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Abstract

Cooperation between road users trough V2X communication is a way to improve GNSS localization accuracy.
When vehicles localization systems involve standalone GNSS receivers, the resulting accuracy can be a�ected
by satellite-speci�c errors of several meters. This paper studies how road-features like lane marking detected by
on-board cameras can be exploited to reduce absolute position errors of cooperative vehicles sharing information
in real-time in a network. The algorithms considered in this work are based on a error bounded set membership
strategy. In every vehicle, a set membership algorithm computes the absolute position and an estimation of the
satellite-speci�c errors by using raw GNSS pseudoranges, lane boundary measurements and a 2D georeferenced
road map which provides absolute geometric constraints. As lane-boundary measurements provide essentially
cross-track corrections in the position estimation process, cooperation enables the vehicles to improve their
own estimates thanks to the di�erent orientation of the roads. Set-membership methods are very e�cient
to solve this problem since they don't involve any independence hypothesis of the errors and so, the same
information can be used several times in the computation. Such class of algorithm provides a novel approach
to improve position accuracy for connected vehicles guaranteeing the integrity of the computed solution which
is pivoting for automated automotive systems requiring guaranteed safety-critical solutions. Results from
simulations and real experiments show that sharing position corrections reduces signi�cantly satellite-speci�c
GNSS errors e�ects in both cross-track and along-track components. Moreover, it is shown that lane-boundary
measurements help reducing estimation errors for all the networked vehicles even those which are not equipped
with an embedded perception system.
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1. Introduction

Automated driving in city centres has the potential to reduce casualties and tra�c jams (Alonso , 2011)
-(Choi , 2015). Driving in high density tra�c and di�erent roadway infrastructures is a big challenge for
automated vehicles and requires the vehicle's pose and speed to be accurately determined. Standard GNSS
positioning (or standalone receiver positioning) is widely used in autonomous navigation but is not enough
accurate, particularly in urban areas because of the reduced visibility of the satellites. GNSS positioning alone
in constraints environments lacks of integrity even with multi-constellation receivers mixing GPS, Glonass or
Galileo systems. A solution is to complement this technology with other absolute sensor measures from the
vehicles in a data fusion approach. Indeed, a single sensor cannot provide the required level of performance,
as autonomous vehicles need not only accurate positioning but also some guaranty on the quality of the
computed solution. An new interesting solution is coming from V2X communication. Indeed, the data fusion
of multiple sources between vehicles data enables a vehicle to determine its position more accurately and with
more con�dence as it merges its own sensor data with data shared by other vehicles.
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In this paper, we present a new absolute positioning algorithm called Lane Boundary Cooperative Aug-
mented Set-membership GNSS Positioning LB-CASGP. This method uses shared GNSS corrections among
connected vehicles (inter-vehicles) and fuses local information (intra-vehicle) from GNSS, digital maps and
lane boundary detection. The solver relies on a bounded-error algorithm to improve estimation accuracy while
keeping a high level of integrity. This approach guarantees with respect to a chosen integrity risk that the real
vehicle position is included in the estimated set-membership domain, even if the equations are highly non-linear
and even if the same information is reused several times in the computation.

The research described in this paper makes the following contributions to existing literature. The proposed
LB-CASGP uses V2V/V2I communications to share GNSS di�erential corrections to all networked vehicles,
when subjected to the same satellite-speci�c GNSS biases (ionosphere, troposphere, satellite clock). The
algorithm generates di�erential corrections using data from connected vehicles, thus eliminating the need to have
stationary receivers at known locations. The sharing of GNSS di�erential corrections for the position estimation,
in a set-membership algorithm rather than in a classical iterative least square, is another contribution of this
paper.

The LB-CASGP algorithm guarantees integrity by assuring that the position, obtained after applying the
cooperative corrections, is inside a guaranteed risk integrity zone computed using a non-cooperative Lane
Boundary Augmented Set-membership GNSS Positioning (LB-ASGP). The zone computed using LB-ASGP
is constrained by geo-referenced lane boundary measurements and GNSS pseudoranges. The sensor fusion
approach exploits lane boundary measurements to improve cross-track vehicle positioning. The along-track
positioning error is also improved when using LB-CASGP and sharing cross-track errors among networked
vehicles.

The algorithm only requires a small size database of the infrastructure road network as lane boundaries are
described solely by "point-slope" data. The wireless communication bandwidth is quite small as the data to
be transferred is only composed by two �oating numbers per vehicle. Most of the existing data models used in
absolute positioning studies consider often more complex databases and transmit full constellation layout and
all satellites pseudoranges.

Simulations and real experiments were conducted to test the performance of the LB-CASGP algorithm, both
in terms of accuracy and integrity. This algorithms has been implemented with low cost sensors and extensive
comparative tests have been performed to evaluate its performance in comparison with the Set-membership
GNSS Positioning algorithm (SGP) proposed in (Drevelle , 2009).

2. Related Work

Augmenting GNSS localization with other sensory information to improve the positioning accuracy is
common in the context of intelligent vehicles (Toledo-Moreo , 2010)(Sun , 2015). In (Drawil , 2010), N.M. Drawil
developed a V2V communication assisted localization. This localization technique takes advantage of the
fact that GNSS receivers operating in close proximity and observing the same constellation of satellites have
strongly correlated errors. These errors are largely canceled when a relative positioning system is taken into
consideration. M. Woo, et al. (Woo , 2001) used V2V, GNSS and the distance among vehicles given by
a vision and/or ranging sensor to compute a relative vehicle positioning. Although many current relative
vehicle positioning methods are su�cient for platooning, their performance is not high enough to implement
autonomous driving. GNSS accuracy is often enhanced by using carrier phase measurements (RTKGPS) and
real-time corrections (Williams , 2012). G. Challitasing, et al. (Challita , 2009) used V2V communications,
RTKGPS and a vehicle to vehicle ranging system (vision-based ranging system) for absolute positioning.
Although this con�guration is more performant, the RTKGPS system employed is expensive and therefore
not available for massive vehicle distribution.

An algorithm to detect multi-lane marks, including driving lane marks and adjacent lane marks is presented
in (Hur , 2013). This algorithm is able to detect multi-lane marks successfully in the absence of parallelism,
thus enabling the algorithm to manage various non-parallel lane situations, such as are found at intersections, in
splitting lanes, and in merging lanes. An approach taken for outdoor absolute positioning is presented in (Rife ,
2010) and (Rife , 2012), where vehicles determine their positions in a cooperative way, by fusing their own sensor
data with data shared by other users via a common communication network. These papers present cooperative
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navigation algorithms to increase the accuracy of vehicle positioning via the sensor information sharing through
a V2V network. In (Rife , 2010) the algorithm generates GNSS di�erential corrections from a set of GNSS
equipped vehicles by fusing GNSS measurements with a camera-based lane-boundary sensor. The results
show that it is possible to generate an error-free di�erential correction that estimates the projection into the
ground plane of the satellite-speci�c GNSS biases (ionosphere, troposphere, satellite clock) experienced by all
collaborators in a local area. The bene�ts of the proposed method are more noticeable when the density of users
is high. In (Rife , 2012), an algorithm for di�erential GNSS corrections with no stationary reference receiver is
proposed. The algorithm generates di�erential corrections using data from moving vehicles, thus eliminating the
need for an infrastructure of stationary receivers. This algorithm generates individual di�erential corrections
for each satellite, shared among vehicles with di�erent satellites in view. Results show that measurements
sharing improves signi�cantly the positioning accuracy in the cross-track and in the along-track direction.

The knowledge of localization uncertainties is of prime importance when the navigation of intelligent vehicles
has to deal with safety issues. To quantify the localization con�dence V. Drevelle et al. (Drevelle , 2009)
(Drevelle , 2013) developed several algorithms based on interval analysis and constraint propagation. The
developed algorithms can handle several hypotheses in cases of ambiguous solutions simply by computing
disconnected solution sets and are able to compute location zones in which the user is guaranteed to be
located. A set-membership based satellite positioning aided by height data from a digital elevation model
(DEM) for high integrity was developed in (Drevelle , 2009). The integrity zone is computed recursively using
a set-inversion method in a bounded-error context through set-bisection. Results show that the additional
altitude information enabled more precise positioning while tolerating GPS outliers, especially with a small
number of visible satellites. In (Drevelle , 2013), the algorithm has been enhanced with two stages. On a
�rst stage, tightly coupled position domains are computed by constraint propagation on GNSS measurements
and a precise 3D maps of the drivable space. A second stage provides localization integrity and information
availability by the use of a position and proprioceptive data history. Results show that the algorithm is able to
handle erroneous positions with a chosen integrity risk and, in the reported experiments carried out in urban
canyons with bad satellite visibility, a full positioning availability has been obtained with errors smaller than
5.1 m during 95% of the trials.

3. Theoretical Background

3.1. GNSS Pseudoranges

A satellite-receiver pseudodistance, from satellite s to receiver r, is obtained using binary sequence codes
or carrier phase. Pseudorange measurements are a�ected by di�erent physical phenomena that cause a delay
in the propagation time of the signal. The main system error sources are: ionospheric Isr and tropospheric T sr
biases along the signal path; satellite orbit estimation (or ephemeris) error Es and satellite clock o�set δts.
The most signi�cant receiver dependent error source that a�ects also the pseudorange measurement is mainly
linked to the accuracy of the receiver clock o�set δtr estimate. Isr is generated as the signal passes through
the upper layer of the atmosphere. The gases therein are ionized by solar radiation, resulting in an increase of
the propagation time of the signal. The error introduced can be up to 50 m for low elevation satellites. The
tropospheric T sr delay is mainly caused by water vapor, and it ranges from 2.5 m at the zenith to 15 m for low
satellite elevations. All other error sources, such as relativistic errors, di�use multipath and thermal noise are
lumped in the εsr.

A pseudorange measurement based on a coarse/acquisition (C/A) binary sequence code has typical errors
at a meter scale and it is linked to the user position by the following equation (Kaplan , 1996):

ρsr = rsr + c · (δtr − δts) + Isr + T sr + Es + εsr (1)

where c is the speed of light in the vacuum.
The geometric range rsr from receiver r to satellite s is given by:

rsr =
√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2 = ‖xs − xr‖ (2)
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Figure 2: Compact set X: bracketed between an inner subpaving
X and an outer subpaving X, where X is given by X = X+ ∆X.

where x = (x, y, z). xr and xs denote the position vectors of the receiver at the observation epoch (signal
reception time) and of the satellite at the emission time, respectively. By converting the clock o�set to distance
units cor and lumping all errors into vsr , one obtains:

ρsr = ‖xs − xr‖+ cor + vsr (3)

Using satellite positions and at least four measured pseudoranges, one can compute an estimate for both
the receiver position xr and the receiver clock o�set cor, via iterative nonlinear least squares (Kaplan , 1996).

3.2. Lane Boundary Absolute Measurements

Additional absolute measurements can be used to reduce the estimation error of the receiver position x̂r

and the receiver clock o�set ĉor. Geographic Information Systems (GIS) combined with lane-boundary sensors
can provide additional absolute measurements. let us consider for simpli�cation that the lane-boundary sensor
is collocated with the GNSS receiver (see Figure 1).

Lane-boundary sensors only provide the distance to a line, i.e. the location along the lane boundary line is
unde�ned. If the observed road is composed by a single straight line segment, the cross-track distance dlb to
the lane boundary is unambiguous and can be expressed by:

dlb = ut,r
T · (xr −Rr) + εlbr (4)

where Rr is the reference point of the lane frame {ut,r;ur,r}, ut,r is the cross-track unit vector and εlbr
models the lane-boundary sensor measurement errors.

3.3. Set inversion

Iterative least squares (Kaplan , 1996) are widely used for vehicle positioning. Set-membership methods
solve the inversion problem in a di�erent way. Interval analysis (Jaulin , 2001) involves intervals and their
multidimensional extension, interval vectors (or boxes). A box is a subset of Rn de�ned as the Cartesian
product of n intervals [x] = [x,x]. The set of real intervals is denoted IR and the set of n-dimensional boxes
is IRn.

Let f : Rn → R
m be a given function. The interval function [f]: IRn → IR

m is an inclusion function for f
if

∀[x] ∈ IRn, f([x]) ⊂ [f]([x]) (5)

To approximate compact sets in a guaranteed way, sub-pavings are used. A sub-paving of a box [x] is the
union of nonempty and non-overlapping sub-boxes of [x]. A guaranteed approximation of a compact set X can
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be made by bracketing it between an inner sub-paving X and an outer sub-paving X such as X ⊂ X ⊂ X (see
Figure 2).

Given a known interval vector Y of m measurements, the set inversion problem consists in determining the
set X, such that f(X) ⊂ Y, where Y ⊂ Rm (Tornil-Sin , 2010):

X = f−1(Y) = {x ∈ Rn|∃y ∈ Y, f(x) = y} (6)

Given a arbitrarily large superset X0 where the solution set is known to belong an outer approximation
X can be computed using the Set Inversion Via Interval Analysis (SIVIA) algorithm (Jaulin , 1993). Feasible
boxes are added to the inner sub-paving X of solutions, a box [x] is feasible if [f]([x]) ⊂ Y. Unfeasible boxes
are discarded since they contain no solution. A box [x] is unfeasible if [f]([x]) ∩ Y = ∅. Indeterminate boxes
are bisected into two sub-boxes waiting to be examined. A box [x] is indeterminate if [f]([x]) intersects but is
not included in Y. Algorithm termination is ensured by adding indeterminate boxes whose width is less than ε
to the sub-paving ∆X of indeterminate boxes. Since we are seeking to characterize the positioning con�dence
domain, we only need to compute the outer sub-paving X of the set that ful�lls positioning constraints. Thus,
the outer sub-paving is X = X + ∆X (see Figure 2). Several special functions of interval computations are

used throughout this paper, namely the midpoint or centre of an interval is given by mid(X) = X+X
2 , the

width of an interval is de�ned as wid(X) = X −X and the magnitude of an interval is computed as follows
mag(X) = max

(
|X|, |X|

)
.

3.4. Measurement bounds setting
If one wants to compute a con�dence domain with a constant risk whatever the number of measurements,

what is particular with bounded error methods is that the measurement bounds have to be chosen before every
new computation. Indeed, these bounds are computed taking into account the global risk R and the number
of tolerated spurious pseudoranges.

The probability of having at least m− q good measurements is:

Pr(Nok ≥ m− q) =

m∑
i=m−q

m!

i!(m− i)!
· (1− r)i · (r)m−i (7)

If there are no spurious pseudoranges (i.e. q = 0), the SIVIA algorithm computes an outer approximation
X of the solution set X which is guaranteed to be consistent with the true position x. The maximum risk r
that can be assumed on each pseudorange interval, for a global risk R, is given by:

Pr(x ∈ X) ≥ Pr(Nok ≥ m− q)
Pr(x /∈ X) ≤ 1− Pr(Nok ≥ m− q)

R ≤ 1−
∑m

i=m−q
m!

i!(m−i)! · (1− r)
i · (r)m−i

(8)

Once the maximum risk r of each measurement interval to not contain the actual value is computed,
the measurement error bounds can be set to meet this requirement. A centered Gaussian distribution with
a variance σ2 is used here as the error measurement model to set the error bounds on each pseudorange
measurement ρsr: {

[ρsr] = [ρsr − ασ, ρsr + ασ]
α = −Φ−1( r2)

(9)

where Φ is the cumulative distribution function of the standard normal distribution. This method leads to set
the same amount of risk taken on each tail of the pseudorange Gaussian distribution.

4. Position Estimation Algorithms

The procedure involved in determining the receiver position consists in �nding the set of positions compatible
with the measurements and their associated bounded-error. Set-inversion methods (Jaulin , 2001) used to solve
the problem of set-location do not add any risk, i.e. it is guaranteed not to lose solutions in the calculation.
The risk that the interval does not contain the true position depends only on the risk that the selected intervals
for the measures do not contain the true value.
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4.1. Set membership GNSS Positioning

The Set membership GNSS Positioning (SGP) method (Drevelle , 2009) consists in �nding a location
zone given uncertainty on satellites observations and satellites positions. GNSS absolute positioning requires
satellites observations ρsr as well as their positions xs = (xs, ys, zs) at the time of transmission. Satellite
positions are known with uncertainty. Therefore, for set-membership positioning, each satellite position is
represented as a box [xs] = ([xs], [ys], [zs]) whose bounds are chosen to contain the true satellite position
at a given con�dence level. As mentioned in Section 3.1, pseudorange measurements being inaccurate for
set-membership positioning, so pseudorange measurements are modelled as intervals [ρsr] whose bounds are
determined given a chosen risk.

As there is a receiver clock o�set, GNSS positioning is a four-dimensional problem and at least four sa-
tellites observations are necessary to estimate the GNSS receiver position. The GNSS receiver position zone
computation consists in �nding the set X of all locations compatible with the m available measurements and
the corresponding satellite positions which are also manipulated as boxes:

XSGP = {(xr, yr, zr, cor) ∈ R4|∀s = 1 · · ·m,∃ρsr ∈ [ρsr],

∃(xs, ys, zs) ∈ [xs], ρsr = ‖xs − xr‖+ cor}
YSGP = ([ρsr], [x

s])

(10)

The subpaving X has a dual nature. It may be seen as a subset of R4 and it also can be viewed as a �nite list
of boxes [X] (Jaulin , 2001). In order to be useful, for instance to a path following controller, a punctual 2D
position vector has to be estimated. The resulting set is not only composed of 3D boxes as it includes the clock
o�set cor, making it a 4D set. Boxes in the subpaving do not have all the same size (see Figure 2). Therefore,
a solution to provide punctual estimation with the 4D set is to compute for each of the 4 dimensions, the mean
of the geometric center of all boxes weighted by the volume of each box. In a single-frequency GNSS navigation
solution with raw observations, the cor is dominant over atmospheric residuals and noise. A more accurate
solution of the 3D punctual location estimate is therefore to compute the 3D the mean of the geometric center
of all boxes weighted by two parameters. First, the contribution of a box to the �nal solution is weighted by
its width Second, the weight is also a function of the cor of each box. The weight of a box to the �nal solution
decreases as its punctual estimate of the clock o�set is far from the weighted average ĉor.

Given ([X] = ([xr], [yr], [zr], [cor])), a punctual estimate of ĉor can be computed by using the center of
gravity of the X(4) component, for all n boxes:

ĉor =

∑n
k=1 (mid(Xk(4)) ·wid(Xk(4)))∑n

k=1wid(Xk(4))

∣∣∣∣∣ ∀[Xk(4)] ∈ X ∧ n = #X (11)

where #X is the number of boxes belonging to the subset and
∑n

k=1wid(Xk(4)) is the normalisation term.
The estimated 3D position vector x̂r = (x̂r, ŷr, ẑr) is obtained by computing the center of gravity of the

sub-paving, weighted by the value of the estimated receiver clock o�set ĉor of each sub-paving:

x̂r =

∑n
k=1 (mid(Xk(i)) ·wid(Xk(i)) · Cwf (k))∑n

p=1wid(Xp(i))

∣∣∣∣∣ ∀[Xk(i)] ∈ X ∧ n = #X ∧ i = 1, · · · , 3 (12)

where
∑n

p=1wid(Xp(i)) is the sum of all boxes lengths along i axis and Cwf is the ĉor weighting factor:

Cwf (k) =
1− ||mid(Xk(4))|−ĉor|

|mag(X(4))−ĉor|∑n
j=1

(
1− ||mid(Xj(4))|−ĉor|

|mag(X(4))−ĉor|

) ∣∣∣∣∣ ∀[Xk(4)] ∈ X ∧ n = #X (13)

The �nal 2D position [xr, yr] estimate is determined by projecting onto a �at plane the 3D solution x̂r.

6



4.2. Lane Boundary Cooperative Augmented set membership GNSS Positioning (LB-CASGP)

Lane-boundary measurements can provide corrections to improve the position estimate of a single receiver
using LB-ASGP, but an improvement by means of a cooperative vehicle positioning (LB-CASGP) can be
achieved by sharing this corrections among vehicles.

With the assumption that the model and the measurement errors are bounded, both GNSS pseudoranges
and lane-boundary data can be fused by using a set-inversion approach in such a way that all the results are
guaranteed (Drevelle , 2009). Given the road network information provided by a GIS database, a constraint
represented by the cross-track vector can be applied to a box [x]. To apply this constraint, the road network
information is �rst transformed into the coordinate system used in the GNSS, i.e. convert from local-level-
tangent ENU (East North Up) coordinates to WGS-84 (World Geodetic System 1984) ECEF (Earth-Centered,
Earth-Fixed) Cartesian coordinates.

The cross-track vector is represented as a box [ut,r] whose bounds are chosen to contain the true cross-track
vector. The measurement inaccuracy of the perpendicular distance given by the lane-boundary sensor with
respect to the lane boundary is modelled as an interval [dlb] whose bounds are determined according to the
lane-boundary sensor characteristics. Intervals are used to express the uncertainties of the information stored
in the GIS database and measurement inaccuracies of the lane-boundary sensor.

The search area is expanded on the horizontal plane de�ned by the road segment. The set-membership
GNSS positioning location set X is then reduced after contraction which removes every location area not
compatible with the lane-boundary sensor measurements:

XLB−ASGP = {(xr, yr, zr, cor) ∈ R4|∀s = 1 · · ·m,∃ρsr ∈ [ρsr],

∃(xs, ys, zs) ∈ [xs],∃ut,r ∈ [ut,r], ∃dlb ∈ [dlb],∣∣∣∣ ρsr = ‖xs − xr‖+ cor
dlb = ut,r

T · (xr −Rr)

}
YLB−ASGP = ([ρsr], [x

s], [ut,r], [dlb])

(14)

The method LB-CASGP uses the SIVIA algorithm to obtain both xri,SGP and xri,LB−ASGP. Given an
arbitrarily large superset X0 where the solution set is known to belong, an outer approximation X is computed.
A box [x] is added to the inner subpaving X of solutions if [f]([x]) ⊂ Y.

Algorithms 1 and 2 resumes the proposed method (LB-CASGP), where the functions f to invert are given
by:

fSGP =
{
ρsr = ‖xs − xr‖+ cor (15)

and

fLB−ASGP =

{
ρsr = ‖xs − xr‖+ cor
dlb = ut,r

T · (xr −Rr)
(16)

As observed in Figure 3, the LB-CASGP (Algorithms 1 and 2) solves simultaneously three problems, two set
inversion problems (LB-ASGP and SGP) and the satellite speci�c corrections (ssc) [Cssc] = [CN,ssc;CE,ssc].

When using LB-ASGP, a 2D estimate of the GNSS ith receiver x̂ri,2D,LB−ASGP and an estimate of the o�set
along the lateral direction of the road Ci,LB−ASGP are obtained. From an initial searching volume X0, it is �rst
found the set XSGP of all locations compatible with the measurements [ρsr] and the satellite position intervals
[xs] using function fSGP. Starting with theXSGP computed previously and using function fLB−ASGP, it is com-
puted the set XLB−ASGP of all locations compatible with the measurements [ρsr], the satellite position intervals
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[xs], the cross-track vector [ut,r] and the lane boundary [dlb].

Algorithm 1: [x̂r,2D,LB−CASGP;Ci,LB−ASGP] = CASGP_LB
([fSGP], [fLB−ASGP],YSGP ,YLB−ASGP ,X0,Cnet,LB−ASGP)

L← root(X0)
x̂r(1) = PPE ([fSGP],YSGP ,L)
x̂ri,2D,SGP = [x̂r,2D, ŷr,2D] = x̂r(1)×PXY

if WithLaneSensor then
x̂r(2) = PPE ([fLB−ASGP],YLB−ASGP ,L)
x̂ri,2D,LB−ASGP = [x̂r,2D, ŷr,2D] = x̂r(2)×PXY

Ci,LB−ASGP = ut,ri × ([x̂r(2)− x̂r(1)]×PXY)
end if
[Cssc] = [CN,ssc;CN,ssc]← equation (18)

if WithLaneSensor then
x̂ri,2D,LB−CASGP = x̂ri,2D,LB−ASGP + ur,r ×
[CN,ssc;CE,ssc; 0]

else
xri,2D,LB−CASGP = xri,2D,SGP + [CN,ssc;CE,ssc; 0]

end if

Algorithm 2: [x̂aux,r] = PPE ([f ],Y,L)
Point Position Estimation function

[X,∆X] = SIV IA(f ,Y,L)
X = X+ ∆X
L← X

ĉor ← equation (11)

for k=1 to n do
Cwf (k)← equation (13)

end for
for i=1 to 3 do
x̂aux,r(x̂aux,r, ŷaux,r, ẑaux,r) ← equation

(12)

end for

Using sets XSGP and XLB−ASGP , the 3D position estimate of the GNSS ith receiver x̂ri,LB−ASGP is
obtained by computing the center of gravity of the sub-paving, weighted by the value of the estimated receiver
clock o�set ĉor of each sub-paving. An estimate of the vehicle 2D position x̂ri,2D,LB−ASGP is achieved by
projecting the 3D position estimate x̂ri,LB−ASGP onto the XY plane.

Lane-boundary constraints can further improve the performance of the set-membership GNSS location zone
determination, if satellite-speci�c errors estimations obtained using lane-boundary are share among connected
vehicles. LB-CASGP is a decentralized algorithm and it uses cross-track corrections shared among networked
vehicles in order two improve the along-track vehicle position.

The component of the satellite-speci�c errors which causes the ith receiver position estimate to su�er
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from an o�set in the cross-track direction to the lane boundary (Ci,LB−ASGP) is estimated in LB-ASGP.
The Ci,LB−ASGP is obtained by taking into account only the cross-track component that has shifted the
estimated position computed using the SGP algorithm to the estimated position computed using LB-ASGP.
Each vehicle equipped with a lane-boundary sensor shares its correction to the networked vehicles. Given the
position estimates of vehicle i given by the SGP algorithm x̂ri,SGP = [x̂ri,SGP , ŷri,SGP , ẑri,SGP ] and by the LB-
ASGP algorithm x̂ri,LB−ASGP = [x̂ri,LB−ASGP , ŷri,LB−ASGP , ẑri,LB−ASGP ], the cross-track component error
of a single vehicle is obtained by di�erencing both estimates and computing the vector along the cross-track
direction:

Ci,LB−ASGP = ut,ri × ([xri,LB−ASGP − xri,SGP]×PXY) (17)

where i = 1...n for n lane-boundary equipped vehicles.
The cooperative North (global Y-axis coordinates) and East (global X-axis coordinates) correction estima-

tion w.r.t. to global coordinates, are respectively given by CN,ssc and CE,ssc. They are computed using the
least square estimation of all correction estimation vectors of each vehicle Ci,LB−ASGP.

[
CN,ssc
CE,ssc

]
= (ATA)−1AT

 C1,LB−ASGP

...
Cn,LB−ASGP

 (18)

where PXY is the projection matrix onto the XY plane, and A is given by:

A =

 ut,r1
...

ut,rn

 (19)

It was chosen to compute a punctual estimate of [Cssc] by using least squares to avoid transferring between
vehicles large amounts of data, i.e. avoid the broadcast of all boxes belonging to the solution set of each
vehicle using SGP and LB-ASGP. This decentralized solution has a minimal data transfer as it only requires
the reception of Ci,LB−ASGP and ut,ri from the vehicles equipped with lane-boundary sensors. Those vehicles
have a good cross-track accuracy and a poor one in the along-track direction. Therefore, position estimates
using LB-CASGP algorithm for vehicles equipped lane-boundary sensor, are only corrected (w.r.t. LB-ASGP)
along the along-track component ur,r using the shared corrections:

x̂ri,2D,LB−CASGP = x̂ri,2D,LB−ASGP+

ur,r × [CN,ssc;CE,ssc; 0]
(20)

For vehicles not equipped with lane-boundary sensors, the shared corrections are applied in both cross-track
and along-track components:

x̂ri,2D,LB−CASGP = x̂ri,2D,SGP−LB + [CN,ssc;CE,ssc; 0] (21)

When all vehicles are collinear no solution can be obtained since there is a singularity. In this situation,
the position estimate of LB-CASGP is given by, xri,2D,LB−CASGP = xri,2D,LB−ASGP, i.e. the solution is
standalone without any cooperative information.

5. Results

To analyze the performance of the proposed set-membership positioning algorithm, simulations and real
experiments are reported. Figure 9 shows the trajectory followed by all vehicles and position estimation for all
presented algorithms, tested in simulation (Figure 9(a)) and in real experiments (Figure 9(b)).
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Figure 4: Setup: (a) Simulation environment - 7 vehicles simulated road network with starting vehicle positions and headings,
vehicle x-axis and y-axis represent along-track and cross-track directions respectively; (b) Simulation - Zoomed trajectory and
position estimation for vehicles 2 and 4. Vehicles 2 and 4 travel in a road lane parallel to the Y-axis local coordinates system Σ.
Vehicle 2 is rotated by π/2 with respect to Σ. Vehicle 4 is rotated by 3π/2 with respect to Σ. The two vehicle's y-axis have opposite
directions, leading to a positive lateral error for vehicle 2 and a negative lateral error for vehicle 4 in each vehicle local frame. This
satellite constellation con�guration generates an error with the major axis along the negative direction of the Σ X-axis; (c) Real
Experiment - instrumented vehicles used in the tests;

5.1. Simulation Setup

ISR-TRAFSIM 4.0 has been used as the simulation environment (available at:
http://www.isr.uc.pt/ conde/isr-trafsim/). It is an open-source Matlab-based simulator and it has been used
in di�erent studies such as automatic tra�c control, vehicle emissions analysis (Bento , 2013), vehicle path-
following control (Nunes , 2007) and sensor fusion for vehicle awareness. Seven vehicles traveling on an urban
road network have been simulated (see Figure 4(a)(c)). Each vehicle is marked with a pair of coordinate axes
indicating local along-track and cross-track directions. All vehicles are equipped with V2V communications,
but only vehicles 1-6 are equipped with lane-boundary sensor.

The GPSoft (Tetewsky , 1998) software was used to emulate the GNSS system, namely the USA GPS
constellation (Kaplan , 1996). The GPSoft Toolbox emulates not only satellites and receivers but also the
propagation channels. Error sources such as thermal noise, multipath, atmospheric delays and Selective Avai-
lability are modelled as an integral part of pseudorange and integrated Doppler emulation. Furthermore, the
errors are emulated such that the proper temporal and spatial correlation e�ects are observed in the measure-
ments. This allows for realistic modelling of both code DGPS and carrier-phase RTKGPS in addition to usual
stand-alone positioning algorithms. GPSoft also enables emulation of Galileo, GEOs, GPS and GPS Moderni-
zation (C/A-code on L1, L2 and L5) as well as dual-frequency P-code measurements. The user can emulate
signals on additional carrier frequencies de�ned by the user. The satellite constellation emulator supports GPS
and Glonass as well as user-de�ned constellations. In addition, YUMA-format broadcast almanacs can be used.
The emulation of C/A and P-code pseudorange and integrated Doppler with user de�nable civil and military
carrier frequencies is available including characteristics such as thermal noise, ionospheric delay, tropospheric
delay and di�use multipath (Tetewsky , 1998).

In this paper, the satellite-receiver distance from the satellite s to the receiver r is measured using C/A-L1
code. As mentioned earlier, GNSS pseudoranges are a�ected by several types of error. The daily behavior of
the ionospheric delay has been emulated using a half cosine function of the local time during daytime and by
a constant level during nighttime, scaled by a satellite elevation factor. The average ionospheric injected error
is 4 meters. No scintillation events have been introduced and the daytime total electron content is bounded
by [4× 1017; 1.6× 1018]. The emulated tropospheric delay ranges from 3 meters for a satellite at zenith to 25
meters for a satellite at 5 degrees elevation. A white noise is passed through a �rst-order Butterworth low-pass
�lter to generate the code di�use multipath error of zero-elevation angle, which is scaled by the cosine of the
true satellite elevation angle before it is applied to the range measurement. The standard deviation of pseudo-
range di�use multipath errors at zero-elevation is 1.6 meters. A di�erent uncorrelated di�use multipath error is
generated for each satellite and receiver (Kaplan , 1996). The standard deviation of the thermal noise is 1 meter.
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Table 1: Pseudorange intervals risk r and α error

bounds as a function of the number m of measure-

ments

m 4 5 6 7

r 0.25 ·10−4 0.20 ·10−4 0.17 ·10−4 0.14 ·10−4

α 4.21 4.26 4.31 4.34

m 8 9 10 11

r 0.13 ·10−4 0.11 ·10−4 0.10 ·10−4 0.09 ·10−4

α 4.37 4.39 4.42 4.44

Table 2: Satellite constellation bias on vehicle coor-

dinates and vehicle orientation

Vehicle Vehicles
Coordinates 1 2 3 4 5 6 7

X-axis
−− + ++ − −− ++ −
− + − +

Y-axis
+ ++ − −− + − ++

+ − +

θr 0 π/2 π 3π/2 0 π π/4

For a global risk R = 10−4 and given the current number m of measurements, the pseudorange intervals
risk r and the error bounds α are computed thanks to equations (Drevelle , 2009) and (Drevelle , 2013). The
intervals [ρsr] = [ρsr − ασ, ρsr + ασ] are given in Table 1 for up to 11 satellites. The lane-boundary sensor error
was assumed to have a standard deviation of σlb = 0.25m and the lane-boundary interval was set to contain
95% of the measurements, i.e. 2× σlb.

The satellite constellation setup produced a bias in the negative direction of the local frame X-axis (denoted
by − − −) and a very small bias in the positive direction of the Y-axis (denoted by +). In other words, this
satellites constellation con�guration generates an error with the major axis along the negative direction of the
local coordinates X-axis (see Figure 4(c)).

Table 2 presents the a qualitative evaluation of the satellite constellation setup bias on each vehicle coordi-
nates, e.g. vehicle 1 axis are aligned with local coordinates, therefore the satellite constellation setup bias on
vehicle 1 coordinates has the same direction and signal as local coordinates.

5.2. Experimental Setup

Standard road vehicles equipped with the same experimental setup have been used on real tests (see
Figure 4(b)). The used test site allows to de�ne a huge variety of paths. The surrounding environment is
made of trees and buildings. Four ublox LEA-6T have been used as embedded GPS-receivers. This kind
of receiver enables easy vehicle integration, have a standard communication interface and provides raw-data
which are necessary for the pseudoranges processing. The ground-truth setup was a high performance RTK-
GPS system TOPCON HiperPro, able to provide positioning solutions with centimeter accuracy. The master
antenna �xed station (MAFS) used by the RTK-GPS used data obtained through a SERVIR project facility
which consists on a military network of permanent reference GNSS stations capable of providing raw-data
observations and corrections for real-time RTK or post-processed PPK. During the experiments, one of these
stations (SERVIR - Station 9 ) gathered all the necessary conditions to be used as MAFS: short distance to
the test site, no multipath or electromagnetic interference sources nearby and no signal obstruction caused by
trees or higher buildings. The lane-boundary measurements were obtained using the RTK-GPS with a 25 cm
additional Gaussian error. Therefore, the global accuracy of the lane boundary measurement is in the order
of the accuracy of a classical lane detection camera (Gat , 2005).

5.3. Set-membership GNSS positioning (SGP)

When using a set-membership GNSS method, an important focus is on the characterization of domains
which contain the solution rather than the search of a punctual result which might be misleading and with
no associated con�dence information. In this work, the unknown variables are (xr, yr, zr, cor). The initial
searching volume was set to 27×106[m3] which is an arbitrarily high value with little impact on the processing
time.

Figures 5 and 6 present results of the distributions of the lateral (a) and longitudinal (b) error, for the
simulation and the real experiments respectively.

From the simulation results depicted in Figure 5, it is possible to observe the bias along both X-axis and
Y-axis local coordinates. The negative bias along the local coordinates X-axis (i.e. this satellite constellation
con�guration generates along local coordinates X-axis a predominant negative error) can be easily seen through
SGP lateral error of vehicles 2 and 4 and SGP longitudinal error of vehicles 1, 3, 5 and 6. The simulated vehicles
2 and 4 travel in a road lane parallel to the local coordinates Y-axis (see Figure 4(a)).
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Figure 5: Simulation - normalized positioning error distribution, for all trajectory path for vehicles 1 to 7, using SGP and
LB-CASGP estimation: (a) lateral, (b) longitudinal.

The small positive bias along the local coordinates Y-axis is not easy to observe on Figure 5. The absolute
mean lateral error value along the local coordinates X-axis of vehicles 1, 3, 5 and 6 is therefore small, as well as
the absolute mean longitudinal error value along the local coordinates Y-axis of vehicles 2 and 4 (see Table 3).

Regarding the real experiments results, from Figure 6 it is not possible to observe a predominant axis error,
since the paths followed by all the vehicles have a closed loop shape. The absolute mean lateral and longitudinal
error of (SGP) for all the vehicles is quite moderate (see Table 3).

Figures 7 and Figure 8 display the normalized positioning lateral (top), longitudinal (center) and 2D euc-
lidean (bottom) errors distributions with their associated cumulative distribution functions, for the simulated
and real experiments respectively. The dashed line with 'k' markers represents the position errors using (SGP).

From the simulations results given in the top subplots of Figure 7 and in Table 3, one can observe that
the algorithm has a very small mean lateral and longitudinal error distribution and a high standard deviation
σ. This distribution pro�le is due to the fact that vehicles traveling in di�erent directions have opposite error
signals (see Figure 4(c)). The cumulative distribution 3σ boundary of the lateral positioning error for SGP
algorithm is very high meaning that the positioning method is rather inaccurate most of the time.

From the center subplots of Figure 7 and in Table 3, one can observe that the standalone algorithm has nearly
a zero mean longitudinal bimodal error distribution and a high standard deviation σ. This distribution pro�le
is due to the fact that vehicles traveling in di�erent directions have opposite error signals (see Figure 4(c)).
The cumulative distribution 3σ boundary of the longitudinal positioning error for SGP algorithm is very high.

The bottom subplots of Figures 7 present the 2D euclidean error distribution. The cumulative distribution
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Figure 6: Real Experiments - normalized positioning error distribution, for all trajectory path for vehicles 1 to 4, using SGP and
LB-CASGP estimation: (a) lateral, (b) longitudinal.

Table 3: Error analysis for all vehicles.

Error [m]
Lateral Longitudinal Euclidean

[
∑N
i=1

‖LATi‖
N

mean σ 3σ [
∑N
i=1

‖LONi‖
N

mean σ 3σ mean σ 3σ

vehicles [1,3,5,6] [2,4] [1-7] [1-7] [1-7] [1,3,5,6] [2,4] [1-7] [1-7] [1-7] [1-7] [1-7] [1-7]

Sim.
SGP 0.372 1.558 0.204 1.27 3.300 1.494 0.349 -0.092 1.402 3.187 1.803 0.624 3.633
LB-CASGP 0.568 0.592 0.024 0.705 2.248 0.552 0.572 0.023 0.849 2.690 0.968 0.531 2.712
vehicles [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4]

Real
SGP 0.702 0.701 4.367 13.45 0.301 -0.234 4.301 12.38 5.324 3.125 13.95
LB-CASGP 0.049 0.003 0.734 3.617 0.453 -0.332 2.109 10.30 1.760 1.447 10.33

[
∑N
i=1

‖LATi‖
N

and
∑N
i=1

‖LONi‖
N

are the average of the absolute mean lateral and longitudinal error respectively.

N represent the number of vehicles. LATi and LONi represent the mean lateral and longitudinal error of the ith vehicle respectively

3σ boundary of the 2D euclidean error is very high (see Table 3).
The real results depicted in Figure 8 and in Table 3 con�rm the observations made in simulation for the

SGP algorithm: The lateral and longitudinal errors are quite large and highly spread.

5.4. Cooperative Set-membership augmented GNSS positioning (LB-CASGP)

The method presented in this section makes use of the lane-boundary measurements and exploits cross-
track corrections shared among networked vehicles in order to improve the performance by using the cooperative
set-membership GNSS positioning method LB-CASGP.

After having applied the lane-boundary constraint on the estimated set X, a punctual position estimate
[xr, yr] is determined by projecting the solution of the center of gravity as explained before.

Figures 5 and 6 present the distributions of the lateral and longitudinal errors. In �gures 7 and 8, the
dotted line with '♦' marker, represent the position error of the LB-CASGP algorithm.

Figures 5 and 6 show clearly that the LB-CASGP concentrates the majority of both lateral and longitudinal
errors around 0, while in SGP the errors are more spread. This reveals that by sharing corrections, position
estimates are improved in both the cross-track and the along-track direction.

From top subplots of Figures 7 and 8 and in Table 3, one can observe that the algorithm has nearly
zero mean lateral error distribution and a very low standard deviation σ which is due to the inclusion of the
lane-boundary constraints provided by the GIS and the lane sensor.
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Figure 7: Simulation - All vehicles positioning errors, late-
ral (top), longitudinal (center) and 2D euclidean (bottom),
using SGP and LB-CASGP estimation: (a) normalized po-
sitioning errors distribution. (b) cumulative distribution
functions.
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Figure 8: Real Experiments - All vehicles positioning er-
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(bottom), using SGP and LB-CASGP estimation: (a) nor-
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Figure 9: Trajectory and zoomed trajectory followed by each vehicle: (a) Simulation - vehicle 2 trajectory in the bottom-right
zoom subplot; vehicle 6 trajectory in the top-right zoom subplot and vehicle 7 trajectory in the top-left zoom subplot (b) Real
Experiments
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Figure 10: Real Experiments - HPL Stanford diagram: misleading information (MI), hazardously misleading information (HMI)

In terms of mean absolute lateral error, the LB-CASGP method provides an error reduction of at least
90% compared to SGP. The cumulative distribution σ boundary of the lateral positioning error for LB-CASGP
algorithm is greatly reduced meaning that the positioning method has an accuracy better than 1 meter both in
simulation and in the real experiments. The 3σ is reduced by least 60% when using the LB-CASGP algorithm,
which mean a signi�cant lateral error reduction during most of the time.

From center the subplots of Figures 7 and 8 and from Table 3, one can observe that algorithm has nearly
zero mean longitudinal spread error distribution and a low standard deviation σ. As expected, when using LB-
CASGP algorithm, the σ is improved w.r.t. to the one obtained without the cooperative sharing of satellite
speci�c errors, since the lane-boundary sensors not only provide additional geometric diversity for the axis
orthogonal to the road lane of the carrying vehicle but as well for networked vehicles. The σ is reduced by
at least 49% when using the LB-CASGP algorithm, which is a signi�cant longitudinal error reduction. The
cumulative distribution 3σ boundary of the longitudinal positioning error is also reduced as expected. The
bottom subplots of Figures 7 and 8 display the 2D euclidean error distribution. For both simulations and real
experiments, the mean and standard deviation σ error of the LB-CASGP algorithm are reduced, being more
evident on the real experiment and therefore validating the simulations.

The subplots of Figure 9(a), represent the zoomed trajectory for vehicles 2, 6 and 7, respectively bottom-
right, top-right and top-left zoom subplot. As mentioned earlier, this satellite constellation con�guration
generates errors along both X and Y local coordinates axes, with the major error axis along the negative
direction of the local coordinates X-axis (see position estimation of vehicles 2 using SGP in bottom-right
zoomed zoomed of Figure 9(a)). Therefore, the cross-track improvement of position estimation by using LB-
CASGP algorithm is more noticeable for vehicles travelling along the local coordinates Y-axis and with the
lane-boundary sensors measurements along the local coordinates X-axis, as with vehicles 2 and 4. The cross-
track position estimation improvement of LB-CASGP algorithm for vehicle 2 is shown in subplot bottom-right,
where the position estimate is shifted right towards the real position. The along-track improvement of position
estimation by using LB-CASGP algorithm is more noticeable for vehicles travelling along the local coordinates
X-axis and using the shared corrections along the local coordinates X-axis, as with vehicles 1, 3, 5 and 6.
The cross-track position estimation improvement of LB-CASGP algorithm for vehicle 6 is shown in subplot
top-right, where the position estimate is shifted right towards the real position. The cross-track improvement
for vehicles 1, 3, 5 and 6 and the along-track improvement for vehicles 2 and 4 is less evident since this satellite
constellation produces a very small positive bias along the local coordinates Y-axis.

The position estimation for vehicle 7 re�ects a medium improvement of LB-CASGP algorithm on the
position estimate as this vehicle is not equipped with lane-boundary sensor. Nevertheless it bene�ts from the
corrections estimates broadcast by all lane-boundary sensor equipped vehicles, making its correction noticeable
in both cross-track and along-track. This correction can be observed on subplot top-left of Figure 9(a).

The real experiment results shown in Figure 9(b), represent the trajectory followed by one of the four GPS
receivers and its position estimation for each presented algorithm. Vehicles were platooning and therefore most
of the time they were nearly collinear which is a situation closed to the singularity mentioned before.
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Remember that when all the networked vehicles are collinear, estimation is achieved using the non-
cooperative position method LB-ASGP. In Figure 9(b), only solutions when the LB-CASGP is able provide a
solution are shown, i.e. only epochs where the vehicles are non-collinear or not nearly collinear are presented
in the �gure. By analysing the subplots of Figure 9(b), it is possible to observe that the satellite constellation
con�guration, during the real experiments, generates an error along the south-west direction (i.e. towards the
top-right corner of Figure 9(b)) and west (i.e. towards the right side of Figure 9(b)). These biases are success-
fully mitigated using the LB-CASGP algorithm. The cross-track error is signi�cantly removed as the position
estimate is shifted towards north-east. The along-track error is corrected by shifting the position towards east.
Subplots of Figure 9(b), where each position estimate is numbered, enables us to conclude that the position
estimate using LB-CASGP is always better than using SGP, both in cross-track and in along-track. Although
vehicle 7 is not equipped with a lane-boundary sensor, its position accuracy is improved in both cross-track
and along-track directions, using the estimate of the satellite-speci�c errors [CN,ssc;CE,ssc], as described in
equation 21. This improvement can be easily seen in the last row of Figure 5 a) and b).

5.5. Integrity Analysis

An integrity metric of major interest when dealing with integrity concerns is the Horizontal Protection
Level (HPL) (Santa , 2006)(Tossaint , 2007). Stanford diagrams are widely used and consist of a 2D histogram
of positioning solutions in terms of actual error and the estimated protection level. The Stanford diagrams of
both SGP and LB-CASGP obtained with the real data are shown in Figure 10. They illustrate the integrity
performance achieved during the periods analyzed. In HPL the magnitude of the observed parity vector is used
as a test statistic with the chi-squared distribution to detect single satellite failures. The HPL computation
follows the following steps: determine a fault detection normalized threshold used in the Receiver Autonomous
Integrity Monitoring (RAIM) computation, for a speci�ed false alarm and degree of freedom; compute the
probability density function of the chi-square and the the non-central chi-square distribution for speci�ed
degrees of freedom; determine the the parity vector associated with the over-determined user position solution
and use it in the linear magni�cation (also referred in the literature as slope) between the horizontal radial error
and the pseudo-range residual test statistic to obtain the HPL. For the HPL, it was considered a probability of
missed detection of 0.001 and a false alarm tolerance of 3.33333× 10−7, the horizontal alarm limit (HAL) was
set here to 10[m] but this value can be easily adapted to the requirements of di�erent applications. Regarding
the horizontal GNSS positioning system, its integrity risk is the probability that, at any moment, the horizontal
position error (HPE) exceeds an HAL. The integrity system is declared unavailable when the HPL is greater
than HAL. If the system is available and the HPE is not bounded by the HPL, the event is considered as a MI,
since the HPL is always supposed to be an upper bound of the HPE. Moreover, the event is declared as HMI
if the HPE exceeds the HAL (Tossaint , 2007).

The position error is not always bounded by the protection level, that is, there are several misleading
information (MI) events in both algorithms, although they are almost ten times higher for the SGP. Regarding
hazardously misleading information, the LB-CASGP achieves none events while the SGP has four events. The
real experiments results reveal that the SGP algorithm is 78% of the time under normal operation whereas the
LB-CASGP is 90%, which is a signi�cant improvement in terms of positioning availability.

6. Conclusion

This paper has presented a new cooperative positioning algorithm (LB-CASGP) based on constraints propa-
gation on real intervals. This method improves the performance of standalone GNSS algorithms in environments
where a lane-boundary sensor is capable of providing lateral corrections by detecting the distance from the
vehicle to the lane. By sharing their corrections, networked vehicles can improve their own estimates and assist
the others.

The errors magnitude and the con�dence domains have been evaluated in a comparative way both in
simulation and through real experiments with the same software implementation. As the implementation of
both set-inversion methods based algorithms is quite straightforward, the resulting code is simple and compact.

When appliyng the LB-CASGP algorithm, the satellite-speci�c errors are used in a cooperative framework
enabling its reduction on networked vehicles in both cross-track and along-track components. This method
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can also improve position estimates of vehicles not equipped with lane-boundary sensor. The non-equipped
vehicles use the cooperative estimation of the satellite-speci�c errors to improve its own position estimate.

Both set-inversion algorithms (i.e. SGP and LB-CASGP) have the advantage of guaranteeing not to lose
any solution in the computation process and are insensitive to local minimum convergence issues. They are
therefore naturally very reliable by nature. The risk of the positioning solution set not to include the real
position is solely related to the risk taken when selecting the bounds parameters on the measurements. When
subjected to multipath disturbances the LB-CASGP can provide worst estimation than stand-alone solutions,
i.e. the multipath subjected vehicle is contaminating the estimation of the vehicles in the vicinity. Therefore,
further work is being carried on extending the guaranteed zone computation algorithm to take into account
outliers, namely, using a relaxed set-membership approach.
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