimate. The lower plot shows the total number of GPS measurements available at each epoch, detailing
the number of used (dark-blue part of the bars) and not used GPS constraints (number of detected faults,

light-blue).

point estimate of position is then useful. The center of gravity of the solution subpaving is often
used for point estimate. This computation can be performed in real-time with the same philosophy
as the FDI method (please see the appendix).

Fig 18 represents positioning error in the north and east coordinates, with respect to the position
solution of the Applanix inertial navigation system. The mean horizontal positioning error during the
whole trial is 9.47 m, with a median of 5.78 m. Large errors in Fig 18 are mainly due to the lack of
measurements (e.g. at t=630 s with only two measured pseudoranges) which leads to disconnected
solution sets representing multiple localization hypotheses. Another source of error is the presence
of too many outliers at particular epochs since the SNR threshold for measurement rejection was set
very low (e.g. at t=445 s).

Based on the results of Fig 18, one can see that the errors remain acceptable although few satellites
are in sight (in normal operation, 4 satellites are necessary to compute a position fix). It can also be
noticed that the relaxed (not used) satellites are frequent which corresponds well a typical behavior
of a high sensitivity low-cost GPS receiver. We therefore believe that the proposed FDI method
behaves quite well.

5. CONCLUSION

An interval-based position estimation method with simultaneous fault detection and identification
has been presented. It also enables computing a localization domain from a few GPS measurements
with several simultaneous outliers thanks to the help of a 3D map. An optimized implementation
with measurement compatibility counters has been presented and tested on a sequence of real
GPS data in a very difficult urban environment. The method is able to compute a position and
to successfully detect and identify outliers when GPS measurement redundancy is high enough.
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However, it may fail to detect a fault when there are not enough GPS measurements (at least 3
satellites are required, then detection performance depends if the error moves the computed position
out of the drivable space or not), or identify a good measurement as a fault when there are more
erroneous measurements than good observations. Improvements to the fault detection capability of
the method could be obtained by the computation of an inner solution subpaving along with the
outer subpaving, or by checking particular points like box centers. This is the main perspective
of this research. Finally, this paper proposed a purely static approach, epoch by epoch. A finite
memory approach can improve the overall performance by taking a kinematic model into account
which allows to use dead-reckoning sensors. The method remains the same but a key stage is, in this
case, the management of the data buffer in order to store as much as possible good estimates.
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A. COMPUTATION OF THE CENTER OF GRAVITY

With the same idea to prepare the subpaving analysis during the set inversion process, it is possible
to apply the same strategy for the computation of the center of gravity. Indeed, the center of gravity
is often use as a point position estimate. The following algorithm is designed to compute the
subpaving’s center of gravity and the compatibility of each measurement with the solution during
the set inversion process.

Algorithm 4 RSIVIAExtCoG(in: [x], C{q}, ε; out: xcog,Sx)

L := {[x]}
Sx := ∅
// Initialize the center-of-gravity (cog) accumulator
v := volume([x])
xcog := v ·mid [x]
while L 6= ∅ and not timeout {

// Pick a box from the list
[x] := pull(L)
// Remove the current box from the cog accumulator
v := v − volume([x])
xcog := xcog − volume([x]) ·mid [x]
// q-relaxed contraction with measurements
[x] := C{q}([x])
if [x] 6= ∅ then {
. // Update the cog accumulator
. v := v + volume([x])
. xcog := xcog + volume([x]) ·mid [x]
. if w([x]) < ε then { // Box is too small
. . Sx := Sx ∪ [x]
. }
. else { // Bisect and enqueue suboxes
. . ([x1], [x2]) = bisect([x])
. . push([x1],L); push([x2],L)
. }
}

}
// Compute the solution set
Sx := Sx ∪ L
// Compute the center of gravity

xcog := xcog/v
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