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Abstract—Real-time modeling of the surrounding environ-
ment is a key functionality for autonomous navigation. Bird view
grid-based approaches have interesting advantages compared
to feature-based ones. Methods able to encode occupancy
information and to manage perception uncertainty in dynamic
environments are quite well known but very few studies have
been carried out on encoding semantic information in grids.
This kind of information can be crucial in many situations
in order to make the vehicle able to follow basic road rules,
such as lane keeping or lane changes. Usual approaches often
detect lane markings using on-board cameras or lidars but
the problem is tricky when the road is multi-lane or in
challenging weather conditions. In this work, we propose to
tackle this problem by using a vectorial prior map that stores
detailed lane level information. From a given pose estimate
provided by a localization system, we propose an evidential
model that encodes lane information into grids by propagating
the pose uncertainty on every cell. This evidential model is
compared with a classical Bayesian one and some of its special
characteristics are highlighted. Real results carried on public
roads with the real-time software are reported to support the
comparison.

I. INTRODUCTION

Road scene understanding is a key task for autonomous
navigation. Segmentation of the driving scene provides se-
mantic view about the environment. In the literature, many
scene segmentation algorithms rely on image processing.
Scene images are usually segmented into road, obstacle and
sky. In [1], the authors propose a learning method for road
scene segmentation from a single image; in [2], a holistic
3D scene understanding method uses geo-tagged images; in
[3], the authors propose an algorithm to detect road segment
combined with a prior geographical information.

For autonomous navigation, information restricted to the
road space is, however, not sufficient because vehicles need
to know where they are authorized to go, and so, lane-level
information is required. When there is an obstacle in the ego-
lane, the host vehicle has two options: i) keep-lane and stop or
ii) lane-change. The second alternative needs semantic road
rule information to evaluate if the space is accessible or not.
According to road rules, solid lane markings are normally
forbidden to cross, whereas dashed ones indicate possible
lane change. These lane marking types imply the road rules
that should be obeyed by the host vehicle. Many lane
detection methods have been studied and developed [4][5][6]
for this purpose. Nevertheless, lane detection methods relying
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Figure 1: Illustrative lane grid drawn in red. The goal is to
characterize the lane membership of every cell according to
the pose uncertainty.

only on vision and lidar systems perform badly in challenging
weather conditions or parallel multi-lane conditions.

We propose to tackle this problem by using prior maps
and accurate pose estimation. Indeed, more and more detailed
and accurate geo-referenced databases become available. This
kind of information source is very rich for autonomous
navigation. Through the use of maps, one can have access to
lane level attributes as long as the pose uncertainty is well
handled. Moreover, a map feedback can also be used to refine
the localization [7][8].

In this paper, a new method to represent semantic lane
information and to encode it into spatial grids is presented.
Inspired from occupancy grids [9][10][11] which focus on the
management of obstacle information into grid cells, one can
interpret lane information as semantic meaning encoded into
the cells as well. Fig 1 shows an illustrative grid drawn in red.
From the point of view of the vehicle, the navigable space is
composed of the accessible lanes having a driving direction
compatible with the vehicle orientation. Lanes with opposite
direction and space outside of the road are non-navigable.
Therefore, a minimal frame of discernment can be defined
as Ω = {Ego, Accessible, Forbidden}. In lane grids, every
cell is filled with a belief state which characterizes this
semantic lane information. In order to retrieve the map
information, the propagation of the pose uncertainty into
the grid construction process has to be perfectly handled.
This is presented in Section III. In order to encode semantic
lane information, two approaches are developed in sections



IV and V. These probabilistic and evidential approaches are
compared with real road data in section VI.

II. SYSTEM WORK-FLOW AND FRAMES

Fig 2 shows the proposed lane grid construction process.
The ego-localization system provides the pose information
(position and heading) of the vehicle. The estimated pose
has to be reliable which implies that it has to be consistent
with the true pose (the covariance matrix of the estimation
error has to be well estimated). There exists two kinds of
uncertainty in the process which come respectively from the
estimated pose and from the map. In the current approach,
we consider that the map is accurate (the one used in the
experiments has been made with high-grade mobile mapping
sensors). The pose uncertainty is therefore the predominant
uncertainty which has to be taken into account. The two steps
for lane grid construction are illustrated in sections IV and
V.
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Figure 2: Lane grid construction process

Let denoteFO the global frame in which the coordinates of
the geometric points of the map are defined. It has an origin
O close to the navigation area to work in 2D andx and y axis
point towards East and North respectively. A road-oriented
frameFR [8] has the same origin as the global frame but with
its x-axis pointing in the direction of the road. It is actually
a rotated version of the global frame. The body frame FM
of the vehicle is defined at the center of the vehicle’s rear
axle with an origin denoted as M. Note that M has not a
deterministic location in FO or FR because of the estimation
uncertainty. In Fig 3, a positionM with an uncertainty ellipse
g(x, y) is given for illustrating purpose.

III. UNCERTAINTY PROPAGATION OVER THE GRID

The term belief used in Fig 2 can have different meanings
depending on the considered approach. In the probabilistic
approach, belief refers to probability; in the evidential one,
belief means mass, since mass is the basic belief assignment
in the Dempster-Shafer’s theory.

A. Lateral position uncertainty in the road frame

The lane states are characterized depending on which lane
the host vehicle is located. This requires the knowledge of the
lateral position with respect to the road. The pose is estimated
in the global frame with a 2D ellipse uncertainty g(x, y) as
shown in Fig 3. In the frame (xe, ye) defined at the estimated
position, the lateral position uncertainty to construct the lane
belief distribution is perpendicular to the lane direction, i.e,
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Figure 3: Lateral position uncertainty. The real pose is
displayed by the red box.

along the ye axis. In Fig 3, the red 1-D Gaussian p(y) shows
this uncertainty.

To calculate this uncertainty, suppose that the position
uncertainty is represented inFO by the covariance matrix OP
(2 x 2), the transformation of this uncertainty into the road-
oriented frame FR is given by:

RP =

[
Rp11

Rp12
Rp12

Rp22

]
= R · OP ·RT (1)

where R =

[
cos(ψ) sin(ψ)
−sin(ψ) cos(ψ)

]
is the rotation matrix in

which ψ is the heading of the road. Then in FR the standard
deviation of the lateral Gaussian distribution can be computed
as (see [8] for details):

σR =
√

Rp22 · (1− (
Rp21√

Rp11 ·
√

Rp22

)2)

B. Propagation of pose uncertainty in the computation of
lane cells belief

Fig 1 illustrates the uncertainty in the computation of the
belief distribution of the grid cells. b1, b2, ..., b6 represent the
belief distributions of each lane (the case where the position
distribution extends to outside of the road is taken into
consideration, each side of the space outside the road is taken
as a lane). To illustrate the model, let us imagine that the true
position of the vehicle isM in Fig 1.

Consider the uncertainty denoted gi(x, y) of the red cell i
displayed in Fig 1. The coordinates vector of cell i in FM is
MXi =

[
Mxi

Myi
]T. Transformed into FO, it becomes:

OXi =

[
Oxi
Oyi

]
= ORM ·

[
Mxi
Myi

]
+

[
OxM
OyM

]
(2)

where ORM represents the rotation matrix from FM to FO,[
OxM , OyM

]T is the position ofM inFO. θ is the estimated
heading angle of the vehicle.

The position OXi depends on five variables: the 2D esti-
mated pose (OxM ,

OyM , θ) of the vehicle inFO, the position
(Mxi,

Myi) of the cell inFM. (Mxi,
Myi) has no uncertainty

because the positions of the cells are known. Thus, the
position uncertainty of the cell in FO comes only from the
2D estimated pose of the vehicle (OxM ,

OyM , θ).
To understand the effect of the uncertainty propagation, let

us suppose that the heading angle θ is decorrelated from the
position(OxM ,

OyM ). In reality this is not the case. However,



herein we make this hypothesis for analyzing the influence
separately.

Firstly, suppose the heading angle has no uncertainty. The
relation of the cell position OXi with the position of the
vehicle is linear, thus:

V ar(OXi|var(θ) = 0) = V ar(
[

OxM , OyM

]T
),

which means that the covariance of the position of the cell
is identical to the covariance of the vehicle position.

Now, suppose the heading angle has some uncertainty and
the position is perfectly known. The covariance matrix of
OXi can be computed in closed form as:

V ar(OXi|V ar(
[

OxM
OyM

]
) = 0) =

[
dOXi

dθ

]
· var(θ) ·

[
dOXi

dθ

]T
= var(θ) ·

[
u(θ) t(θ)
t(θ) v(θ)

]
(3)

where
u(θ) = (− sin(θ) ·M xi − cos(θ) ·M yi)

2

v(θ) = ( cos(θ) ·M xi − sin(θ) ·M yi)2

t(θ) = sin θ·cos θ·((Myi)
2−(Mxi)

2)+Mxi ·Myi ·((sin θ)2−(cos θ)2).

The uncertainty in this case is a function of (Mxi,
Myi),

which means that the position of the cell inFM determines the
shape of the uncertainty in FO. The further a cell is located,
the larger the uncertainty is along the x-axis. The uncertainty
along the y-axis (with the same y coordinate) increases with
the x coordinate. Thus, in general, we can conclude that the
uncertainty of one cell due to heading error increases along
the x-axis.

For the general case, let V ar(OXi) denote the uncertainty
of celli in the global frame andf(OxM ,

OyM , θ) the transfor-
mation (given in Eq 2). Using the first order approximation,
we have:

gi(x, y) = V ar(OXi) =

[
δf

δOXi

]
· OP ·

[
δf

δOXi

]T
, (4)

where OP represents the covariance matrix of the 2D pose
(OxM ,

OyM , θ) and
[

δf
δOXi

]
the Jacobian matrix.

IV. LANE BELIEF CONSTRUCTION

The lane belief distribution characterizes the degree of
support of every lane to be the one in which the vehicle
is located based on the estimated pose, according to the road
rules stored in the map. For this purpose, a multi-hypothesis
probabilistic approach is proposed. So, a lane belief serves
both for the probabilistic and evidential approaches in the
grid cell belief calculation process. In general, the belief level
is denoted as B() in this part, which can be transformed to
P () and m() in the probabilistic and evidential approaches
respectively. LetB(i, A) be the belief of lane i being stateA.

A. Multi-hypothesis approach

One can deduce from the pose estimation every possibility
concerning which lane is Ego. The method considers every
lane where the host vehicle can be located, then computes
for each case the belief supporting that particular hypothesis.
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(a) Hypothesis one : 3 is
Ego lane
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(b) Belief distribution
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(c) Hypothesis two: 2 is
Ego lane
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(d) Belief distribution

Figure 4: Multi-hypothesis algorithm illustration

In Fig 3, p(y) represents the lateral position distribution
in FR. If the position has a large lateral uncertainty, the
Gaussian distribution covers several lanes. Fig 4 gives two
illustrative examples (corresponding to two hypotheses) on
a four-lane road with solid lane marking in the middle (A
refers to Accessible, E Ego and F Forbidden). We herein
take the two hypotheses in Fig 4 as examples to illustrate the
approach, considering each hypothesis is tackled similarly. A
resultant belief distribution considering all hypotheses will
be given in section IV-B. In Fig 4a, lane 3 is assumed
to be Ego and then the belief is calculated as the integral
of the pose distribution over the lane. Thus, B(3, Ego) =

P (Lane{3} = Ego) =
´ P
K
p(y)dy. This belief is propagated

to the other lanes based on the hypothesis that the map is
accurate and with no attribute error. Once lane 3 is regarded
asEgo, lane 4 should beAccessiblewith the same amount of
belief based on the relationship of the two lanes on the map,
B(4, Accessible) = P (Lane{3} = Ego). The same rule
applies to lane 1 and lane 2. These two lanes can only be
Forbidden, thus B(1, Forbidden) = B(2, Forbidden) =
P (Lane{3} = Ego). The hypothesis in Fig 4c is tackled
with the same reasoning.

A computation is given in the same road situation. The
results are shown besides each possibility in Fig 4. Here, we
do not ignore the possibility that the true pose lies outside
the road. In contrast, the two regions outside the road (on



the left and right) are considered as two independent spaces.
This process guarantees the unity of the calculated belief.

B. Belief accumulation

Based on the illustration in section IV-A, different hy-
potheses can have distinct conclusions on the states of the
same lane space. For instance, the first example in Fig 4a
brings Forbidden belief for lane three, whereas the second
example in Fig 4c computes the Ego belief for this lane.
These two types of belief are both stored in the belief
distribution of the lane. If other hypotheses would have
contributed to the same proposition, the belief would be
accumulated. This computation preserves the belief from all
possible hypotheses. The final belief distribution is shown
in Fig 5. The belief accumulation is mostly highlighted
from the Forbiddenmass outside the road. The lateral pose
distribution is limited to the road area, thusForbiddenbelief
accumulates to 100% outside the road, which is conform with
reality.

Every hypothesis is tackled independently and brings new
belief to the space on different propositions.
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Figure 5: Final lane belief distribution in the cross-track
direction

V. GRID CELL BELIEF CALCULATION

With the lane probability distribution already estimated,
the formalism to propagate the belief state in every cell is
detailed, for both probabilistic and evidential approaches.

A. Probabilistic approach

To take advantage of the lane belief distribution con-
structed in section IV, the probability of lane i to be in the
stateA is P (Slk = A) = B(k, A).

Let define two properties for each cell in the grid: Li and
Si. They indicate respectively the lane index and the state of
cell i. Thus Li ∈ (1, 2, ... n) where n represents the number
of lanes, and Si ∈ Ω.

The probability of the red cell i in Fig 1 being located in
lane k can be calculated as:

P (Li = k) =

¨

(x,y∈Lanek)

gi(x, y)dxdy . (5)

According to the total probability law, the probability of the
stateA for the cell is computed as:

P (Si = A) =

n∑
k=1

P (Si = A |Li = k) · P (Li = k), A ∈ Ω.

WithP (Li = k)already handled in Eq. 5, the problem resides
now in computingP (Si = A |Li = k). Suppose the state for
lane k is denoted as Slk. The first part can be reformulated
as:

P (Si = A |Li = k) = P (Si = A |Si = Slk ).

Indeed if one cell lies in lane k, then it has the same state as
the lane k.

Moreover,

P (Si = A |Si = Slk ) = P (Slk = A) = B(k, A).

This process is repeated for every cell in the grid.

B. Evidential approach
Dempster-shafer’s theory provides a generalized way to

deal with uncertainty. The singletons in Ω are mutually
exclusive. The power set is defined as:

2Ω = {∅, Ego, Accessible, Forbidden, {Ego, Accessible},
{Ego, Forbidden}, {Accessible, Forbidden}, Ω}.

One advantage of the evidential representation is that one can
attribute mass to any subset of the frame of discernment. For
example, the support over {Ego, Accessible} is not null in
situations where the mass supports bothEgo andAccessible,
but there is not enough information to tell whether the mass
should be assigned toEgo orAccessible.

If one cell lies inside one lane, then it should have the
same mass distribution as the lane.

mi = mk, ifCi ∈ Lanek

mi andmk represent respectively the mass distribution of cell
i and Lanek. Note that the belief distribution constructed in
section IV can be adopted here asmk(A) = B(k, A).

Due to the position uncertainty gi(x, y), the cell i can
be located within each lane with a certain confidence level
computed by:

αi
k =

¨

(x,y∈Lanek)

gi(x, y)dxdy . (6)

This confidence level is seen as a degree of reliability of
the lane state decision and can be used to discount the mass
distribution of each lane mk [12]. The mass distribution for
the cell i belonging to lane k is:

mi
k(A) = αi

k · mk(A), A 6= Ω
mi

k(Ω) = αi
k · mk(Ω) + 1− αi

k

Fusing the information provided by all lanes, the mass
distribution for cell i can be computed by:

mi = }km
i
k, k = 1, 2, ... , n (7)

where k is the lane index and n the number of lanes. The
fusion operator } proposed in [13] is defined as:{

(m1 }m2)(A) =
∑

B∩C=A 6=∅m1(B) ·m2(C)

(m1 }m2)(A) =
∑

B∩C=∅,B∪C=Am1(B) ·m2(C)



where A,B,C ⊂ Ω. The specialty of this operator is that
the conflicting mass is put into union states. In our case,
this conflicting mass is due to the position uncertainty. If, in
the fusion process, conflicting information is generated, we
assume that the evidence supports the mass distribution of
the two fused hypotheses. This highlights an advantage of
the evidential approach which will be demonstrated in the
results.

VI. REAL ROAD EXPERIMENTS AND RESULTS

Real road experiments have been carried out with an
equipped vehicle of the Lab shown in Fig 6. A map with good
accuracy has been used. In the map, any road is explicitly
described with lane information, including lane markings and
road boundaries. The lane markings are distinguished in the
map with different attributes. This feature provides semantic
information. A GPS system with RTK corrections provided
accurate positioning information with high confidence during
the tests.

Figure 6: Robotex experimental vehicle

To qualitatively evaluate the result, a wide-angle scene
camera was installed behind the windshield during the ac-
quisition process. The retro-projection of the lane grid on
the scene image helps supporting a qualitative evaluation. The
essential purpose of this method is to analyze and evaluate the
correspondence between the lane grid and the scene observed
by the camera.

The grids are of 40x 16 meters in length and width and
the cells size is (0.1x 0.1) meters. The whole approach has
been implemented in C++. In the following, we focus on
one particular sample and we compare the two approaches.
The results are shown in the form of a RGB image which
represents the lane grid retro-projected on a front-looking
camera. The advantage is that the belief level is reflected by
the RGB color brightness. A brighter color means a higher
believe level.

A. Probabilistic lane grid result

Fig 7 shows the resulting probabilistic grids with the
following pose uncertainty (σx = 0.3m, σy = 0.2m,σθ =
0.1radians). The Ego, Accessible, and Forbidden proba-
bilities along each lane become smaller as the distance
of the cells to the host vehicle gets larger. However, the
space covered by the probability distribution extends outside
of each lane, which means that the probability becomes
more dispersed. The uncertainty propagation explained in
section III is the reason for this phenomenon. It is clear
that if one cell has a larger position uncertainty, it ought

(a) Ego (b) Accessible (c) Forbidden (d) All

(e) Retro-projection on the front-looking image

Figure 7: Probabilistic approach

to have more ambiguous probability distribution. As the
approach takes into account the 2D pose uncertainty, the
cells at farther distance tend to have larger uncertainty. The
combined probability shown in Fig 7d further reflects this
phenomenon. One can remark clearly that cells close to the
host vehicle tend to have just single state probability, whereas
at farther distance, the probability distribution can become
very ambiguous.

The retro-projection of the lane grid on the image in Fig
7e gives a qualitative result evaluation. One can see the result
is valid given the correspondence of the lane grid projected
on the image.

B. Evidential lane grid result

Fig 8 displays the results of the evidential approach with
the same pose uncertainty . The belief of the states of the
lanes gradually decreases as the distance of the cells to the
host vehicle becomes larger. From the mass in the union
states shown in Fig 8d, one can remark that some quantity
of mass is put in the union states, which is displayed by the
combination of colors. In Fig 8d, yellow, cyan and magenta
colors represent respectively the mass in {Ego, Forbidden},
{Ego, Accessible} and {Accessible, Forbidden}. The fact
that farther cells have larger uncertainty is more clearly
reflected in this image, as the union mass area becomes wider
in the farther space. In Fig 8g, the retro-projection of union
mass is displayed. This result directly shows the fact that the
union mass is mainly focused on the cells that are close to
the lane markings.

C. Influences of position and angle uncertainties

The position uncertainty is propagated uniformly over
the lane grid, whereas the angle uncertainty is not. We
herein show the results reflecting these properties. This



(a) Ego (b) Accessible (c) Forbidden (d) Union (e) Singleton

(f) Retro-projection of all singleton masses on the image

(g) Retro-projection of the union of masses on the image

Figure 8: Evidential approach

effect have the same impact on the Bayesian and eviden-
tial approaches, herein the evidential results are shown for
illustration since more visual results can be shown. In Fig
9 the results with only position uncertainties are displayed.
The uncertainties are respectively (0.3m, 0.2m, 0.0radian)
and (1.0m, 1.0m, 0.0radian) in Fig 9a and Fig 9b. With
position uncertainty, the fading effect of each lane states over
each lane is uniform all along the lane space. With larger
position uncertainty, the mass level for lane states get lower,
which means less confident about the lane states.

Fig 10 shows two cases with different angle un-
certainties, and with no position uncertainty. The un-
certainties are respectively (0.0m, 0.0m, 0.05radian) and
(0.0m, 0.0m, 0.1radian) in Fig 10a and Fig 10b. The effect
of larger angle uncertainty is reflected by the lower mass level
over the space in larger distance in Fig 10b. With larger angle
uncertainty, the cells in Fig 10b have larger uncertainties, thus
their mass dispersion is more significant, which results in the
more ambiguous lane grid.

D. Comparison between the two approaches

The evidential approach provides richer information than
the probabilistic one. Indeed, it puts beliefs into union states
if the belief in each single state is not clear. Ignorance
is explicitly quantified by the Unknown mass. Moreover,
the evidential approach provides a flexible method to tackle
conflicting information which also brings useful information.
Here, the conflicting mass corresponds to the lane markings.

Another essential difference resides in the decision pro-
cess. With a probabilistic approach, decision is classically

(a) small position uncertainty

(b) large position uncertainty

Figure 9: Results with only position uncertainties

(a) small angle uncertainty

(b) large angle uncertainty

Figure 10: Results with only angle uncertainties

made by selecting the maximum probability. Thus, the de-
cision is always among these three states, no matter how
uncertain the information is. However, with the evidential
approach, it is authorized to explicitly announce ignorance
when there is too large uncertainty. Fig 11 shows the decision
grids of the results shown in Fig 7 and in Fig 8. In these
decision grids, the belief level is kept to reflect the uncertainty
level. Fig 11a shows the maximum of probabilities. TheEgo
andAccessible lanes at farther distance become more narrow.
This phenomenon is due to the fact that the probability
dispersion in this area becomes larger and the Forbidden
belief outside the road has larger influence which leads to



(a) Probability (b) Evidence (c) Pignistic

Figure 11: Decision grids (used by client applications)

Forbidden belief invasion into lane space. Fig 11b shows a
decision grid based on the maximum of mass of evidence.
One can notice that over the far away space, the cells are
Unknown, which means that no decision can be made in
this area due to the lack of information. This is a great
advantage for a path planning process, since, as this evidential
decision grid provides explicitly ignorant information, no
risky trajectory can be planned.

In Fig 11c shows another decision grid based on pignis-
tic probability [14], commonly used to transform evidence
masses in probabilities. One can remark that this grid looks
almost exactly the same as the probabilistic decision grid in
Fig 11a. In fact, the ratio of identical decision of these two
grids reaches 99.992%. This result validates the way uncer-
tainty is handled in the proposed evidential grid mechanism
as it conducts to the same probabilistic conclusions.

E. Average construction time study

Herein a study of time consumption of the evidential lane
grids based on the cell resolution variation is presented.
Above results are shown with cell resolution at 0.1 meters,
which is really for the purpose of showing the grid properties.
In Figure 12 the time consumption variation in regard to
the lane grid resolution is illustrated by a simple plot. The
size of the grids keeps at (40 x 16 meters). This average
time is computed along a trajectory of 26 seconds covering
260 frames of data using a common personal computer.
According to this figure, One can notice that the average time
consumption decreases exponentially with respect to the cell
size augmentation.
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Figure 12: Average time for evidential lane grid construction
with different resolutions

VII. CONCLUSION

A new approach to characterize lane information and
semantic road rules into grid cells has been proposed. A prior
lane-level map is used to extract lane information based on
the pose provided by a localization system. As any localiza-
tion system provides uncertain information, the uncertainty
propagation over the grid has been analyzed and methods
to build probabilistic and evidential lane grids have been
proposed. Real road results have been reported and compared.
The evidential framework relying on mass discounting has
been validated through decision grids comparisons. It has the
advantage of explicitly managing ignorance which is clearly
an added value for safe autonomous navigation.
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