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Cooperative Localization with Reliable Confidence Domains between Vehicles
sharing GNSS Pseudoranges Errors with no Base Station

Khaoula Lassoued, Philippe Bonnifait and Isabelle Fantoni

Abstract—Cooperation between road vehicles through information ex-
change is a promising way to enhance their absolute and relative
positions. This paper presents an approach for generating, sharing
and applying Global Navigation Satellite System (GNSS) pseudorange
corrections through a V2X communication network. Conventionally,
differential corrections are generated by fixed base stations with known
positions and sent to mobile users. Here, the proposed cooperative method
has no central server and the estimation of the raw measurements errors
is done in a fully distributed way. Using a model of the correlation of
the pseudorange errors and through the knowledge of the local motions
of the vehicles obtained by Dead Reckoning (DR) or tracking, a non
linear observability shows that the estimation problem is solvable. A
cooperative and fully distributed estimation method is then presented
using Set Inversion and Constraint propagation techniques. Positions,
pseudorange estimated errors and DR data are shared in the network
of vehicles and confidence is handled by intervals, in a bounded error
context. This allows computing highly reliable confidence domains with
no direct range measurements, which is crucial for applications involving
close proximity navigation. Indeed, the proposed data fusion framework
does not require any linearization of the equations and is insensitive to the
data incest problem since the same information can be exploited several
times in the computation process without making the estimation over-
converge. Results using real measurements are presented to illustrate
the performance of the proposed cooperative method in comparison
with standalone estimation. A classical sequential Bayesian method has
also been implemented on the same data set and compared in terms of
accuracy and confidence with a ground truth system.

I. INTRODUCTION

To make road vehicles cooperate efficiently via V2X communica-
tions, position estimates with reliable confidence indicators are cru-
cial. Mutual cooperation through information exchange is a promising
way to enhance positioning accuracy and reduce uncertainty arising
from the use of low cost sensors. For example, mono-frequency
Global Navigation Satellite Systems (GNSS) receivers in complex
environments usually leads to offsets between real and observed
positions (Fig. 1). These systematic offsets (i.e, biases) are often
due to inaccurate satellite positions, atmospheric and tropospheric
errors. The impact of these biases on vehicles localization should not
be neglected. Cooperation and exchange of biases estimates between
vehicles can reduce significantly these systematic errors. However,
distributed cooperative localization based on sharing estimates is
subject to data incest problems (i.e, reuse of identical information in
the fusion process) that often lead to over-convergence problems [1],
[2]. When position information is used in a safety-critical context (e.g.
autonomous vehicles navigation in proximity), one should guaranty
the consistency of the localization estimates. In this context, we
mainly aim to improve the absolute and relative performances of
vehicles localization through cooperation. Moreover, we focus on
characterizing reliable confidence domains (see Fig. 1) that contain
vehicles positions with high reliability.

Common approaches for localization are Bayesian methods relying
on Extended Kalman Filter (EKF) or Unscented Kalman Filter since
in practice we face nonlinear systems [1]. EKF-based methods have
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FIGURE 1: Illustration of the effects of biased measurements. Confidence
domains are zones in which the vehicle is highly located.

been used for many years and remain the main tool for nonlinear
estimation in problems ranging from missile guidance to GNSS
positioning. The efficacy of these techniques to provide accurate and
consistent estimates depends greatly on the fidelity of the system and
sensor models. Furthermore, an EKF is not guaranteed to converge
when the initial estimate of the state is wrong, or when the process
is modeled incorrectly owing to its linearization. Moreover, it is
sensitive to tuning [3]. It has been suggested that, instead of assuming
noise sources to follow known probabilistic distributions, only bounds
of the errors can be managed. These methods are known as set-
membership or bounded-error estimation. Set-membership methods
are considered as efficient solutions to data incest problem. This kind
of approach enables merging adequately the information even when it
is reused several times. It also provides reliable domains. Moreover,
the use of non-linear models does not require any linearization
[4]. In this work, Set Inversion Via Interval Analysis (SIVIA) is
used as the core methodology. It is a particular set-membership
method that relies on interval analysis. Often, SIVIA is used in order
to characterize guaranteed solution sets of non-linear problems by
bisecting recursively a searching space [5]. It has been successfully
applied for model parameters estimation in [6]. When reliable robots
pose confidence domains are required, the authors of [7] and [8]
have shown that set inversion can manage very well the uncertainty.
However, SIVIA alone is not suitable for real time, especially when
the dimension of the space is high. A strong improvement is to
use SIVIA while simultaneously solving a Constraint Satisfaction
Problem (CSP) in order to limit at the maximum the number of
bisections [9]. Recently, several studies have used these new set
inversion methods for localizing multiple robots. Bethencourt [10]
used distributed set-membership algorithms in a group of AUVs to
accomplish a swarm cooperative mission based on inter-temporal
measurements. Cooperative localization using multi-GNSS receivers
and V2V/V2I communications is an increasing domain as shown by
Bento et al. [11]. In [12], the authors have studied a cooperative
localization method for multiple ground robots based on constraint
propagation techniques. However, all these works did not consider
biased measurements. However, there are some works based on
Bayesian methods that consider biased measurements. In [13], a
cooperative tightly-coupled relative GPS/INS integration is presented
using simulated data of two vehicles. This decentralized cooperative
approach aims to enhance vehicles positions by correcting pseudo-
ranges biases and receivers clocks biases when using pseudoranges
double differences techniques. More recently, Mattern et al. have
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FIGURE 2: Experimental vehicles and shared data

extended this previous work to handle real world data problems. They
have proposed a cooperative algorithm based on UKF filtering to
improve the absolute and relative localization of six vehicles, when
using GPS data and digital maps [14].

In this paper, we propose a new formulation of multi-vehicles
cooperation using set inversion with CSP techniques on intervals.
When using V2X communications, vehicles cooperate and exchange
information such that each vehicle can compute the positions of the
partners with a reliable domain. The ego-motion of every vehicle
can also be used to improve the cooperation. The proposed method
relies on the exchange of positions estimates, pseudorange estimated
errors and DR data (see Fig. 2). A first contribution of this paper is
to show that it is possible to improve the ego positioning and mutual
localization between vehicles by sharing GNSS biased pseudoranges
using a model of the correlation of the pseudorange errors and
through the knowledge of the local motions of the vehicles done
by DR or tracking. This represents the objective of section II, where
the system modeling and an observability study of the cooperative
system are introduced. Then, in section III, the proposed distributed
estimation method is presented. It allows the data fusion of the
estimated biases in a distributed way with no central fusion node and
with no base station. An experimental evaluation with two vehicles is
performed in section IV to evaluate the performance in real conditions
using a ground truth system. The performance of the cooperation
is clearly highlighted. A classical sequential Bayesian method has
also been implemented on the same data set and is compared in
terms of accuracy and confidence. This comparison also represents a
contribution of this paper.

II. SYSTEM MODELING AND OBSERVABILITY ANALYSIS

The data fusion of GNSS measurements with DR measurements is an
approach often adopted to enhance localization accuracy [15]. In this
section, the mathematical models of the measurements are described
and an observability study of the cooperative system is considered.
The observability study is an essential step in vehicles localization
context. One should check if the vehicles positions and measurements
biases can be determined before the development of any observer.

A. Models

The GNSS raw measurements considered here are L1 pseudoranges.
The pseudorange ρji [16] is the measure of each vehicle Ri (i =
{1, . . . , nr}) located at coordinates pi = [xi, yi, zi] to each satellite
j (j = 1, . . . , ns) at position pj = [xj , yj , zj ]. We model the
common GNSS error bj as additive errors on pseudorange. The model
of ρji is expressed in Eq. (1). Please refer to [17] for further details.

ρji =
√

(xi−xj)2+(yi−yj)2+(zi−zj)2+bj+di + βj (1)

where di represents the receiver clock offset and βj the measurement
noise.

Let iy ∈ Rns be the vector of ns pseudoranges measurements and
ix ∈ Rn be the state vector of vehicle i. The observation model at
discrete time k is defined as follows

iyk = g(ixk) (2)

Suppose that each vehicle is equipped with a GNSS receiver and
DR sensors that provide speed and heading in an input vector
iu(t) = [ vi ψi ]T . A 2D unicycle evolution model for the pose
components, a linear model for the receiver clock offset and an auto-
regressive (AR) model for the pseudoranges errors are concatenated
and described by a continuous function f in a local East North Up
frame (time t is omitted for clarity):

f(ix, iu) =

{
ẋi = vi cos(ψi); ẏi = vi sin(ψi); żi = 0

ḋi = dri; ˙dri = 0; ḃj = a bj

(3)

di and dri are respectively the receiver clock offset and its drift to
be estimated. The AR parameter a = e−Te/τ , Te being the sampling
time and τ the time constant of the model bias bj (a = 0.9995,
τ = 6.2min). The indexes of the vehicles and common satellites
are respectively denoted by i ∈ {1 . . . nr} and j ∈ {1 . . . ns}.

B. Observability analysis

Errors on pseudorange measurements are spatially correlated and
similar for nearby users [16] but not directly observed with no
base station. Therefore, it is essential to study the observability
to evaluate if the problem is solvable. Rife and Xiao [18] have
shown that it is not possible to estimate biases simply by sharing
GNSS pseudorange measurements between vehicles communicating
via a Vehicle-to-Vehicle (V2V) network in a snapshot way (Epoch
by Epoch). They highlighted the limitation of distributing only
GNSS data and proposed to add georeferenced information by using
camera-based lane boundary sensor. A natural question that arises is
whether GNSS biases are observable when adding vehicles motion
information and errors evolution model.

In this section, we investigate the observability of the cooperative
localization problem of vehicles sharing biases estimates when they
are moving. The cooperative system described in section II-A given
DR and pseudorange measurements is nonlinear. Therefore, we use
the observability rank criterion based on Lie-Derivatives [19] to
determine the conditions under which the system is locally weakly
observable. Note that Martinelli and Siegwart [20] have employed
this criterion to investigate the observability of 2D cooperative
localization of mobile robots. Recently, Zhou et al. [21] have used the
Lie derivatives to determine the conditions for the observability of 2D
relative pose of pairs of mobile robots using range measurements. In
the sequel, a test of Lie derivatives is considered for vehicles sharing
GNSS errors. This study is inspired by the work of Zhou et al. [21].

Definition 1. (Observability Rank Condition): The observability rank
condition is satisfied when the observability matrix is full rank.

Theorem 1. (Observability Sufficient Condition): If the system sat-
isfies the observability rank condition at a given state x0 (at some
time), then the system is locally weakly observable at x0 [19].

Let consider nr vehicles and ns common visible satellites. Let x̂ be
the estimated state of the cooperative system (S) as follows

x̂ = [p̂1, d̂1, . . . , p̂nr
, d̂nr , b̂

1, . . . , b̂ns ]T (4)



with dim(x̂) = 4nr+ns. p̂1···nr
are the 3D vehicles positions, d̂1···nr

represent the receivers clock offsets. (b̂1···ns ) denote the biases on ns
common pseudorange measurements between vehicles.

The considered evolution model in this study consists in the first four
DR equations of the system (3) and the last equation for the evolution
of biases.

Let consider u = [v1 . . . vnr ]T the input of the system (S) in (4).
The nonlinear DR model of (S) can be written as follows

ẋ =

f0︷ ︸︸ ︷

0
0
0
dr1

...
0
0
0

drnr

a b1

...
a bns



+

f1︷ ︸︸ ︷

cos(ψ1)
sin(ψ1)

0
0
...
0
0
0
0
0
...
0



v1 + · · ·+

fnr︷ ︸︸ ︷

0
0
0
0
...

cos(ψnr )
sin(ψnr )

0
0
0
...
0



vnr (5)

The nonlinear observation equations are given by

y =

n
s
×
n
r





‖p1 − p1‖+ d1 + b1

...
‖p1 − pns‖+ d1 + bns

...
‖pnr

− p1‖+ dnr + b1

...
‖pnr

− pns‖+ dnr + bns


(6)

We compute hereafter the necessary Lie derivatives of y and their
gradients:

Zeroth-order Lie derivatives (L0y):

L0y = y

with gradient:

∇L0y = jacobian(y)

= G =

n
r
×
n
s



G 0 · · · 0 I
0 G · · · 0 I
...

...
. . .

...
...

0 0 · · · G I



4nr+ns︷ ︸︸ ︷
(7)

where I is the identity matrix with dim(I) = ns × ns and G is the
geometry matrix described in [18] where G is defined as follows:

G =


(u1)T 1
(u2)T 1

...
...

(uns)T 1

 (8)

with dim(Gi) = ns × 4, the unit vector uj in G is the estimated
line of sight from the satellite j to each user receiver i. This pointing
vector is the same for all users when they are assumed to be in close
proximity (i.e. distance between vehicles ≤ 10km):

uj = (pi − p
j)/‖pi − p

j‖. (9)

First-order Lie derivatives (L1
f0
y):

L1f0y = ∇L0y · f0 =

n
s
×
n
r





a b1 + dr1
...

a bns + dr1
...

a b1 + drnr

...
a bns + drnr


with gradient:

∇L1f0y =

n
s
×
n
r





4nr︷︸︸︷
0

ns︷︸︸︷
aI

...
...

4nr︷︸︸︷
0

ns︷︸︸︷
aI


The observability matrix is now:

O =

[
∇L0y
∇L1

f0
y

]
. (10)

The role of the matrix in Eq. (10) in the observability analysis of
a nonlinear system is given in [19], and recalled in definition 1 and
theorem 1.

Below, we compute the rank of the observability matrix (10) and
determine the necessary conditions under which the system (S) can
be locally weakly observable. Here, we have:

rank(O) = rank(∇L0y) + rank(∇L1
f0y). (11)

The rank of ∇L0y has been studied in [18]. They proved that
rank(∇L0y) = 4(nr−1)+ns. It is straightforward to determine the
rank of ∇L1

f0
y. Since the number of linearly independent equations

in ∇L1
f0
y appears to be ns (i.e rank(∇L1

f0
y)=ns) if we have a 6= 0

(i.e. auto-regressive model of the biases). So, according to (11) we
get:

rank(O) = 4(nr − 1) + 2ns (12)

In order to get a full rank of O, one must discuss the least required
number of ns common satellites between users. It is obvious that
rank(O) can not exceed the nI unknowns states of (S) which is equal
to 4nr + ns (i.e. rank(O) ≤ 4nr + ns), so to get a full rank of O
one must determine ns such that

rank(O) ≥ 4nr + ns. (13)

By replacing (12) in (13) we get: ns ≥ 4. The observability rank
condition (definition 1) is obtained when this condition is satisfied.
According to theorem 1, it can be concluded that the system is locally
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Figure 3: Bracketing of the solution set X between two subpavings X
and X = X ∪∆X . [X] is the hull box of X.

weakly observable regardless the number of users (nr) if the biases
have an auto-regressive behavior and at least 4 common satellites
between the vehicles. Please note also that, as we have only used the
Lie derivative with respect to f0, the system is observable even if the
the vehicles are motionless.

III. DISTRIBUTED ESTIMATION WITH SET INVERSION TO

COMPUTE RELIABLE CONFIDENCE DOMAINS

A. Set Inversion with Constraints Propagation for State Estimation

To perform a state estimation in a bounded error framework with
intervals, one needs solving a set inversion problem. The objective is
to determine the unknown state X ⊂ Rn such as f(X) ⊂ Y , where
Y is the known set of measurements. The objective is to compute the
reciprocal image X = f−1(Y). A guaranteed approximation of the
solution set X can be done using 2 sub-pavings which bracket the
solution set as follows: X ⊂ X ⊂ X (Fig. 3).

A box [x] of Rn is feasible if it is inside X and unfeasible if it
is outside X, otherwise [x] is indeterminate. By using an inclusion
function [f ] of function f , one can identify the feasibility of the boxes
using the following tests:

• If [f ]([x])⊂ Y then [x] is feasible
• If [f ]([x])∩Y = ∅ then [x] is unfeasible
• Else [x] is indeterminate.

SIVIA solves the set inversion problem by testing recursively the
feasibility of candidate boxes, starting from an arbitrarily large initial
box [x0] [6]. If a box is feasible, it is stored in the inner solution set X.
If a box is unfeasible, it is discarded since the resulting box ([f ]([x]))
is outside the measurement domain Y. Finally, an indeterminate box
is bisected into two sub-boxes and stored in a list L waiting to be
treated.

In high dimension, SIVIA is not suitable for real time due to the
computation time of the bisections. One solution is to use “SIVIAP”,
a SIVIA with Constraints Propagation (CP) on intervals. CP is very
efficient in terms of computation and reduces the number of needed
bisections by contracting boxes in order to speed up the processing.

SIVIAP involves the formalization of a Constraint Satisfaction Prob-
lem. A CSP is denoted by H (Eq.14) and provides the box [x] that
satisfies all the constraints F .

CSP : {H : (F (x) = 0 | x ∈ [x])} (14)

Contracting H means replacing [x] by a smaller domain [x′] such
that the solution set remains unchanged. The contractors used in this
work are Forward-Backward Propagation and Waltz algorithm [22]
intersection. More details can be found in [23].

B. Cooperative Localization Problem Statement

Vehicles share their estimated GNSS errors, their DR measurements
and their positions. The objective is to get estimates with reliable

confidence domains that contain, with high probability, the true
positions of the vehicles with little pessimism.

Let us describe the variables, the domains and the constraints of the
considered CSP.

Variables
In each agent Ri, there is an ego state to be estimated and a tracked
position of every known other vehicle Ro in the group, where o ∈
{1, . . . , nr − 1} and o 6= 0 .

Ego state: let ν = {xi, yi, zi, b1, . . . , bns , di, dri} be the variables
of the ego state ixego of Ri of dimension n = 5 + ns. Only these
variables are considered in the CSP. Let denote the absolute position
by iq = {xi, yi, zi}, the biases of all ns satellites in view by ib =
{b1, . . . , bns} and the inner variables of Ri by iξ = {di, dri} which
contain respectively the clock offset di and its drift dri.

Tracked position: let iqo = {iq1, . . . , iqnr−1} be the positions of
the other vehicles estimated by agent Ri.

The ego input of Ri is denoted by iuego = {vi, ψi}, where vi and
ψi are respectively the linear speed and the heading angle. iuo =
{iu1, . . . ,

iunr−1} represents the input of Ro composed of iuo =
{ vo, ψo }. This information is received from the others.

Domains
The domains of the variables are sets which enclose the true value of
the variables and are represented by boxes, i.e. vectors of intervals of
Rn as follows [ixego] =

[
[iq]T [ib]T [iξ]T

]T . Each interval
contains the unknown variable [ν] = [νtrue − δν , νtrue + δν ], where
νtrue represents the true value of ν and δν is the bound of the error.

Constraints
The constraints that link the variables at each time k are the evolution
and observation models:

(i) ixego,k = fk(ixego,k−1,
iuego)

(ii) iyk = g(ixego,k)

The constraint (i) corresponds to the dynamic equation of the model,
while the constraint (ii) defines the CSP which is used in SIVIAP:
iyk are the pseudoranges set to be inverted and ixego,k is a prior
feasible box coming from a prediction stage.

Solver
SIVIAP approximates the state vector ixego,k such that g(ixego,k) ⊆
[iyk] using a forward-backward contractor. The set to be character-
ized by SIVIAP is:

CSP = {ixego,k ⊆ [ixego,k]\g(ixego,k) ⊆ [iyk]}
= g−1([iyk]) ∩ [ixego,k] (15)

C. Distributed algorithm

The same algorithm (1) runs in every vehicle Ri. Agent Ri predicts
its ego state ixego using the evolution model and its DR inputs
( vi, ψi ) measured at high frequency (line 1). Moreover, it tracks
the other vehicles (line 2) using their last received DR inputs.

Lines (4 · · · 14) of the algorithm consist in updating the predicted
state ixego with respect to the GNSS measurements which are
available every 0.2s. In order to reduce the outliers at each time
k when the GNSS measurements are available, a validation process



Algorithme 1 An iteration stage of the method in Ri
Cooperation (in:[ixego], [iuego],

[
ρ11, . . . , ρ

ns
1

]
, [oq], [ouego],

[ob], g ; out:[ixego], [iqo])
1: [iuego] = [vi, ψi]

T =Get(DR measurements)
2: Prediction (in: [iuego] ; in out:[ixego] )
3: Track (in: [iqo], [

iuo] ; out: [iqo])
4: if New GNSS data is available then
5: ns= number of visible satellites
6:

[
ρ11, . . . , ρ

ns
1

]
=Get(GNSS measurements)

7: Good_Pr=∅
8: for j = 1, . . . , ns do
9: if (ρj is good) then

10: Add(ρj) to the Good_Pr list ([iygood])
11: end if
12: end for
13: SIVIAP (in: CSp , [iygood], ε, g; in out: [ixego])
14: end if
15: Communication(in: dataS; out: dataR)
16: Track_update(in: [oq]; out: [iqo])
17: Fusion(in out: [ib],[ob])

on the measurements of every satellite is performed. For every
pseudorange measurement, we check if the SNR (Signal to Noise
Ratio) of the satellite is high enough (e.g. 35 dB/Hz) and we perform
an innovation test based on a punctual estimate with the center of
the boxes. Afterward, we apply the SIVIAP algorithm presented in
[24] with the following modifications.

The considered solution is the hull box of X which is the union of the
inner X and the indeterminate ∆X subpavings as it is shown in Fig
3. In order to stop the bisections, we limit the computational time at
0.1 s for each epoch. In this case, the tolerable time communication
delay is about 100 milliseconds.

In our problem, the vehicles have well synchronized clocks using
PPS pulses of the GNSS receivers. The communication delays (line
15) are neglected.

The sent (dataS) and received (dataR) data at time instant k by each
vehicle have a unique identifier id in the group. The amount of the
transmitted information on the communication network is low, since
vehicles only exchange the lower and upper bounds of the boxes.

In line 16 of the algorithm, each vehicle i updates the tracked position
of the Ro by the received estimated position [iqo] := [oqego]. Finally,
Ri merges its estimated biases with the received ones from the other
vehicles Ro as follows [ib] = [ib] ∩ [ob].

IV. EXPERIMENTAL RESULTS

The results of two scenarios, Standalone (S) and Cooperative (C),
are reported to quantify the performance gain due to the cooper-
ation using the proposed SIVIAP distributed method. We compare
also the SIVIAP estimates with the ones of a rather conventional
Bayesian procedure implementing an EKF [17] and involving the
same processes: prediction/tracking, update, communication and fu-
sion. The GNSS measurement errors are time correlated and, when
doing sequential distributed estimation, the data fusion process that
estimates the biases of these measurements incorporate loops. This
induces a data incest problem. In the Bayesian framework, a usual
method to address this issue is to do the fusion of the biases by
using the Covariance Intersection (CI) operator, instead of the Simple
Convex Combination (SCC) which is valid only when the errors are

Variables Std. deviation

ρ(m)
R1

√
90000.10−SNR/10

R2 9

v(m.s−1)
R1 1e− 3

R2 2e− 3

ψ(rad.s−1)
R1 2.5e− 3

R2 5e− 3

Table I: Noises parameters used for the estimation methods.

uncorrelated. CI is known to provide consistent estimates even when
facing an unknown degree of inter-estimate correlation [25], [26]. In
the sequel, we denote by C-SIVIAP and C-EKF-CI the cooperative
set-membership and Bayesian methods, respectively.

A. Experimental setup

The different approaches have been tested with two experimental
vehicles (Fig. 2) and with the same data-set which was used in a
post-processed way. A low-cost U-blox 4T GPS receiver providing
raw pseudoranges measurements at 5Hz was used in each vehicle.
The extraction of broadcast satellite navigation data has been done
as follows. Conversion of U-blox navigation data into RINEX files
and generation of satellite raw pseudoranges with ionosphere, tropo-
sphere, satellite clock offset and time relativity classical corrections.
As the localization problem is studied in a local ENU (East-North-
Up) frame, the satellite positions, at their emission time, have be
transformed into the ENU frame.

In every vehicle, a PolarX Septentrio receiver was used in RTK mode
to provide ground truth data with heading ψ information. Indeed,
when the receiver is in motion, a GNSS receiver can calculate an
accurate track angle which is the measured angle from true North
in clock wise direction. When ground vehicles drive with low speed,
one can assume that track is equal to heading since slippage can
be neglected. A CAN-bus gateway was used to get the linear speed
v at 100Hz rate. The inputs used by the cooperative system are
u =

[
v ψ

]T .

10 satellites were in view during the test and 5 of them were at least in
common which satisfies the necessary condition of the observability
study discussed in section II-B. When 4 common satellites between
vehicles are not available, one should switch to standalone method.
The GPS satellite visibility was sometimes very constrained due to
buildings and trees near the test area. Vehicle R2 has more satellite
in view than vehicle R1 during the experiment due to its favorable
GNSS environments. The reported test was about 4 minutes long.
Fig. 4 shows a top view of the trajectories of both vehicles using the
(C) set-membership method.

The methods are compared with the same standard deviations param-
eters presented in Table I.

B. SIVIAP performance analysis

The distributed algorithm has been implemented in C++ using the
interval library IBEX [27] and with homemade functions. Fig. 4
shows the estimated position boxes of both vehicles. The displayed
solution is the hull box [X] of the union of the inner and indeterminate
subpavings: X ∪∆X.

Fig. 5 and 6 show the bounds of the position errors of the vehicles
respectively for the x and y dimensions using the (C) and (S)
methods. At a first glance, one can check the consistency of both
observers due to the fact that bounds contain always the zero value.
It means that the RTK reference position is always included in the
estimated boxes which indicates a good tuning of the observers.
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FIGURE 4: Trajectories of both vehicles when using C-SIVIAP. Reference
and position boxes are displayed. The mean speed of vehicles was
30Kmph. Every vehicle did several loops of its trajectory.
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FIGURE 5: Bounds of position errors of R1 centered on the reference.

Table II gives some performance metrics for both methods in term
of absolute Horizontal Positioning Error (HPE) and relative distance.
The Confidence Domain Size (CDS) of the resulting box is also
studied, it is computed with the box volume. The CDS is evaluated via
the Cumulative Distribution Function (CDF) of vehicles 2D boxes
volumes throughout the trajectory. A net improvement is obtained
for vehicle R1 in terms of accuracy and confidence. For instance,
the median of HPE is reduced from 1.43m to 0.89m and the
CDS is 66.4% condensed due to the cooperation since the 95th
percentile of the CDS is less than 475.3m2 compared to 1652m2

when using the S method. Concerning vehicle R2, the improvement
of HPE is not as significant as in R1 since contraction of boxes
can move away the center from the reference. The cumulative CDS
is 52.7% reduced since 95th percentile of the CDS is less than
256m2 compared to 541.4m2 when using the S method, which is
a substantial improvement.

Regarding the estimation of the relative distance, the method im-
proves the accuracy again trough the fusion of the biases estimates.
Especially, if we look at the median and standard deviation errors,
they are reduced by 42% and 20% respectively which is a significant
improvement.
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FIGURE 6: Bounds of position errors of R2 centered on the reference.

HPE R1 HPE R2 Estimated relative distance

Std. dev. (m)
S 2.28 1.58 2.87

C 1.71 1.53 2.58

Max (m)
S 5.77 5.55 8.27

C 6.21 4.30 8.87

Median (m)
S 1.43 1.83 4.93

C 0.89 2.31 3.23

CDS R1 CDS R2

95th percentile (m2)
S 1652 541.4

C 475.3 256

Table II: HPE, relative distance and CDS statistics.

The bias on every pseudorange has been initialized with the interval
[−30, 30] (in meters) giving no prior knowledge. For each subplot of
Fig. 7, the x axis expresses the number of samples, the y axis displays
every estimate (the center of the box) of the bias [bj ] with its bounds
in meters and j = 1, . . . , ns. Note that all subplots are truncated in
order to observe the convergence illustrated by the horizontal final
asymptotes. This convergence confirms the observability analysis.
The obtained final values of the biases are very common for low
cost GNSS receivers [28].

Other results illustrating more in details the behavior of the proposed
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FIGURE 7: Estimates and bounds of pseudoranges biases (units are
samples and meters).



C-SIVIAP method can be found in [29].

V. COMPARISON WITH DISTRIBUTED KALMAN FILTERING

The cooperative estimation of the biases has been implemented with
the CI data fusion operator [30]. Eq. (16) gives how the covariance
matrix and the state estimate are computed.{

P−1 = ωP−1
1 + (1− ω)P−1

2

x̂ = P · (ωP−1
1 · x1 + (1− ω)P−1

2 · x2)
(16)

The weighting factor ω ∈ [0, 1] has been chosen here to minimize
the determinant of the covariance matrix in order to get the smallest
uncertainty. The CI fusion provides a conservative and robust result
when correlation between two estimates x̂1 and x̂2 is unknown,
as often the case in distributed systems. However, the data fusion
algorithm is not optimal [31].
When using a cooperative Bayesian method based on Kalman fil-
tering, vehicles have to share also their estimated error covariance
matrix.
The C-EKF-CI has been implemented with exactly the same data as
the C-SIVIAP method.

A. Comparison criteria

The choice of good performance metrics is a key issue for assessing
a system and evaluating its application. For vehicle localization
systems, accuracy is an important metric which usually refers to
statistical figures of merit of the position error. These errors are built
with respect to ground truth. For instance, the 95th percentile of the
horizontal positioning error distribution can be chosen for accessing
the horizontal positioning accuracy. We also propose to evaluate the
system reliability by examining the consistencies of the filters. This
can be achieved by checking whether the estimated uncertainties
correspond to the physical reality of the errors. The confidence
bounds of estimated do mains also act as decision variables and
so are linked to the pessimism of a localization system. If the
confidence bounds are small while keeping the estimates consistent,
the localization system is considered to be not too pessimistic.
So, a good localization system is a system that provides adequate
confidence information and good HPE accuracy. In the following,
we use two criteria.
1) HPE: The HPE of both methods are defined below:

HPE =
√
e2x + e2y (17)

where ex = x̂− xref , ey = ŷ− yref . (x̂, ŷ) and (xref , yref ) repre-
sent respectively the 2D estimated position and the RTK reference.
For the C-SIVIAP method, the center of the estimated hull box
(xmid, ymid) is used as a punctual estimate.
2) CDS: The CDS needs to be assessed to check if the uncertainty
is well handled. To gauge this issue, the 2D Cartesian evaluation is
transformed in 1D problem by using a statistical distance computation
denoted k σHPE , where k is the chosen consistency risk according
to a χ2 distribution (for a 10−2 risk, k = 3.035 - this is a common
choice that is done here). The σHPE of a Bayesian method is given
by Eq. 18 [32].

σHPE =

√
1

uTe P
−1
HPEue

, with ue = (
ex
ey

)/
√
e2x + e2y (18)

ue is the unit vector supporting the HPE and PHPE is the estimated
matrix of the error covariance when using C-EKF-CI (see Fig. 8 for
an illustration).
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FIGURE 8: HPE and CDS illustration for C-EKF-CI.

FIGURE 9: HPE and k σHPE illustration for C-SIVIAP.

For the set-membership C-SIVIAP method, the same consistency
1% risk k has been considered when setting the bounds on the
pseudoranges:

[ρji ] = [ρji − kσρ, ρ
j
i + kσρ] (19)

where j represents the satellite index and σρ represents the standard
deviation of the pseudorange measurement presented in table I.

In way similar to the Bayesian method, the CDS of C-SIVIAP is
defined by a kσHPE segment in the direction of the HPE vector, as
shown by figure 9.

B. Accuracy analysis

Figure 10 depicts the cumulative distribution of HPEs of the both
aforementioned methods. 95% of the HPE errors for vehicle R1 are
less than 10.46m and 5.32m, respectively for C-EKF-CI and C-
SIVIAP. For vehicle R2 these figures are less than 7.64m and 4.41m
respectively. The accuracy gain of C-SIVIAP compared to C-EKF-CI
is 49.13% for R1 and 42.27% for R2. The set-membership approach
is clearly more accurate than the Bayesian one.

C. Consistency analysis

Let us consider now the filters consistency which is checked if the
CDS bounds actually the HPE i.e. HPE < kσHPE . Consistency
tests using HPEs are fundamental to provide suitable horizontal
protection levels (HPL) for cooperative vehicles [33].

Figure 11 presents 2D histograms in order to evaluate the consistency
of the two methods for vehicles R1 and R2. The horizontal and ver-
tical axis represent respectively the HPE and the CDS (i.e. k σHPE)
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Figure 10: Plots of the cumulative distribution function (CDF) of the
HPE produced by the two methods in the two vehicles.

computed for each navigation solution. Each pixel tabulates the total
number of occurrences of a specific (HPE, CDS) pair. Note that the
color scale is logarithmic. These histograms can be considered as
simplified Stanford diagrams since we are only interested in regions
where we have CDS>HPE and HPE>CDS. Points where the CDS is
under the HPE error indicate a failure of integrity. In this way, the
gray area corresponds to overconfident outcomes of the filters.

It appears from these results that the two methods are 100% consis-
tent since there is no point in the gray area. Therefore, C-EKF-CI
and C-SIVIAP methods are both reliable in the sense that the ground
truth is always included in the estimated confidence domain.

As confidence is in practice compared to a threshold to indicate “use”
or “don’t use” to the client application, it is important, in terms of
availability of the positioning information, to provide as small as
possible confidence domains. Let us look especially at the k σHPE
of both methods for each vehicle in figure 11.

It can be observed that the confidence domains produced by the C-
SIVIAP method are significantly tighter than the C-EKF-CI ones, in
particular for vehicle R2.

This indicates that the bounded-error method significantly reduces
uncertainties compared to a Bayesian method based on covariance
intersection fusion.

To resume the comparison analysis of the methods, the consistencies
of set-membership and Bayesian filters are achieved. Both methods
provide reliable confidence domains that contain the true positions
of vehicles. Reliability is quite important for navigation missions
in approach in order to avoid collision problem. However, the
cooperative set-membership method perform better than the Bayesian
one in terms of accuracy and uncertainty as it gives a significant
improvement of positioning accuracy and a good decrease of the
confidence domains.

If we look at performance comparison between the two vehicles when
using the set-membership method, it can be observed that the best
performance is obtained for vehicle R2 which has more accurate
positions (i.e, lower HPE) and less uncertainties (i.e, smaller CDS).
This is due to the fact that R1 has less satellites in view and its DR
sensors are of less good quality compared to vehicle R2.

VI. CONCLUSION

This work has presented a cooperative localization technique for
intelligent vehicles sharing GNSS common errors. It has been found
that at least 4 satellites and an auto-regressive model of the biases
are needed to keep the states observable which means that the
problem is solvable even if there is no fixed base station well located.
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FIGURE 11: simplified Stanford Diagram : Filters consistency when
using cooperative set-membership and Bayesian methods for R1 and R2.
(a) C-SIVIAP for R1, (b) C-EKF based on CI fusion forR1, (c) C-SIVIAP
for R2, (d) C-EKF based on CI fusion for R2.

The proposed cooperative bounded error approach based on set
inversion method with constraint propagation provides a significant
enhancement in terms of accuracy and confidence domains compared
to usual standalone methods.

The reuse of identical information (which are here the estimated
biases) in the fusion process is also naturally managed by a set-
membership approach. Such kind of method therefore deals correctly
with the data incest issue. Moreover, it handles rigorously the non-
linearities of the equations. We have also reported a performance
comparison of the interval method with a cooperative sequential
Bayesian approach based on Kalman filtering and on covariance
intersection fusion of the biases estimates. The experimental results
indicate that both methods give reliable confidence domains of
vehicles positions. However, the set-membership approach has the
advantage to provide more accurate positions with smaller confidence
domains. The key information deduced from this comparison is that
set-membership methods are very suitable for applications requiring
high integrity/accuracy in cooperative navigation contexts.

In future work, the robustness of the tuning of the proposed method
should be more deeply considered by conducting different tests.
This is important to address complex situations as urban canyons
where simultaneous multipath issues are frequent. Moreover, the
proposed algorithm has been designed to have a period higher that
the communication delay between vehicles. In a V2X network, the
transmission of real-time data with a guaranteed latency is not
possible (due to collision issues for instance). In this case, a solution
is to keep a time-stamped data buffer in each vehicle and to process
the data in a sliding time window after the received data have been
placed at the correct place in the buffer. The position is updated in
the past and propagated up to the current time.
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