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Abstract—Lane-level road maps are necessary for Advanced
Driving Assistance Systems (ADAS) and autonomous vehicles,
providing prior contextual information on the road network.
At this level of detail, map-matching becomes complex: much
ambiguity can arise due to the high number of likely hypotheses
(especially in dense urban areas) and due to the varying per-
formance of GNSS positioning systems. This paper presents a
method measuring the confidence in the information provided
by the positioning system using a metric called Map Aided
Horizontal Uncertainty Level (MA–HUL). It relies on a map-
matching algorithm designed to keep all likely hypotheses that are
coherent with the vehicle odometry. Additionally, exteroceptive
information is compared to the map data to remove ambiguities
(i.e. lane marking detection from a camera). Some hypotheses
are then trimmed if a mismatch is detected with sufficient
confidence, keeping their number to a minimum. The use of
a reference frame linked to the road is also studied to represent
uncertainty independently in the along-track and cross-track
axes. The performance of the proposed approach is illustrated
using data recorded from an experimental vehicle operating on
public roads.

I. INTRODUCTION

Intelligent vehicles functionalities improve continuously:
most of modern Advanced Driving Assistance Systems
(ADAS) require high accuracy positioning in order to perform
correctly. But as the main automotive source of absolute
positioning is Global Navigation Satellite Systems (GNSS),
the accuracy obtained can vary greatly depending on the
environment (especially in urban environments [1]). Systems
relying heavily on positioning must therefore be able to
quantify the confidence to give to the system: solutions have
been developed based on Fault Detection and Exclusion (FDE)
principle [2] but these require access to raw measurements in
a tightly-coupled system.

A method using the computed position has been developed
previously [3], providing a confidence metric called Map-
Aided Horizontal Uncertainty Level (MA-HUL). It uses a
multi-hypotheses lane-level map-matching algorithm based on
a particle filter (PF) tuned to keep all likely hypotheses.
This map-matching (MM) method relies mainly on car’s
odometry to find suitable positions on a high-definition road
map (i.e. lane-level description of the road network with high

accuracy) [4]. This method minimizes the role of the GNSS
information, returning matching hypotheses using mostly dead
reckoning (DR) and the map, the goal being to have a solution
as independent of GNSS as possible, to get redundancy.

This paper improves previous work by using additional
information from exteroceptive sensors, such as lane marking
detection from a camera: comparing these to a priori data
from the HD map can provide discriminating information (i.e.
relative in-lane lateral position), allowing some ambiguities re-
moval that could not be resolved without exteroceptive inputs.
This additional information creates an asymmetry between
the lateral and longitudinal components of the MA-HUL. It
is therefore important to separate the metric in two values,
considering distinct cross-track and an along-track MA-HUL.

This paper is structured as follows: Section II gives an
overview of the multi-hypotheses map-matching used. The
process of integrating the lane detection to the matching
algorithm is developed in Section III. Section IV presents the
MA-HUL as an integrity metric proposal. Section V shows the
benefits of separating the MA-HUL into cross-track and along-
track dimensions. Finally Section VI presents experimental
results, evaluating the method.

II. SEQUENTIAL MAP-MATCHING

The map-matching algorithm used in this paper is described
in details in [4]. The following gives a brief description of the
method.

A. Lane Level Map

The road map used in this research is a mesoscale lane-
level road map [5] (see Fig. 1). This scale, situated between
the macroscale (e.g. road guidance maps) and microscale
(e.g. dense point cloud from perception sensors), is the most
suitable for intelligent vehicles as it bears accurate information
without being too dense to be easily used. The prototype map
used in this paper, made by a mapmaker, covers 4 km of
public roads in Compiègne, France with an absolute accuracy
of 2 cm. The map can thus be qualified of High-Definition
map (HD map). It is built on a SQLite database containing
the following relevant information:
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Figure 1. Detail of the map at a lane forking in Compiègne, France. The
centerline of the lanes are drawn in blue and the lane markings in brown.
The upper road is drivable from East to West. The upper blue polyline of the
right lane separates into two lanes.

• Road Geometric Information: as for any road maps
(brown lines on Fig. 1). Polylines describe the geometry
of the driving lanes in a local Cartesian frame. The road
network is split into Links representing a segment of road
bearing the same properties (e.g. width, lane markings,
etc).

• Lane Markings: each drivable lane has information on
the nature of the markings delimiting it (blue lines on
Fig. 1). A geometric description is given and additional
information are included such as the type of marking (e.g.
solid line).

• Road Connectedness: to navigate in the Links network,
information about connected links (i.e. previous and next
accessible links) is given. This gives a more efficient way
to determine which link is reachable along the track of the
current position (respecting traffic rules) without costly
distance calculation.

• Road Adjacency: as the previous property, this allows de-
termining if there are lanes on the side of the current one
available form cross-track evolution, i.e. lane changing.

All these pieces of information are available easily and at low
computing cost for any Link in the map, being a relational
database. The filter relies on this to perform efficiently.

B. Map-matching Integrity

A map-matching respects an integrity level if the set of
hypotheses provided as solution contains the correct one, with
respect to a given risk. In other words, an algorithm with a
risk of 10−2 (i.e. 1%) has to return the actual map-matched
position (i.e. the matching ground truth) 99% of the time.

Applied to an HD map described by polylines as the one
used in this paper, as the chosen elementary geometrical
descriptor is a segment (a link is a list of connected segments,
each delimited by two shapepoints), the map-matched segment
of the ground truth of the position has to part of the set of
hypotheses returned by the MM algorithm, according to the
given risk.

C. Particle Filter

The developed map-matching method is based on a Par-
ticle Filter (PF). This method is commonly used for this
purpose [6], [7], [8], but the integrity of the result is more
rarely discussed. PF’s nature to manage multiple hypotheses is
interesting in this context to provide a certain level of integrity,
especially in ambiguous situations, where single hypothesis
methods could lose track of the correct solution. The described

PF implements measures to avoid this situation by exploring
and keeping the maximum number of likely hypotheses.

1) Car State Model: The car is modeled by a 2D pose
Xi

p (composed of the Cartesian 2D coordinates (xi, yi) and
heading ψi) and the ID of the map link it is matched to (mli)
as described by Eq. 1. This is the state Xi of each particle that
represents a single position hypothesis with its map-matched
solution.

Xi = (Xi
p,ml

i) = (xi, yi, ψi,mli) (1)

Additionally, each particle possesses a weight wi charac-
terizing its likelihood as a matching solution. The complete
structure of a particle is then given by Eq. 2:

Parti = (Xi, wi) (2)

2) Filter Principle: PF map-matching relies on the intrin-
sic multi-hypotheses nature of the filter. Combined with the
properties of the map described in Sec. II-A, a throughout
search for the best matching hypothesis can be performed
efficiently. While each particle is associated to a given link
(step done during the initialization of the filter), it evolves
freely on the 2D plan, and is not only constrained to the
link itself. This gives more freedom to the particles, allowing
a better exploration of the map (e.g. with possible lane
changes). But the matching hypothesis is also extensively used
to help navigate the map data: using the road connectedness, a
particle’s matching easily evolves, at small computation cost.

The goal of this filter is to determine a set of particles
containing the correct matching hypothesis while trying to
minimize its cardinality. The filter evolution is mostly lead
by dead-reckoning (DR) computed with the proprioceptive
information as inputs (odometry). Thanks to a comparison
between the headings of the map-matched polylines and the
ones of the particles and a cross-track distance between
the particle and the polyline to a lesser extent, the weights
of the particles are updated which conducts the filter to
eliminate diverging particles and duplicate coherent ones at
each resampling stage. The expected filter’s output is a set
of map-matching hypotheses that correspond to the odometry
information and the map. The result might not be a unique
hypothesis if ambiguities exist.

3) GNSS role: The GNSS influence is kept at a minimum,
and act only as a way to limit the divergence of the filter:
the particles getting too far away from the GNSS position are
eliminated. It thus acts as a Horizontal Protection Level (HPL)
giving a confidence radius around which the true position
is believed to be with a high confidence level. In practice,
this HPL can be provided directly by the software of the
GNSS positioning system or, when no integrity information
is available, recomputed to a conservative value using the
residuals of the pseudo-range measurements in a snapshot way
[9] or using an history of the path of the car [1]. In practice,
the GNSS position is also used at the initialization of the filter:
the particles are generated around the first GNSS fix with a
radius of the HPL value.
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Figure 2. Frames used by the camera for lane marking description and
symbols definitions: dashed orange lines represent the map’s lane markings
data. Camera detections are represented in blue. The lane’s centerline is in
black.

III. LANE INFORMATION INTEGRATION
The particle filter is based on the hypothesis that the car is

driving on average on the center of the lane [4]. In practice, it
is often not verified. This section’s rationale is to enhance the
filter with information from exteroceptive sensors to remove
this hypothesis: lane detection from a camera system is used
to determine the car’s lateral position in the driving lane.

A. Lane Marking Description From The Camera

The Mobileye smart camera used in the system is able to
detect the ego-lane markings and return them using polynomial
models. For each detected lane marking, the camera returns
the coefficients of a third degree polynomial [10] (see Eq.
3) approximating the equation of a clothoid, where x and y
are coordinates in the camera working frame (C,−→xc,−→yc) (see
Fig. 2).

y =
C3

6
· x3 +

C2

2
· x2 + C1 · x+ C0 (3)

In practice, the highest coefficients (the curvature C2 and
curvature derivative C3) are often very noisy and do not
provide reliable information. Therefore, only C0 (the lateral
offset, in meters) and C1 (the line heading, in Rad.) are used,
the lane marking being considered as a straight segment. This
approximation still gives a good estimate of the line position
and orientation with respect to the car. Note that the algorithm
would also work with other source of information providing
the lane detection in the same manner (e.g. lidar-based lane
detection).

B. Lane Description From The Map

As presented in Sec. II-A, lane markings are additional
information included in the map. They follow the same ge-

ometric representation as the centerlines (i.e. polylines). Each
driving lane references directly the lane markings delimiting it
(if they exist), it is therefore possible to retrieve the equation
y = C1 · x+ C0 of the current left and right markings.

C. Likelihood Calculation

These exteroceptive information are mainly used during
the update step of the filter, to calculate the likelihood of
each particle. Note that the lane markings are not always
detected by the camera. This can be caused by difficult
conditions for the sensor, for instance, bad lighting, wet road,
faded markings, etc. The camera also performs best when in
straight lines, the marking tracking being challenging in high-
curvature roads [11]. In these cases, the camera indicates a
low confidence level and the likelihood calculation falls back
to the “driving on the centerline” hypothesis.

If markings detection is available, lateral positioning is
taken into account. The same procedure as the original filter
is followed but slightly modified: previously, the likelihood
followed a Gaussian function centered on the centerline; with
marking information, it will be centered on the relative lateral
positioning according to the detection. To do this, two position
ratios are computed, describing the lateral position of the
vehicle in its lane.The first uses the marking detection from the
camera, i.e. the signed distances C0,l and C0,r (respectively the
C0 coefficients of the left and the right lane marking detection,
and respectively negative and positive) and is defined as:

rlatcam =
C0,l

C0,l − C0,r
. (4)

• The second corresponds to the map data: for each particle
(i.e. position hypothesis) the theoretical ratio is computed
using Lmap and Rmap the distances of the left and
right lane marking to the centerlane (both unsigned) and
dpart the signed distance of the particle to the centerlane
(positive to the right):

rlatmap =
Lmap + dpart
Lmap +Rmap

. (5)

The car within the limits of the lane markings will thus have
a ratio between 0, when on the left-side marking and 1,
on the right-side. Lane markings distances are not used in
a absolute fashion in order to cope with a possible scaling
factor discrepancy between the lane detection provided by
the camera and the map information. In other words, if an
incorrect lane width is stored in the map, the ratios are still
valid. The closest to zero the value is, the better the particle
fits the camera observation. The physical meaning of these
ratio are a percentage of the driving lane width. For example
a ratio of 0.1 is 10% of the width of a lane, e.g. on a 3.5m
wide lane, it represents a distance of 0.35m.

If the camera observations are in accordance with the
particle position on the map, the two ratios will be fairly
identical. To verify this, the difference between them is used
to compute the likelihood:

∆r = rlatmap − rlatcam (6)
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The likelihood function is then set as a Gaussian distribution
centered on 0 (i.e. a null difference meaning rlatmap = rlatcam, a
perfect fit), described by N (0, σdist), with σdist = 0.1. This
difference of ratio would correspond for instance to a 35 cm
distance on a 3.5 m large lane.

In the same way, instead of considering the car being
aligned with the road segment, the heading information from
the camera C1,r and C1,l are used to calculate the particle’s
heading likelihood: the mean heading C1 is computed and
serves as a reference to the particle’s heading. The heading
likelihood is described by N (0, σhead) with σhead = 15°, set
empirically.

With exteroceptive lateral information, the likelihood func-
tion follows the lateral movement of the vehicle, therefore
containing the particle spread in this direction. This gives
a much better lateral distribution (tighter) and even allows
naturally the lane changing maneuvers. Moreover it allows
a better description of the car’s path in the carriageway. For
instance, if the vehicle drives one meter away of the center of
the lane, the particles fitting this behavior will have the best
likelihood score.

IV. MAP AIDED HORIZONTAL UNCERTAINTY
LEVEL

The Map-Aided HUL (MA-HUL) has been developed in [3]
and is succinctly described in this section. It develops an met-
ric used to characterize the integrity of the position of provided
by the system. Its computation relies on the properties of the
PF map-matching described in Sec. II: the matched hypotheses
set is used to determine the level of uncertainty.

A. Horizontal Uncertainty Level (HUL)

HUL is an uncertainty metric originating from the aero-
nautic field. It is used to characterize the uncertainty that
a GNSS position bears, given some current residuals. It
takes into account several parameters including, for instance,
the geometrical configuration of the satellites. It is used in
conjunction with other integrity metric such as Horizontal
Protection Level (HPL) and Horizontal Alarm Level (HAL)
to characterize the integrity of the positioning information.
To do this, classical methods need to have access to raw
measurements from the GNSS receiver (pseudo-ranges), which
are not available in this study.

B. Map-Matching As An Independent Source Of Information

The PF map-matching described in Sec. II is used in order
to cope with the absence of pseudo-range measurement. The
map-matching algorithm is designed to be as independent as
possible from the GNSS (only used to prune very unlikely
map-matching hypotheses), It thus acts as another independent
source of positioning and provides redundancy allowing an
estimation of the GNSS fix deviation with respect to the map-
aided PF.

An estimate of the uncertainty level of the position is then
the distance of the GNSS fix to the matching hypotheses.
Fig. 3 shows an example of MA-HUL: the GNSS trace is

Figure 3. Biased GNSS position and associated matching hypotheses (purple
and yellow triangle/line) at the same time index (the GNSS track is displayed
in white). The MA-HUL is denoted by the red line, representing the largest
distance between the GNSS position and a matching hypothesis. The green
lines are the lane markings information from the map.

represented in white, while two matching hypotheses are in
purple and yellow; the MA-HUL is represented by the red
line. Note that MA-HUL is based on the assumption that the
map is accurate. To keep a conservative level of uncertainty,
the method chooses the farthest hypothesis for the MA-
HUL calculation thus considering the worst case scenario (for
instance, the yellow one in Fig. 3). The computation is then
given by:

MA-HUL = max
j
||Xgnss −Xhypj ||2 (7)

The interpretation of the meaning of the MA-HUL is as
follows:
• Large MA-HUL: this can be due to an erroneous GNSS

fix, to an uncertain MM, to a faulty MM or any combi-
nation of these phenomenons. No confidence has to be
placed in the positioning information.

• Small MA-HUL: this is the ideal situation meaning the
MM result is compact and coherent with the GNSS
fix. High confidence can be placed in the positioning
information.

Please note that we suppose that the probability of having
a faulty GNSS fix at the same position as a faulty MM is
negligible.

V. CROSS-TRACK AND ALONG-TRACK
SEPARATION

This paper improves the method presented in [3] by adding
the lateral information from the camera sensor. Considering
this, the particles are expected to spread differently longitu-
dinally (along-track direction) and laterally (cross-track). The
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Figure 4. Filter’s particles: it is clearly visible that the longitudinal spread is
different from the lateral one, due to the straightness of the road driven.

phenomenon is illustrated in Fig. 4 the road leading to this area
is quite straight. In this particular situation, the along-track
spread is about twice as big as the cross-track. This is due
to the lack of longitudinal information, the only source being
the variation of the road curvature: the along-track spread is
greatly reduced inside bends.

From this statement, the idea of separating the MA-HUL
along the two directions emerges. The goal is to be able to
characterize more finely the position uncertainty. Additionally,
it gives a more tailored estimation as it targets only a specific
direction: most applications are focusing on only one direction.
For instance, Lane Centering Assistance (LCA) systems only
need cross-track positioning. The direction-separated MA-
HUL will be more tied to the map-matching results than the
previous combined MA-HUL, that was more general: the two
directions being relative to a matched link.

An adaptation of the previous MA-HUL calculation is
needed: the goal is to decompose the calculated distance into
longitudinal and lateral components, with respect to the road.
In other words, a change of frame has to be performed from
the East-North frame to a Frenet-like, Tangent-Normal frame
of the road, centered on the most likely position. Within this
new frame, the coordinates (X,Y ) of the hypotheses will be
the longitudinal and lateral components of the separated MA-
HUL. Homogeneous coordinates are used in order to describe
the frame transformation. Let α be the angle formed by the
road segment with the East axis. X denotes the homogenous
coordinates of the hypothesis in the East-North frame and X ′

in the new frame and finally (xgnss, ygnss) are the Cartesian
coordinates of the GNSS position. The transition matrix,
corresponding to a translation of (xgnss, ygnss) and a rotation
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Figure 5. GNSS deviation, computed by comparing with a ground truth (in
cyan) and the corresponding computed MA-HUL (in blue).

of angle α, is then Tr such as:

X ′ = Tr ·X =

[
RT −RT · t
0 1

]
·X (8)

xlongiylat
1

 =

 cosα sinα A
− sinα cosα B

0 0 1

 ·
 xeastynorth

1


A = −(xgnss · cosα+ ygnss · sinα)

B = −(−xgnss · sinα+ ygnss · cosα).

Once the transition done, the along-track and cross-track
MA-HUL are computed by the weighted mean of the particles
X ′ poses: the xlongi coordinate corresponding to the along-
track MA-HUL and ylat to the cross-track.

VI. RESULTS
The algorithm has been tested with real data gathered on

open road using the Papcus Framework (developed in-house by
Heudiasyc) that provides data recording and real-time replay.
Thanks to a development in C++, the PF runs in real-time
with 1000 particles. The map-matching ground truth has been
created by hand labeling the GNSS position, using a context
camera fixed behind the windscreen of the car. The HPL is
set manually to a conservative value of 50 m.

The test travel is representative of a peri-urban trip: the car
traveled 4 km on 2-lanes roadways, crossing 3 roundabouts. At
some point, the road gets close to high-rise buildings, creating
an area prone to GNSS multi-path. On the other hand, the
travel was done on a small bypass in open sky condition during
2 km.

Fig. 5 shows the MA-HUL (in blue) computed without
cross/along-track separation nor lane markings information.
The convergence of the filter is about 10s after initialization.
The MA-HUL is, as expected, an upper bound of the GNSS
error (in cyan), but its value is in some situation quite
pessimistic (e.g. the spike at around t = 460s).

Fig. 6 shows the MA-HUL with along/cross-track separation
(respectively in cyan and green). This allows the identificaion
of the main component of the HUL: it is visible that the
variations observed in the combined MA-HUL (in blue) are
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Table I
STANDARD DEVIATION AND MEAN VALUE OF THE DIFFERENT MA-HUL

CALCULATION METHODS.

(values in meters) Mean Value Standard Deviation
Combined MA-HUL 7.23 3.97
Longitudinal MA-HUL 3.74 2.32
Lateral MA-HUL 4.01 2.96
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Figure 6. Separating the MA-HUL in two: along-track (in cyan) and cross-
track (in green). The camera detections are used, improving the cross-track
uncertainty.

often mainly due to only one direction-separated MA-HUL,
depending on the situation. For instance, at t = 60s the cross-
track uncertainty causes the majority of the HUL value. This
is due to a lane bifurcation on the leftmost of the road: an
immediate increased is observed and a higher spread occurs
whereas the longitudinal spread increases only steadily.

Another point of interest is the sequence at around t =
400s. It also describes a lane forking (depicted in Fig. 1),
but the road observes later a high curvature. The hypothesis
creation is visible by an initial high increase of cross-track
uncertainty. Hypotheses eliminations are visible at t = 455s
and t = 470s by a sudden drop. Meanwhile the along-track
uncertainty evolves normally in t = [400; 425]s. A progressive
decrease can then be observed due to the curvature that tighten
the longitudinal uncertainty. It then evolves according to a
particle filter behavior.

Table I compares the performance of the separated MA-
HUL and the combined one. It confirms the trend of Fig. 6 that
separating the MA-HUL on two axis (longitudinal and normal,
in a Frenet-like frame) gives lower values of uncertainties.
Separating the two is therefore beneficial especially for spe-
cialized applications that only need one of the two dimensions.
For instance, for lateral lane determination, this method gives
10% of the time a MA-HUL value smaller than 1.75m (half
a drivable lane width in France) and 57% of the time smaller
than 3.5m.

VII. CONCLUSION

The work presented in this paper aims to quantify the
confidence a navigation system can have in map-matched
estimates by giving a reliable uncertainty indicator. The so-
lution is based on independent map-aided dead-reckoning

that provides an efficient way to estimate in real-time an
uncertainty bound of the GNSS positioning error, needed for
ADAS or autonomous navigation functions which require high
integrity positioning. The proposed MA-HUL estimates the
level of uncertainty of the GNSS position, given the inputs
from other sources of information – namely a map-matching
algorithm based on dead-reckoning, camera lane detection and
an HD road map. It counterbalances the absence of pseudo-
range measurements through the processing of other GNSS-
independent information sources to provide redundancy to the
positioning system.

In the paper, we have also described the way to separate
the along-track and cross-track components of the MA-HUL
which is useful to determine more accurately the uncertainty
characteristics. For instance, some functionalities may only
need the uncertainty in one direction. The separated MA-HULs
are about half the value of the combined MA-HUL. Moreover,
experimental results show that, with a low cost GNSS receiver,
the cross-track MA-HUL can be 10% of the time smaller than
half a lane width (1.75 m) when the combined one can only
attain 2.4 m. This illustrates well the improvement made by
partitioning the MA-HUL in two directions.

Further work shall integrate probabilistic techniques to
obtain an integrity metric corresponding to a specified risk
level for map-relative localization.
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