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Using High Definition Maps to Estimate GNSS Positioning Uncertainty
Franck Li1,2, Philippe Bonnifait1 and Javier Ibanez-Guzman2

Abstract— Map-matching can be used to estimate the
Horizontal Uncertainty Level (HUL) of GNSS position fixes.
Integrity monitoring is indeed an important issue for au-
tonomous vehicles navigation. The method is based on the
use of a high definition map that stores accurate information
about the road network. This additional source of information
is crucial for autonomous navigation. The matched position
is computed using proprioceptive sensors from the car and
GNSS fixes that are handled using a precautionary principle
with Horizontal Protection Levels (HPL). A Particle Filter is
used for its ability to manage multiple hypotheses if needed.
Estimating different likely map-matched hypotheses allows
to determine the level of uncertainty of the GNSS which is
defined as the maximum distance between a map-matched hy-
pothesis and a given GNSS position. This distance can be seen
as a Map-Aided Horizontal Uncertainty Level (MA-HUL),
providing a confidence indicator to the vehicle for integrity
monitoring. This paper presents the multi-hypotheses map-
matching algorithm and a method to compute the MA-HUL
values in real-time. Experimental results carried out in open
road conditions support the evaluation and show that this
metric provides reliable confidence information.

I. INTRODUCTION

Positioning integrity is getting more and more atten-
tion with the progress made on intelligent vehicles for
autonomous navigation [1], [2], a domain where the system
must be sure of its position. Research began to apply
Receiver Autonomous Integrity Monitoring (RAIM) meth-
ods coming from the aeronautics community that compute
in real-time Horizontal Protection Levels (HPL) by using
probabilistic approaches [3] [4]. For road vehicles, RAIM
methods can output very pessimistic and sometimes un-
reliable values especially in urban environments [5] even
when using Isotropy-Based Protection Levels [6] [7].

Several extension of the RAIM methods using maps
have been proposed. In [8], a bounded-errors method has
been proposed to merge elevation maps with pseudor-
anges GNSS measures. More recently, the authors of [9]
have proposed an algorithm for computing “urban trench”
Protection Levels with a higher reliability compared to
conventional approaches whose open sky assumption is
often violated.

Recently High Definition (HD) maps with lane level
information have begun to be available, bringing crucial
information for positioning integrity. Indeed, they provide
geometrical information with dedicated attributes detailing
connectedness and adjacency.

In this paper, we propose a new method to compute
confidence position domains that are called Horizontal
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Uncertainty Levels (HUL) instead of Protection Levels
since they are computed without considering the satellite
geometry. Indeed, an HUL is computed thanks to a high
accuracy HD-Map and a parallel process that performs
a map-matching with dead-reckoning sensors (e.g. yaw
rate and wheel speed). The positions computed by the
GNSS receiver are introduced in the algorithm using a
precautionary principle by using a HPL domain computed
by the receiver itself that plays the role of a gating process.

The paper is organized as follows. First, we show how
a Particle Filter (PF) can be designed to handle a HD-
map information and how the map-matched candidates
are computed by the PF. Secondly, we present a method
to use these candidates to estimate the uncertainty on a
GNSS fix called Map-Aided Horizontal Uncertainty Level
(MA-HUL). Finally, we report experiments that show that
this confidence indicator is consistent with ground truth
in particular when GNSS positions are affected by large
errors.

II. LANE-LEVEL MAP-MATCHING

Accurate road maps are useful for many intelligent
vehicles applications, multiple representations of the road
network have been proposed, such as clothoidal mod-
els [10], Lanelets [11], among many others. This sections
gives details about the map used in this paper and the
Particle Filter based Map-Matching.

A. Lane-Level Road Maps

In [12], the road map used is a mesoscale [13] lane-
level road map (see Fig. 1). This scale, situated between
the macroscale (e.g. road guidance maps) and microscale
(e.g. dense point cloud from perception sensors), is the
most suitable for intelligent vehicle as it bears accurate
information without being too dense to be easily used. The
prototype map used in this paper, made by a mapmaker,
covers 4 km of public roads in Compiègne with an absolute
accuracy of 2 cm. The map’s SQLite database contains the
following relevant information:

• Road Geometric Information: as for any road maps
(brown lines on Fig 1). Polylines describe the geome-
try of the driving lanes in a local Cartesian frame. The
road network is split into Links representing a segment
of road bearing the same properties (e.g. width, lane
markings, etc).

• Lane Markings: each drivable lane has information on
the nature of the markings delimiting it (blue lines on
Fig 1). A geometric description is given and additional
information are included such as the type of marking
(e.g. solid line).
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Fig. 1: Detail of the map of a roundabout in Compiègne,
France. The centerline of the lanes are drawn in brown
and the lane markings in blue. Complete connectedness is
notably visible in the roundabout entrances and exits.

• Road Connectedness: to navigate in the Links net-
work, information about connected links (i.e. previous
and next accessible links) is given. This gives a more
efficient way to determine which link is reachable
along the track of the current position (respecting
traffic rules) without costly distance calculation.

• Road Adjacency: as the previous property, this allows
determining if there are lanes on the side of the
current one available form cross-track evolution, i.e
lane changing.

All these information are available easily and at low
computing cost for any Link in the map, being a relational
database. The filter described next relies on this to perform
efficiently.

B. Particle Filter

The map-matching is based on a Particle Filter (PF).
This matching method is commonly used for this pur-
pose [14], [15], [16], but the integrity of the result is
more rarely discussed. PF’s nature to manage multiple
hypotheses is interesting in this context to provide a certain
level of integrity, especially in ambiguous situations. The
notion of map-matching integrity can be defined as follows:
a reliable multi-hypothesis map-matching method provides
in real-time a set of likely matched lanes in which the
correct lane is highly likely to make part. The size of this
set has to be kept as small as possible.

This section describes succinctly the filtering process,
for more details please refer to [12].

1) Car State Model: The car is modeled by its 2D pose
(Cartesian 2D coordinates and orientation) and an the ID of
the map link it is matched to (see Eq. 1). Additionally, each
particle possesses a weight wi characterizing its likelihood
as a matching solution.

Xi = (Xi
p,ml

i) = (xi, yi, ψi,mli) (1)

2) Dynamic Model: Eq. 2 defines the car’s dynamic
model. It is a classic unicycle model using as inputs the
vehicle’s speed and yaw rate from proprioceptive sensors.

These come respectively from the wheel speed sensors,
used for systems such as Anti-lock Braking Systems (ABS)
and gyrometers, used for the Electronic Stability Program
(ESP). Those systems equipping every modern consumer
car, the model can be considered as adaptable to any
vehicle.  xit = xit−1 + vt ·∆t · cosψi

t−1

yit = yit−1 + vt ·∆t · sinψi
t−1

ψi
t = ψi

t−1 + ωt ·∆t
(2)

3) GNSS positions as HPL: The other input of the
filter is the GNSS position. It is only used during the
calculation of the particles’ weight (i.e. their likelihood).
During this step, the particles getting too far away from
the GNSS position will be eliminated. The GNSS position
acts therefore as a HPL, gating the particles in order
to keep only those staying in the protection level (i.e.
meaningful regarding the GNSS information). This step
involves further the GNSS in the map-matching process.
The HPL value is chosen preferably large (for a small
integrity risk of 10−3 for instance) to limit its impact on
the algorithm. Its role is only to keep the particle set as
compact as possible and compensate the dead-reckoning
drift.

4) Filter Implementation: The calculation load of a
PF is directly link to the number of particles used. The
algorithm is thus structured to be computation efficient, as
the number of particles impacts directly the result of the
filter.

Two parts have to be distinguished: the initialization
step and the main filtering loop (see Fig. 2). Heavy
calculation is only done during the initialization. For initial
map-matching (point-to-curve strategy [13]), particles are
generated on a disk around a GNSS fix, corresponding
to the HPL (for instance, a 50 m radius to cope with
the unknown GNSS uncertainty) and each one is matched
to the closest map link. This demands a lot of distance
calculation for each particle but has to be done only once.

Once the initialization is done, these heavy computation
stages do not need to be repeated during the main pro-
cessing loop. This is made possible using extensively the
road map: once matched, a particle uses the information
contained in the map to evolve. Changes are computed di-
rectly using the connectedness and adjacency information.
For instance, when a particle detects that it is leaving the
currently matched link, a query will be done to determine
the following link on which the particle’s matching will be
updated.

C. Hypotheses Estimation

For a particular time instant, estimated particles are
visible in Fig. 3a. This is the result of the evolution process
following the map. The color of the particles denotes the
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Fig. 2: Flowchart of the filter. Heavy calculation is kept
out of the main processing loop (on the right) and done in
the initialization step (on the left)

matched link. In this case, only 2 hypotheses are present
(see Fig. 3b).

To estimate hypotheses, the particles are clustered by
matched link and a weighted mean is performed to deter-
mine the pose of the hypothesis:

Xhypj
=

∑
i

(wi
j ·X

i
p),

Xhypj
is the jth matching hypothesis, wi

j is the
hypothesis-normalized weight of the ith particle of the jth
hypothesis (the sum of the particles’ weight equals to 1
for a given hypothesis) and Xi

p, its pose. The likelihood
of each hypothesis is the sum of the non-normalized weight
whypj =

∑
i w

i
j , in order to have

∑
j whypj

= 1.

III. MAP-AIDED UNCERTAINTY LEVEL

A. Map-Aided HUL

The goal is to quantify the GNSS positioning level of
uncertainty using the HD-map. This section adapts the
worst-case principle of Horizontal Uncertainty Level and
Protection Level (HUL and HPL), using the previously
described map-matching. Positioning integrity can be de-
scribed as being able to give a spatial interval that is
guaranteed to contain the true position to a certain level of
risk. This is well illustrated by a circle around the estimated
GNSS position representing the HPL.

The Map-Aided HUL (MA-HUL) is an estimation of
the position uncertainty that takes into account the actual
estimates without considering the satellite geometry. The
information redundancy is brought by the multi-hypothesis
map-matching algorithm that has been set to provide all
the likely hypotheses for the current location given the
proprioceptive information gathered from the car sensors,
such as the one presented previously.

(a) All particles displayed.

(b) Mean particles displayed. Two hypotheses are likely here.

Fig. 3: Two Matching Hypotheses are clearly visible here
(displayed in different colors): Fig. 3a shows the whole
particles clouds; whereas Fig. 3b shows the mean particles,
corresponding to the matching estimations of the clouds.
The GNSS position estimates are displayed in white.

B. Matching Error As Uncertainty

The proposed map-matching algorithm relies mainly on
the car’s odometry and on the map’s data, the GNSS
position fixes having little influence in comparison since
they are used only to prune very unlikely map-matching
hypotheses. The hypotheses returned can thus be con-
sidered as another source of positioning. This provides
redundancy, allowing an estimation of the error made by
the GNSS receiver.

MA-HUL is based on the assumption that the map
is accurate. An estimation of the uncertainty level of
the GNSS position is then its distance to the matching
hypotheses. This gives a measurement of the uncertainty
confronting the GNSS and the map data (odometry-based
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Fig. 4: Biased GNSS position and associated matching
hypotheses at the same time index (the GNSS track is
displayed in white). The MA-HUL is denoted by the red
line, representing the largest distance between the GNSS
position and a matching hypothesis.

map-matching). Fig 4 shows an example of MA-HUL:
GNSS trace is represented in white, while two matching
hypotheses are in purple and yellow; the MA-HUL is
represented by the red line. To keep a conservative level
of integrity, the method chooses the farthest hypothesis for
the MA-HUL calculation (for instance, the yellow one in
Fig 4), the result is then given by:

MA-HUL = max
j
||XgnssXhypj ||2

IV. EXPERIMENT

A. Public Road Acquisition

The Pacpus framework1 allows quick prototyping on
tests vehicles: it provides an interface with a number of
sensors and gives access to CAN bus information. Data
recording capabilities allows easier algorithm development
thanks to real-time data replay “on desk”. To validate the
method presented in this paper, real data has been recorded
using Pacpus on a test vehicle equipped with a GNSS
receiver. Recorded data is composed of:

• GNSS position from a Septentrio PolaRx4 receiver
used in standalone mode (i.e. without correction or
post processing),

• Proprioceptive information: yaw rate and wheel speed

1developed at Heudiasyc. More info at pacpus.hds.utc.fr

Fig. 5: Erroneous GNSS positions due to multipath, caused
by nearby high-rise buildings on the side of the road. An
error of up to 4.5 m can be observed.

B. Peri-Urban Environment

The test trajectory is representative of a peri-urban
travel. The itinerary follows 2 lanes, one way roads, with
multiple roundabouts. It is interesting concerning GNSS
coverage as there are high-rise buildings on the side of the
road at a point of the travel, causing multpath issues (see
Fig. 5).

V. RESULTS

Fig. 6 shows the results of the Map-aided HUL calcu-
lation on the test trajectory (in blue). It shows that the
MA-HUL is an upper bound of the GNSS error, therefore
fulfilling its purpose. Note that it is not optimal as its value
is visibly higher than necessary. This is due to the map-
matching algorithm being set to be very conservative in
keeping multiple hypotheses.

Another reason for this overestimation of the HUL is
that the filter does not have input concerning the longitu-
dinal position of the car on the road. This is observable as
the particles have a high longitudinal spread, especially in
straight roads, that diminishes during turns, in which the
filter reduces the along-track position uncertainty.

The use of the GNSS positioning in the operation of the
filter does not affect significantly the HUL as its value is
a lot less than the HPL used (50 m vs mean of 7.5 m).

Fig 7 plots the MA-HUL evolution when different values
of the GNSS-HPL positions are used in the map-matching
algorithm. It shows that high HPL values – i.e. very
uninformative GNSS positions – bear similar results (25 m
in light blue and 50 m in dark blue). But, when the HPL is
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Fig. 6: GNSS error, computed by comparing with a ground truth (in green) and the corresponding MA-HUL (in blue).

set to a smaller value (of the order of the maximum error
made by the GNSS receiver), a significant improvement
can be noticed (red curve). For instance, at t=460 s, the
MA-HUL reaches a value of 15 m for a 25 m HPL when
it is contained to 7 m for a 10 m HPL. The latter HUL
value corresponds more closely to what intelligent vehicles
applications expect from a positioning system (the mean
MA-HUL is 4.7 m with a standard deviation of 1 m). It
has to be noticed that for the different values of the GNSS-
HPL, the HUL is always consistent and conservative which
indicates that this metric is a good candidate to do integrity
monitoring.

Significant differences occur in straight lines in the
recording. This indicates that the main effect of a tighter
HPL is the reduction of the particles spread, especially
longitudinally. The particles being more concentrated, their
mean positions (i.e. the matched hypothesis) are closer to
the GNSS position and therefore the MA-HUL calculated
is reduced.

This exposes the sensitivity of the MA-HUL to high
particle spread. Spreading appears in all direction, but most
of it happens longitudinally. From this perspective, decou-
pling the longitudinal (along-track) and lateral (cross-track)
uncertainty could be valuable to give more adjusted value
of the Uncertainty Level.

Fig. 8 displays the correlation between the number of
hypotheses and the value of the MA-HUL. The latter tends
to follow the same evolution as the former: when the
number of hypotheses rises, the MA-HUL value tends
to increase. For instance, situation such as roundabout
create hypotheses that tend to diverge (e.g. a hypothesis
staying in the roundabout and another leaving it). This
creates a spreading of the hypotheses themselves and thus,
mathematically makes the MA-HUL grow.

Other creations of hypotheses are present when passing
from a link to the following: as the particles are spread
longitudinally, they do not all change simultaneously of
link, creating a new hypothesis while the old one is
still present. This also in turn creates a spreading of
new hypotheses. This observation clearly encourages the

separation of the MA-HUL into separate cross-track and
along-track consideration.

VI. CONCLUSION

This paper has presented the concept of Map Aided HUL
(MA-HUL) and the necessary concept to implement it on-
board vehicles equipped with dead-reckoning sensors and
HD-maps. The first results are encouraging as this metric
provides a reliable upper bound of the positioning error,
allowing integrity monitoring of the GNSS position, using
only available proprioceptive sensors and map data. Further
improvement has to be made to give a better estimate of
the HUL. Indeed the map matching method is currently
being improved to give better results both longitudinally
and laterally. For instance, exteroceptive information such
as lane marking detection from a camera sensor could be
integrated to narrow down the lateral uncertainty.

A difference between the lateral and longitudinal uncer-
tainty has also been noted. It opens the idea to separate
the uncertainty level into two parts: cross-track and along-
track. This will be developed for the next development of
this method.

ACKNOWLEDGMENT

This work was carried out within SIVALab, a shared
laboratory between Renault, CNRS and UTC.

REFERENCES

[1] T. Binjammaz, A. Al-Bayatti, and A. Al-Hargan, “GPS integrity
monitoring for an intelligent transport system,” in 2013 10th
Workshop on Positioning, Navigation and Communication (WPNC),
pp. 1–6, IEEE, mar 2013.

[2] R. Toledo-Moreo, M. Zamora-Izquierdo, B. Ubeda-Miarro, and
A. Gomez-Skarmeta, “High-Integrity IMM-EKF-Based Road Vehi-
cle Navigation With Low-Cost GPS/SBAS/INS,” IEEE Transactions
on Intelligent Transportation Systems, vol. 8, pp. 491–511, sep
2007.

[3] R. G. Brown, “A baseline GPS RAIM scheme and a note on the
equivalence of three RAIM methods,” Navigation, 1992.

[4] S. Feng, W. Y. Ochieng, D. Walsh, and R. Ioannides, “A measure-
ment domain receiver autonomous integrity monitoring algorithm,”
GPS Solutions, vol. 10, no. 2, pp. 85–96, 2006.



6

0 100 200 300 400 500 600
Time (in s)

0

5

10

15

20

25

30

V
a
lu
e
 (
in
 m

)

MA-HUL (for 10m HPL)
MA-HUL (for 25m HPL)
MA-HUL (for 50m HPL)
GNSS error

Fig. 7: MA-HUL for different value settings of the map-matching HPL. Higher values (25 or 50 m) tend to not impact
the MA-HUL. Whereas a tighter value (10 m) narrows it down. This is explained by a smaller particle spread.

0 100 200 300 400 500 600
Time (in s)

0

5

10

15

20

V
a
lu
e
 (
in
 m

/ 
in
 n
u
m
b
e
r 
o
f)

GNSS error
number of hypotheses
MA-HUL (for 10m HPL)

Fig. 8: MA-HUL (for 10 m HPL, in red) with the number of map-matching hypotheses (blue points). A correlation is
visible between these two curves: the MA-HUL tends to increased when the number of hypotheses is higher.

[5] O. Le Marchand, Autonomous approach for localization and in-
tegrity monitoring of a ground vehicle in complex environment.
Theses, Université de Technologie de Compiègne, June 2010.

[6] J. Cosmen-Schortmann, M. Azaola-Saenz, M. A. Martinez-Olague,
and M. Toledo-Lopez, “Integrity in urban and road environments
and its use in liability critical applications,” in 2008 IEEE/ION
Position, Location and Navigation Symposium, pp. 972–983, May
2008.

[7] N. Zhu, J. Marais, D. Betaille, and M. Berbineau, “Evaluation and
comparison of gnss navigation integrity monitoring algorithms for
urban transport applications,” in International Technical Meeting
(ITM) - The Institute of Navigation, January 2017.

[8] V. Drevelle and P. Bonnifait, “A set-membership approach for high
integrity height-aided satellite positioning,” GPS Solutions, vol. 15,
pp. 357–368, September 2011.

[9] D. Betaille, F. Peyret, M. Ortiz, S. Miquel, and F. Godan, “Im-
proving accuracy and integrity with a probabilistic urban trench
modeling,” Navigation, vol. 63, no. 3, pp. 283–294, 2016. NAVI-
2015-026.R2.

[10] D. Betaille, R. Toledo-Moreo, and J. Laneurit, “Making an En-
hanced Map for Lane Location Based Services,” in 2008 11th In-
ternational IEEE Conference on Intelligent Transportation Systems,
pp. 711–716, IEEE, oct 2008.

[11] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map
representation for autonomous driving,” in 2014 IEEE Intelligent
Vehicles Symposium Proceedings, no. Iv, pp. 420–425, IEEE, jun
2014.

[12] F. Li, P. Bonnifait, J. Ibanez-Guzman, and C. Zinoune, “Lane-
level map-matching with integrity on high-definition maps,” in 2017
IEEE Intelligent Vehicles Symposium (IV), IEEE, in press.

[13] Jie Du and M. Barth, “Next-Generation Automated Vehicle Loca-
tion Systems: Positioning at the Lane Level,” IEEE Transactions on
Intelligent Transportation Systems, vol. 9, pp. 48–57, mar 2008.

[14] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning,
navigation, and tracking,” IEEE Transactions on Signal Processing,
vol. 50, no. 2, pp. 425–437, 2002.

[15] J. Levinson, M. Montemerlo, and S. Thrun, “Map-Based Precision
Vehicle Localization in Urban Environments,” in Robotics: Science
and Systems III, Robotics: Science and Systems Foundation, jun
2007.

[16] J. Rabe, M. Necker, and C. Stiller, “Ego-lane estimation for lane-
level navigation in urban scenarios,” in 2016 IEEE Intelligent
Vehicles Symposium (IV), pp. 896–901, IEEE, jun 2016.


