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France

Received 8 April 2016; accepted 19 December 2016

Accurate localization with high availability is a key requirement for autonomous vehicles. It remains a major
challenge when using automotive sensors such as single-frequency Global Navigation Satellite System (GNSS)
receivers, a lane detection camera, and proprioceptive sensors. This paper describes a method that enables
the estimation of stand-alone single-frequency GNSS errors by integrating the measurements from a forward-
looking camera matched with lane markings stored in a digital map. It includes a parameter identification
method for a shaping model, which is evaluated using experimental data. An algebraic observability study
is then conducted to prove that the proposed state vector is fully observable in a road-oriented frame. This
observability property is the basis to develop a road-centered Extended Kalman filter (EKF) that can maintain
the observability of every component of the state vector on any road, whatever its orientation. To accomplish
this, the filter needs to handle road changes, which it does using bijective transformations. The filter was
implemented and tested intensely on an experimental vehicle for driverless valet parking services. Field results
have shown that the performance of the estimation process is better than solutions based on EKF implemented in
a fixed working frame. The proposed filter guarantees that the drift along the road direction remains bounded.
This is very important when the vehicle navigates autonomously. Furthermore, the road-centered modeling
improves the accuracy, consistency, and robustness of the localization solver. C© 2017 Wiley Periodicals, Inc.

1. INTRODUCTION

Autonomous ground vehicles (AGVs) have existed as pro-
totype and demonstration vehicles since the 1970s. Their
widespread use promises increased comfort, safety, reduced
traffic congestion, energy conservation, and pollution re-
ductions (Litman, 2013). Usually, an AGV needs to per-
form four kinds of tasks: localization, perception, path plan-
ning, and control. This paper focuses on the localization
system. Localization generally refers to determining the
vehicle’s position (x, y) and heading (ψ) with respect to
a map that includes the vehicle’s goals. For autonomous
navigation, the real-time vehicle localization is required to
be accurate, fully available, and reliable. Expensive sen-
sor suites, such as Real-Time Kinematic Global Positioning
System and high-grade Inertial Measurement Unit (IMU),
are often adopted to achieve good performance. The abil-
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ity to simultaneously estimate the pose of a vehicle and
give reliable confidence indicators using only low-cost sen-
sors remains a challenging problem, particularly in outdoor
environments.

Recently there have been impressive demonstrations
on both rural and urban routes of self-driving cars using
close-to-market sensors and enhanced maps (Furgale et al.,
2013; Schreiber, Knoppel, & Franke, 2013; Ziegler et al.,
2014). In most cases, an on-road assumption and the use
of an informative digital map make low-cost autonomous
driving possible. In the research community, there has
been significant progress in the generation of detailed dig-
ital maps (Guo, Meguro, Kojima, & Naito, 2014), to the
point that map-aided perception (Cui, Xue, Du, & Zheng,
2014; Kurdej, Moras, Cherfaoui, & Bonnifait, 2014) and
map-aided localization (Jo, Chu, & Sunwoo, 2013; Miller,
Campbell, & Huttenlocher, 2011; Rose, Britt, Allen, & Bevly,
2014; Schreiber, Knoppel, & Franke, 2013) are now en-
ergetically being considered for autonomous navigation.
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A detailed and highly accurate map often contains lane
polylines, carriageway boundaries, lane markings with as-
sociated types, speed limits, and additional information
useful for navigation. The use of such a map makes the
vehicle able to localize itself precisely in order to maneuver
correctly with a path planner.

In order to benefit from a highly accurate map, a ve-
hicle needs to measure its relative position with respect to
features of the road on which it is traveling, by integrating
perception information such as lane detections. An up-to-
date survey of lane detection can be found in Bar Hillel,
Lerner, Levi, and Raz (2014). The sensing technologies in-
volved are mainly camera and lidar. Lidar uses active light
and is therefore not affected by certain natural light issues.
However, it can face problems in snow, rain, and fog. Lane
and road boundary detection using only laser-based sensors
has been discussed in Morales, Tsubouchi, and Yuta (2009),
Ogawa and Takagi (2006), Reyher, Joos, and Winner (2005),
and Wijesoma, Kodagoda, and Balasuriya (2004). Cameras
are attractive sensors, as they are cheap and provide high-
resolution information with lower operating power. Multi-
sensor lane-finding systems have also been proposed for au-
tonomous driving (Huang, Moore, Antone, Olson, & Teller,
2008). The obvious major drawback of lidar is the relatively
high cost of sensors, which has prevented their use becom-
ing widespread in automotive applications. Camera-based
lane recognition systems are relatively mature nowadays
and have already been introduced to market for lane de-
parture warning systems (LDWSs). Many LDWSs provide,
on the Controller Area Network (CAN) bus of a modern
vehicle, several attributes of the detected lane markings,
including lane type, position, curvature, curvature deriva-
tive, and heading. These local measurements are useful for
improving vehicle localization when coupled with a lane
marking map.

In order to get localization at high frequency and
with high availability, proprioceptive sensors such as wheel
speed sensors and yaw rate gyros are particularly relevant.
These sensors are already available in modern cars. In Eu-
rope, every new vehicle has had to be equipped with an
Electric Stability Program (ESP) since January 2012. Anti-
lock Braking System (ABS) has been part of standard equip-
ment even longer. These two systems contain a wealth of
proprioceptive sensors that are capable of measuring vehi-
cle yaw rate and individual wheel speed. The sensors can
easily send their measurements to electronic control units
via a CAN bus, to enable dead reckoning (DR). Even if drift
is unavoidable, DR provides accurate short-term estimates
with high frequency.

The most widely used outdoor localization systems are
Global Navigation Satellite Systems (GNSSs). A GNSS pro-
vides an estimation of absolute position, and can there-
fore be useful when initializing a system, compensat-
ing for DR drift or calibrating sensors. The fusion of
GNSS and DR has been widely studied (Bar-shalom, Li, &

Figure 1. Driverless valet parking vehicle used in the PAMU
(Plateforme avancée de Mobilité Urbaine) project (Laboratoire
Heudiasyc, 2015).

Kirubarajan, 2002; Bonnifait, Bouron, Crubille, & Meizel,
2001; Gao, Petovello, & Cannon, 2006; Sukkarieh, Nebot, &
Durrant-Whyte, 1999). However, measurements are often
affected by strong biases when using a stand-alone GNSS
receiver. These biases are caused mainly by satellite posi-
tion errors from real-time broadcast ephemeris, atmospheric
propagation delays, and multipath effects. Although the
manufacturers of GNSS receivers are providing increasingly
reliable solutions with the development of multiconstella-
tion satellite technology, it remains hard to compensate sys-
tematic errors for a stand-alone solution without additional
sensors or differential corrections.

In this paper, we develop a localization system for pro-
viding an accurate real-time pose estimate to be used as a
feedback for the autonomous navigation of a full-sized car
in valet parking operations (see Figure 1). The estimation
of pose is used by a motion planner that enables the car to
follow a predetermined path. We focus on map-aided meth-
ods and explore the feasibility of using low-cost automotive
sensors to achieve this goal.

Figure 2 displays a systemic view of the proposed lo-
calization system. We use automotive sensors with CAN
bus interfaces. The available sensor information sources are
wheel speed sensors and a gyro for DR, GNSS for global
positioning, and a lane detection camera coupled with a
lane marking map for accurate cross-track positioning. The
GNSS, when coupled with DR, provides vehicle pose esti-
mation with high availability but low accuracy. Conversely,
the lane detection camera with the lane marking map pro-
vides estimates with low availability but high accuracy.
Availability is low because the lane detection camera from
the LDWS works well only in areas where the lane marking
is well defined, without any ambiguity, and reliable mea-
surements cannot be obtained at intersections and on highly
curved roads. The two groups of sensors are quite comple-
mentary. Therefore, our objective is to design a localization
solver that merges all these information sources to achieve
GNSS/DR-like availability and camera-like accuracy. In ad-
dition, we expect to have a highly consistent localization

Journal of Field Robotics DOI 10.1002/rob



Z. Tao et al.: Road-Centered Map-Aided Localization for Driverless Cars • 3

Figure 2. Systemic view of the proposed approach.

solver, which means that the estimated confidence domain
contains the ground truth as often as possible.

Research approaches in the literature have focused
on tightly coupling vision sensors and enhancing the fea-
ture detection algorithm such as in Gruyer, Belaroussi, and
Revilloud (2016), Hara and Saito (2015), Levinson and
Thrun (2010), Pink (2008), and Wolcott and Eustice (2014). In
this paper, the lane detection camera is an off-the-shelf sys-
tem. The availability of lane marking detection will some-
times be low, and it outputs only the lane marking param-
eters of the host lane of the vehicle. The good aspect is that
the host lane detection function is proved to be quite ro-
bust. The detection of the closest markings usually leads
to less complex and more robust detection as argued in
Gruyer et al. (2016). We focus on improving the GNSS/DR
accuracy by modeling the measurement errors. Integrating
the camera with the lane marking map makes this possi-
ble. Meanwhile, the camera measurements are related to
the local geometry of the road. Generally, cross-track mea-
surements (e.g., lane marking measurements) will be made
more frequently than along-track measurements (e.g., stop
line measurements). The observability of the GNSS/DR er-
ror is therefore weak in the along-track direction, whereas
it is high in the cross-track direction.

We adopt a loosely coupled scheme, meaning that high-
level information (e.g., position fixes of the GNSS receiver
and clothoids of the lanes detected by the camera) and not
raw data are fed into the localization solver. This option is
often chosen because of its simplicity, given that position
fixes are available in any standard GNSS unit. In this paper,
the localization solver is realized using an Extended Kalman
filter (EKF). It is difficult to model the error of a loosely cou-
pled GNSS receiver, because it is affected by both the exter-
nal environment and internal filtering effects of the receiver.
Our solution is to identify a model that can represent effec-
tively the major properties of GNSS errors, namely system-
atic bias, white noise, and autoregressive/Gauss–Markov
processes. Navigation system errors can be approximated
by this modeling in most cases, provided that the models
adequately fit the real errors (Groves, 2013). In particular, we
propose to enhance the GNSS error model in the cross-track
direction by integrating camera cross-track measurement.

The state vector is then augmented by adding the sensor
error models. To maintain the observability of each state
element, we propose a road-centered Extended Kalman fil-
ter (RC EKF) algorithm for handling the enhanced GNSS
error model. By “road-centered,” we mean that the work-
ing frame of the localization solver is adjusted so that it
is always aligned with the road that the vehicle is traveling
along. This idea is inspired from the invariant EKF proposed
by Bonnabel, Martin, and Salaun (2009). Our localization
problem possesses natural invariance with respect to road
rotations, and geometrical transformations can be found to
make the system invariant. The nonlinear observability of
the augmented state vector is studied here in an algebraic
framework.

The main contribution of this paper is to propose a new
modeling of GNSS error that is particularly well adapted
for a new road-centered filtering scheme integrating cross-
track lane marking measurements in real time. We do an
algebraic observability analysis to support the design of this
approach. The filter is implemented as an EKF that works
in a frame that follows the road. A number of real outdoor
experiments were carried out to evaluate the method in
terms of localization accuracy and consistency.

The paper is organized as follows. Section 2 describes
the system modeling, in particular the frames and GNSS
fix error modeling. The observability of the proposed state
space modeling is studied in Section 3. Section 4 describes
the RC EKF implementation. Outdoor real experimental re-
sults are presented and analyzed in Section 6. Section 7
concludes the paper.

2. SYSTEM MODELING

2.1. Definition of Frames

A local East, North, Up (ENU) frame is defined as a Carte-
sian coordinate system tangential to the Earth’s ellipsoid
at an origin point close to the navigation area. The north
axis is tangential to the meridian that passes through the
origin in a northerly direction. The east axis is normal to the
north axis and is in the positive longitudes direction. The
Up axis is chosen so that the ENU is a right-handed coor-
dinate system (see Figure 3). This ENU frame is defined as
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Figure 3. Frames used: ECEF (Earth Centered Earth Fixed), ENU, vehicle body, and camera. λ, ϕ, and h refer, respectively, to
longitude, latitude, and altitude.

the local navigation frame. GNSS receivers usually provide
geographical data (λ, ϕ, h) in the WGS84 system.

When the navigation area is flat enough, the 3D ENU
frame can be simplified into 2D coordinates by only con-
sidering easting and northing. The lower frame RO in
Figure 3 is the 2D ENU frame with xO pointing east and
yO pointing north. The lane marking map is also defined in
RO . As shown in Figure 3, camera-relative measurement is
done with respect to an absolute navigation frame.

RM denotes the mobile vehicle frame (xM is the lon-
gitudinal axis pointing forward and yM is such that zM is
upwards). Point C, the origin of the camera frame RC , is
located at the front of the vehicle, since camera systems will
often autocalibrate. In order to stay consistent with vision
system conventions, yC is pointing to the right side of the
vehicle. Even if the camera is located behind the windscreen
with a position offset (Cx, Cy), every detected lane marking

is expressed in RC . P x refers to the translation between point
M and the front bumper.

2.2. Dead Reckoning Kinematic Model

The linear velocity of each rear wheel is measured by the
ABS speed sensors. Since the vehicle is front-wheel driven,
the slippage of the rear wheels is neglected. In the following
differential model, time is omitted for simplification:⎧⎪⎪⎨

⎪⎪⎩
ẋ = vm · cosψ
ẏ = vm · sinψ

ψ̇ = ωm − εω

ε̇ω = 0,

(1)

where the linear velocity is calculated by vm = (vm
rl + vm

rr )/2;
vm

rl and vm
rr denote the measured linear velocity of the left

and right rear wheels, respectively. The angular velocity of
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the vehicle (ωm) is measured by the ESP yaw rate gyro. εω is
the gyro bias modeled by a random constant. An estimate
of the pose (x, y, ψ) of the vehicle is given by the integration
of the measurements from a known initial pose.

2.3. Camera Observation Model

We consider a camera system that provides the follow-
ing lane marking parameters of a Taylor’s expansion of a
clothoid in the camera frame (Kluge, 1994):

y = C3 · x3 + C2 · x2 + C1 · x + C0, (2)

where C0, C1, C2, and C3 are, respectively, the cross-track
distance, the slope, the curvature, and the curvature deriva-
tive of the detected lane marking (see Figure 3 for C0 and
C1).

Since the lane marking map is represented by polylines,
the only parameter that is considered for vehicle localization
is the cross-track distance C0. The heading C1 is too sensitive
to movements of the vehicle body.

In Figure 3, let L denote the lane marking detection
located at ordinate C0 in RC . The coordinates of point L in
frame RO are[

xL

yL

]
=

[
P x · cosψ + C0 · sinψ + x

P x · sinψ − C0 · cosψ + y

]
. (3)

In Figure 3, [AB] represents the detected lane marking
segment. The coordinates of points A and B are (xA, yA) and
(xB, yB ) in RO . Let V = (xAB = xB − xA, yAB = yB − yA)T .
Point L on segment [AB] is such that{

xL = xA + λ · xAB

yL = yA + λ · yAB
with λ ∈ [0, 1] . (4)

Plugging Eq. (3) into Eq. (4), we have{
P x · cosψ + C0 · sinψ + x = xA + λ · xAB

P x · sinψ − C0 · cosψ + y = yA + λ · yAB
. (5)

Through Eq. (5), we derive

C0 = (P x · sinψ + y − yA) · xAB − (P x · cosψ + x − xA) · yAB

xAB · cosψ + yAB · sinψ

(6)

The camera observation model takes into account ex-
plicitly the camera position in the body frame. It is nonlinear
and can be written as

ycam = gcam (x, l) + βcam, (7)

where ycam = [C0] is the camera measurement, x is the state
vector of the vehicle, l is the lane marking parameters ex-
tracted from the digital map, and βcam is a measurement
noise that is centered when the camera is well calibrated
intrinsically and extrinsically (Bouguet, 2008).

2.4. Road Feature Maps

Detailed maps provide prior information to navigation
tasks and can provide a self-driving capability that is low
cost in terms of onboard hardware equipment. In this sec-
tion, we discuss relevant previous works.

Different kinds of maps have been considered in the lit-
erature. In Laneurit et al. (2006), a map was used that com-
prised a grid of rectangular facets representing the road-
sides. The origin, orientation, length, and width of each
facet are defined in the local navigation frame. Using a front
view camera, an image processing algorithm is then imple-
mented to give precise cross-track position and orientation
of the vehicle with respect to the roadside. l corresponds to
the parameters of the nearest facet. This work shows that it
is possible and potentially useful to integrate lane bound-
ary information, which often means detecting white lane
markings. In Miller et al. (2011), the map is modeled by
GNSS waypoints designating lane centers, stop lines, and
lane markings. Dashed, solid, and unstructured lane types
are denoted for each lane marking. In this approach, ycam

contains the perpendicular distance of the camera from each
of the lane boundaries, the camera heading with respect to
the lane, the lane width, the lane type, and the distance
to the stop line. The authors use a particle filter to aug-
ment the GNSS/DR solution with camera measurements
coupled with a surveyed map. They give a demonstration
of the stability of the localization solutions used to feedback
the controller of a full-size AGV. Recently, other works with
similar ideas but different configurations have been carried
out, such as in Gruyer, Belaroussi, and Revilloud (2014), Jo
et al. (2013), and Lee et al. (2015). Section 2.5.3 describes
some research works. In GNSS error modeling (Jo et al.,
2013), a front view camera is used to detect lane markings
and zebra lines that have been charted in the map. In Gruyer
et al. (2014), two cameras are used to provide an assessment
of the cross-track distances between the vehicle and the ego-
lane markings or borders. This information is then coupled
with an accurate digital map of the road markings. How-
ever, the modeling of GNSS errors is not considered. Lee
et al. (2015) propose, in particular, a localization method
with GNSS/DR error estimation based on lane detection
for curved lane models. They propose an along-track mea-
surement from a curve matching. The curved parameter of
the lane ahead is fitted using the waypoint map by suppos-
ing that the waypoints and the lane markings are parallel.
The fitted waypoint curve is then transformed into the ve-
hicle frame. However, the impact of the uncertainty of the
estimated vehicle heading on this transformation (which
introduces errors on the along-track measurement) is not
discussed.

The lane marking map used in the present paper was
the result of a surveying operation carried out by a private
company. The mobile mapping system was equipped with
a RIEGL VQ450 lidar with millimeter-level accuracy. The
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Figure 4. Lane marking map of the test area. Blue line: road centerline; green line: lane centerline; white line: lane marking; gray
box: building.

mobile mapping platform itself was localized using a post-
processed kinematic GPS. The absolute error of the collected
lane marking data is estimated to be in the order of 10 cm.
Figure 4 shows the lane marking map of the navigation
area. The gray boxes represent the buildings imported from
OpenStreetMap1. The blue, green, and white lines, respec-
tively, represent the road centerlines, the lane centerlines,
and the lane markings.

2.5. GNSS Fix Error Model

GNSS is mandatory for initialization of the localization sys-
tem, and GNSS information should be used as much as
possible as long as it is consistent with the pose estimate.
Where there are no lane markings in a navigation area, or
where the camera fails to detect lane markings (for instance,
at an intersection), GNSS can improve the accuracy of the
pose information and compensate for DR errors. Moreover,
since the camera observations provide only cross-track cor-
rection, where the vehicle is traveling on a long straight
road, the along-track drift of a map-aided dead-reckoned
estimate can become significant. The GNSS information can
again be used to correct the along-track drift. We augment
the state vector with shaping components so that data from
GNSS fixes can be merged.

2.5.1. GNSS Position Fix Errors

Loosely coupling L1-GNSS with other sensors is a challeng-
ing task since GNSS positioning errors (PEs) are not white
and can be affected by strong biases and multipath, par-
ticularly in urban areas. Figure 5 illustrates these issues on
a real test with a low-cost L1-GNSS receiver: PEs can be
as much as several meters, are strongly correlated and can
have jumps within short time intervals. The solution that

1www.openstreetmap.org

we propose is to model the correlation to compensate for
the biases and to reject fixes suffering from multipath ef-
fects. The GNSS error signals (βx, βy) were obtained using
a ground truth system.

Autocorrelations of three different sequences of (βx, βy)
produced by the same GNSS receiver (1000 samples each at
5 Hz) are shown in Figure 6. As the shape is clearly different
from a Delta-Dirac at zero, errors are colored. Moreover, for
short correlation times (less than 30 s), the different curves
superimpose quite well, which indicates a repeatable be-
havior that can be modeled. Therefore, L1-GNSS errors can
be modeled by zero-mean white noise that is put through
shaping filters to yield an output statistically similar to the
error under consideration.

The problem is to find a structure for the filter and then
to estimate its parameters and the variance of the driving
noise.

2.5.2. Autoregressive Processes for Modeling GNSS
Colored Errors

An autoregressive (AR) model is a representation of a type
of random process. The name autoregressive comes from
the fact that each signal sample is regressed on the previous
values of itself. The AR process can be described using a
discrete pole-zero transfer function system H (z) as follows:

H (z) = O (z)
I (z)

= β0

1 + ∑ p

n=1αnz−n
, (8)

where I (z) is the z-transform of the input I k , and O(z) is the
z-transform of the output Ok . β2

0 represents the estimated
variance of the white noise input to the AR model, and p is
the AR order.

Applying the inverse z-transform to Eq. (8), the AR
transfer function in the time domain can be obtained as

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Errors of L1-GNSS solutions in the local navigation frame. The vehicle was manually driven up to 30 km/h with an
RTK-GPS IMU for ground truth.
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repeatable between tests.

Ok = −
p∑

n=1

αnOk−n + β0I k. (9)

In Nassar (2003), the AR processes are first used to
model the randomness of the inertial sensor measurements.
The residual random error component is modeled as a zero-
mean white noise put through a shaping filter to yield a
time-correlated output. In the present work, we suggest

using AR processes to model GNSS random errors. In our
case, Eq. (9) becomes⎧⎪⎪⎨

⎪⎪⎩
εx,k = −

p∑
n=1

αx,nεx,k−n + wx,k

εy,k = −
p∑

n=1
αy,nεy,k−n + wy,k

, (10)

where εx and εy are the biases on the GNSS position fix, and
wx and wy are the input white noises.
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8 • Journal of Field Robotics—2017

1 2 3 4 5 6 7 8
0.00

0.01

0.01

0.01

0.02

0.03

0.03

0.04

0.04

V
ar

ia
tio

n 
of

 th
e 

pa
ra

m
et

er
 w

.r
.t 

th
ey

 m
ea

n 
in

 %

Sequence number

Figure 7. Relative variation in AR1 parameters for eight dif-
ferent estimation sequences (Burg’s method).

We now look at how to determine the AR model pa-
rameters (αx,n and αy,n), the input white noise (wx and wy),
and the AR order p.

Different methods exist for estimating AR parameters.
Three methods are quite common, namely Yule–Walker, the
covariance method, and Burg’s method (Nassar, 2003). The
Yule–Walker method first determines the sample autocorre-
lation sequence of the input signal (GNSS residual bias), and
the AR model parameters are then optimally computed by
solving a set of linear normal equations in a least-squares
sense. However, the Yule–Walker method performs ade-
quately only for very long data records (Jackson, 1996),
and it may introduce a large bias in the AR estimated co-
efficients, since it does not guarantee a stable solution of
the model. The covariance method is similar to the Yule–
Walker method in that it minimizes the prediction in the
least-squares sense.

Burg’s method was introduced to overcome most of the
drawbacks of the other modeling techniques by providing
both stable resolution and high resolution, especially for
short data records (Burg, 1975). Burg’s method attempts to
use the data as fully as possible, by defining both a forward
and a backward prediction error term.

In the present work, Burg’s method is adopted to esti-
mate the AR parameters and the variance of the input white
noise of the shaping filter.

The choice of the order of the AR model is also of im-
portance.

Figures 7 and 8 show the variation of the estimated
parameters of first- and second-order models (denoted
AR1 and AR2 parameters, respectively) on eight different
sequences acquired at speeds up to 50 km/h. The varia-
tion in the AR1 parameters is at most 0.06%. However, the

variation in the AR2 parameters is almost 50%. Although
the sequences that we used to identify the parameters are
probably too short to estimate the AR2 parameters correctly,
an AR1 model clearly has better stability. Our strategy is
therefore to use an AR1 filter that is more robust to the
nonstationarity of the errors.

In order to validate this shaping model, the recurrence
equations may be reversed in offline processing:{

wx,k = εx,k + αxεx,k−1

wy,k = εy,k + αyεy,k−1
. (11)

The autocorrelations of wx,k and wy,k are given in
Figure 9 (red curves). They approximate a Delta-Dirac func-
tion quite well. We conclude that these signals can be seen as
white noise sequences with respect to the dynamics of our
system, and the AR1 model defined by Eq. (11) is a good
shaping filter.

2.5.3. GNSS Error Models

When using GNSS as a sensor in a loosely coupled fusion
architecture, the position fix estimates (xGNSS, yGNSS) in the
working frame are affected by errors (βx, βy). Neglecting
the lever arm of the antenna for simplification, we have{

xGNSS = x + βx

yGNSS = y + βy
. (12)

The errors (βx, βy) cannot be considered as zero-mean
white noise in the way that was discussed above. The po-
sition fix of a GNSS receiver is affected by time-correlated
errors caused by atmospheric effects and by the filter imple-
mented in the receiver. Modeling of GNSS biases has been
discussed in a number of publications, including Laneurit,
Chapuis, and Chausse (2006), Clanton, Bevly, and Hodel
(2009), and Miller et al. (2011).

The nonmodeled part of the error can be expressed by
some random process β

′
x and β

′
y , assumed to be zero-mean

white noise: {
xGNSS = x + εx + β

′
x

yGNSS = y + εy + β
′
y

, (13)

where εx and εy are slow-variation errors in the ENU frame
for which an evolution model exists. Some authors, such
as Laneurit et al. (2006) and Lee et al. (2015), suppose that
these errors are quite constant between two samples:{

εx,k = εx,k−1

εy,k = εy,k−1
. (14)

In Laneurit et al. (2006), a bias management strategy is
proposed to decide whether the bias has changed.

In Miller et al. (2011) and Jo et al. (2013), the GNSS biases
are modeled by an AR1 process as proposed in Bar-shalom
et al. (2002): {

εx,k = e−dt/τx · εx,k−1 + νx,k−1

εy,k = e−dt/τy · εy,k−1 + νy,k−1
, (15)
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Figure 8. Relative variation in AR2 parameters for eight different estimation sequences (Burg’s method).

where τ x and τ y are the bias autocorrelation time constants
and dt is the elapsed time. νx and νy are zero-mean white
noise. The vehicle dynamic equations are then augmented
by Eq. (14) or (15).

In our work, we use a combination of the random con-
stant process defined by Eq. (14) and the AR model defined
by Eq. (15) to enhance the GNSS error modeling. This choice
is motivated by the road-frame implementation presented
hereafter.

2.6. Road-Oriented Frame Modeling of the
Localization Problem

The working frame in which a localization solver is imple-
mented can play an important role in terms of modeling and
estimation performance. Often a local ENU frame is used
but, since we are using a camera that is able to measure
the cross-track distance with respect to known lane mark-
ings, we propose modeling the system in a road-oriented
Cartesian frame.

A road-oriented frame ixiy (see Figure 10) is defined to
have the same origin as the local ENU frame, and to have
its x-axis pointing in the direction of the road i on which the
vehicle is traveling.

As the vehicle uses DR sensors (yaw rate gyro and
wheel speeds) and L1-GNSS fixes affected by non-white
noise, the state vector contains different terms for the GNSS
errors:

x = [
x, y, ψ, εω, εx1, εx2, εy1, εy2

]T
, (16)

where (x, y, ψ) is the 2D pose of the vehicle; εω denotes
the gyro bias; and (εx1, εx2, εy1, εy2) are GNSS errors on x

and y in the road-oriented frame that are split into different
components, as in Bar-shalom et al. (2002).

The proposed evolution model of the state vector is
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v · cosψ
ẏ = v · sinψ

ψ̇ = ω − εω

ε̇ω = 0
ε̇x1 = −εx1/τ 1

ε̇x2 = −εx2/τ 2

ε̇y1 = −εy1/τ 1

ε̇y2 = 0

. (17)

In this model, first-order AR models with time constants τ 1

and τ 2 are used to model the nonwhiteness of the GNSS er-
rors. The error in the x-direction is split into two components
(εx1 and εx2) with different decorrelation time constants in
order to manage the frame transformation when the road
changes (a detailed explanation is given in Section 4.1). The
time constant of εy1 is the same as εx1. v is the linear velocity
measured by the wheel speed sensors, and ω is the angular
velocity measured by the yaw rate gyro. The last equation
of the model associated with εy2 plays an important role in
our localizer. It is a random constant model, as used in La-
neurit et al. (2006), and as such it is well adapted to quickly
estimate the cross-track bias of the GNSS fix in the road
frame.
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Figure 9. Autocorrelations of the experimental signal and of the inverse of the shaping filter.

3. OBSERVABILITY ANALYSIS IN THE ROAD FRAME

Observability is a necessary condition for any filtering al-
gorithm to converge to an unbiased state estimate. In this
section, the following question needs to be answered: are
all the components of the state vector observable when us-
ing the exteroceptive measurements y = [xGNSS, yGNSS, C0]
(the GNSS fix and the cross-track measure of the forward-
looking camera that detects lane markings) and the propri-
oceptive measurements u = [v,w]?

The exteroceptive sensors that are considered are a
GNSS receiver providing position fixes and a forward-
looking camera that detects lane markings. To examine the
structural properties of the modeling using equations that
are easy to handle, let us suppose that the camera and the
GNSS antenna coincide with point M , the origin of the body
frame (see Figure 11).

At this stage, we consider that there is only one lane
marking, locally represented by a line [AB]. The observation
model in this case is given by

C0 = (y − yA) /cosψ, (18)

where C0 is the cross-track distance measured by the cam-
era in the body frame (Tao, Bonnifait, Frémont, & Ibañez-

Figure 10. Road frame : the x-axis is chosen to be parallel to
the road. GNSS fix uncertainty and bias are shown as the green
ellipse and the red line, respectively.

Guzman, 2013). yA is the ordinate of point A in the road-
oriented frame. Figure 11 illustrates the simplification.

The GNSS fixes with their shaping errors are linked to
the state by the following model:{

xGNSS = x + εx1 + εx2

yGNSS = y + εy1 + εy2
. (19)
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Figure 11. Bird’s eye view in the road-oriented frame. ix − iy

indicates the working frame along road i. The green line is
the vehicle trajectory. ψ is the vehicle heading in the road-
oriented frame. The camera is assumed to be located at the
origin (point M) of the body frame for a simplified observation
model defined by Eq. (18).

3.1. Algebraic Observability

We are dealing with a nonlinear system, and in such cases
there are two main approaches to studying the observability
of the state. The classical approach is local weak observabil-
ity (Hermann & Krener, 1977) that relies on the study of a
rank condition after linearization and the computation of
Lie derivatives. There is another approach based on differ-
ential algebra, which is largely the work of Ritt (1950). Dif-
ferential algebra was introduced into control theory through
the works of Fliess, Glad, and Ljung (Fliess, 1989; Fliess &
Glad, 1993; Glad & Ljung, 1990; Ljung & Glad, 1994). Al-
gebraic observability can be expressed as follows (see Sert,
Perruquetti, Kokosy, Jin, & Palos, 2012).

The state of a system with known internal dynamics
is said to be observable if, and only if, there is an algebraic
equation linking the state vector to the measured output y
and input u and a finite number of their time derivatives. If
a state component x1 is observable and another state com-
ponent x2 can be expressed by a algebraic function of x1, y,
u and their derivatives, then x2 is also observable.

Algebraic observability is therefore a different way of
studying observability. It has the advantage of providing a
closed form for building a state observer in cases where the
derivatives of the inputs and outputs can be estimated with
a good quality. It is equivalent to local generic observability
(Diop & Wang, 1993).

Eqs. (17) and (18) are analytic but not algebraic. A so-
lution is to define an equivalent algebraic system (with al-
gebraic functions) by introducing auxiliary state variables
(Chatzis, Chatzi, & Smyth, 2015).

Let us define two auxiliary state variables:{
x1 = cosψ
x2 = sinψ

. (20)

Since

ẋ1 = −ψ̇ · sinψ = − (ω − εω) x2

and

ẋ2 = ψ̇ · cosψ = (ω − εω) x1,

Eqs. (17) and (18) are complemented with two additional
equations and ψ̇ is removed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v · x1

ẏ = v · x2

ẋ1 = −x2 (ω − εω)
ẋ2 = x1 (ω − εω)
ε̇ω = 0
ε̇x1 = −εx1/τ 1

ε̇x2 = −εx2/τ 2

ε̇y1 = −εy1/τ 1

ε̇y2 = 0

(21)

and

C0 = (y − yA) /x1. (22)

All the functions are now rational.
Below we examine the observability of the different

components of the state in the algebraic framework. We
first look at the observability of the vehicle heading and
gyro bias, and then at vehicle position and GNSS biases.

3.2. Observability of the Vehicle Heading ψ

Taking the derivative of Eq. (22), we have

ẏ = Ċ0 · x1 − ψ̇ · C0 · x2. (23)

Plugging ẏ = v · x2 and ψ̇ = ω − εω:

v · x2 = Ċ0 · x1 − (ω − εω) · C0 · x2. (24)

Now, taking now the derivative of Eq. (24), we have[
v̇ + 2Ċ0 (ω − εω) + ω̇ · C0

]
x2 = [C̈0 − C0(ω − εω)2

−v (ω − εω)] x1. (25)

If ψ is identically null (the vehicle is traveling parallel
to the lane marking), then ψ̇ = 0 and we have εω = ω. The
gyro bias is then observable. Moreover, in this case, we have
Ċ0 that is identically null, and so it can be seen that ψ is
identically null.

Now, suppose that ψ is not null. Consequently, x2 �= 0.
From Eq. (24) we can work out

εω = v · x2 − Ċ0 · x1

C0 · x2
+ ω, (26)

where C0 is physically nonnull because the lane markings
are on the sides of the lane.

Plugging Eq. (26) into Eq. (25) and noting that x1 =
(1 − x2

2)1/2, we obtain an implicit algebraic function:(
v̇ · C0 − v · Ċ0 + ω̇ · C2

0

)
x3

2 +
(
C̈0 · C0 − Ċ0

2
) (

1 − x2
2

)3/2

+
(

2Ċ0
2 − C̈0 · C0

) (
1 − x2

2

)1/2 − v · Ċ0 · x2 = 0. (27)
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From this expression, we can get an algebraic equation. A
demonstration is given in Tao (2016).

x2 = �x2

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
. (28)

So, x2 is observable. ψ is determined by ψ = arcsin (x2).

x1 =
√

1 − x2
2 = �x1

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(29)

is observable.
There is a particular situation when the trajectory is

strictly parallel to the road. In this case, ψ is identically null
and then Ċ0 is identically null. Therefore, ψ is seen to be
identically null, and so ψ is observable.

3.3. Observability of the Gyro Bias εω

Using Eqs. (29) and (28) in Eq. (26), we obtain a function �εω

which gives εω:

εω = �εω

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
. (30)

εω is therefore observable.

3.4. Observability of Vehicle Position (x, y) and of
GNSS Biases

Taking the derivative of Eq. (19), we have

ẋGNSS = v · x1 − εx1/τ 1 − εx2/τ 2. (31)

Similarly, for Eq. (31):

ẍGNSS = v̇ · x1 − v · x2 · (ω − εω) + εx1/τ
2
1 + εx2/τ

2
2. (32)

Since ψ is observable, and since we have a linear system
with two unknowns and two equations, we have

εxi = �εxi

(
C0, Ċ0, C̈0, ẋGNSS, ẍGNSS, v, v̇, ω, ω̇

)
i = 1, 2.

(33)

So εx1 and εx2 are observable. If τ 1 = τ 2, then εx1 and εx2 are
not solvable by Eqs. (19) and (31), but (εx1 + εx2) is observ-
able.

With x = xGNSS − (εx1 + εx2) and Eq. (33), x is observ-
able. With y = yA + C0 · x1 and Eq. (29), y is observable.

The expression of εy1 is given as follows:

ẏGNSS = v · x2 − εy1/τ 1 (34)

εy1 = (v · x2 − ẏGNSS) τ 1. (35)

So εy1 is observable.
With εy2 = yGNSS − y − εy1, we can derive that εy2 is

observable.

3.5. Observability: Conclusion

So far, we have proved that every element in the state vector
x can be expressed by an algebraic function of components
of y and u and a finite number of their derivatives. We

Figure 12. Geometrical transformation of the GNSS errors.
The estimated error remains unchanged. However, its compo-
nents on x and y are transformed from road i to road j .

can consequently conclude that the state vector with its
associated state space is observable, as long as the vehicle
moves or accelerates.

4. ROAD-CENTERED EXTENDED KALMAN FILTER

The observability of the state has been demonstrated in a
road-oriented frame. However, in real conditions, the ori-
entation of the road changes as the vehicle moves from one
road to another. We are now building an EKF that estimates
the pose vector of the vehicle from one road to another, in a
sequential way.

4.1. Geometrical Transformation

RO denotes the local ENU frame, and Ri is the working road-
oriented frame, with its x-axis pointing in the direction of
road i. When the vehicle moves from road i to road j , the
working frame changes from Ri to Rj . Let j x denote the
state vector in frame Rj :

j x = [
j x, j y, jψ, j εω, j εx1,

j εx2,
j εy1,

j εy2
]T

. (36)

The transformation from ix to j x is given by Eq. (37):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j x = ix · cosα + iy · sinα
jy = −ix · sinα + iy · cosα
jψ = iψ − α
jεω = iεω
j εx1 = iεx1 · cosα + iεy1 · sinα
jεx2 = iεx2 · cosα + iεy2 · sinα
jεy1 = −iεx1 · sinα + iεy1 · cosα
jεy2 = −iεx2 · sinα + iεy2 · cosα

, (37)

where α = θj − θ i , θ i , and θj are, respectively, the orienta-
tions of road i and road j in RO (cf. Figure 10).

Figure 12 illustrates how the estimated biases change
when the two successive roads are orthogonal.
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Let iP denote the covariance matrix estimated by the
EKF in the working frame Ri . The transformation from
(ix, iP ) to (j x, jP ) is described by the function given in Algo-
rithm 1, where sα and cα denote sinα and cosα, respectively.
The road directions being deterministic, this is simply the
linear transformation of a random vector.

The reason why the bias on ix has been modeled by
two components now becomes clear. Our aim is to model
the cross-track bias on iy by an AR process plus a random
constant in order to get a better estimation process (we have
seen that these two components are observable thanks to the
camera measurements, when working in the road-oriented
frame). If the bias on ix is modeled by only one component,
then there is no way of finding a bijective transformation
when the frame changes from Ri to Rj . When the vehicle
pose is converted from one road frame to another, doing the
inverse transformation has to give the same estimate. Math-
ematically, this means that matrix jH i (see Algorithm 1) has
to be squared such that jH i · iH j = I (identity matrix). It
is straightforward to check that our proposal satisfies this
property.

Algorithm 1 Function Ri2Rj State

Input: ix, iP , θ i , θj

1: α = θj − θ i

2: jH i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cα sα 0 0 0 0 0 0
−sα cα 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cα 0 sα 0
0 0 0 0 0 cα 0 sα
0 0 0 0 −sα 0 cα 0
0 0 0 0 0 −sα 0 cα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3: j bi = [0, 0,−α, 0, 0, 0, 0, 0]T

4: j x = jH i · ix + j bi

5: jP = jH i · iP · (jH i )
T

Output: j x, jP

Since the output of the filter has to be given in the ENU
frame RO , the state transformation is performed using a
function Ri2RO_State, which is constructed by replacing j

in Algorithm 1 with O. θO = 0. (Ox, OP ) denotes the Kalman
filter estimates expressed in the ENU frame.

4.2. Implementation of Road-Centered EKF

The filter is implemented as a discrete EKF triggered by the
proprioceptive sensors (typically at a sampling period T e

= 0.01 s). GNSS and camera measurements are used where
they are available. The filter is described in Algorithm 2. iA

and iB denote the coordinates of the detected lane marking
[AB] in Ri .

Algorithm 2 Road-centred Extended Kalman filter
1: U = Get (proprioceptive sensor measurements)
2: (ix, iP ) = Predict(ix, iP , U )
3: it GNSS data is available then
4: (OyGNSS, ORGNSS) = Get (GNSS fix)
5: (iyGNSS, iRGNSS ) = RO2Ri (OyGNSS, ORRGNSS, θ i )
6: (ix, iP ) =Update_GNSS (ix, iP , iyGNSS,

iRGNSS)
7: end if
8: if Camera data is available then
9: C0 = Get (camera measurement)
10: (Ox, OP ) = Ri2RO _State(ix, iP , θ i )
11: (j, OA, OB) = Map_Match(Ox, OP,C0,Map)
12: if θ i �= θj then
13: (ix, iP ) = Ri2Rj _State(ix, iP , θ i , θj )
14: θ i = θj

15: end if
16: iA = RO2Ri_Point(OA, θi )
17: iB = RO2Ri_Point(OB, θi )
18: (ix, iP ) =Update_Camera(ix, iP , C0,

iA, iB)
19: end if
20: (Ox, OP ) =Ri2RO_State(ix, iP , θ i ) �/*System output*/
21: Go to 1

�/*See Algorithms 1, 3 and 4*/

4.2.1. Prediction

When the proprioceptive sensors are available, the function
Predict (ix, iP , u) consists in computing

ix = f
(
ix, u

) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ix = ix + T e · v · cos
(
iψ

)
iy = ix + T e · v · sin

(
iψ

)
iψ = iψ + T e · (

ω − iεω

)
iεω = iεω
iεx1 = a1 · iεx1
iεx2 = a2 · iεx2
iεy1 = a1 · iεy1
iεy2 = iεy2

(38)

and {
iP = A · iP · AT + B · N · BT + Q

A = ∂f (i x,u)
∂i x , B = ∂f (i x,u)

∂u

. (39)

The measurement noises on v and ω are assumed to be zero-
mean-independent white noise. N denotes their covariance
matrix. Q is the covariance matrix of the process noise a1 =
e−T e/τ1 and a2 = e−T e/τ2 .

4.2.2. GNSS Update

When a GNSS fix is available, the measurement vector
OyGNSS = (OxGNSS,

OyGNSS) in the ENU frame RO is trans-
formed to the working road-oriented frame Ri (see Figure
10) by Algorithm 3. The covariance matrix ORGNSS (typically
given in the NMEA-0183 GST message) is also converted.
Algorithm 3 shows the transformation.
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Algorithm 3 Function RO2Ri

Input: OyGNSS, ORGNSS, θ i

1: iT O =
[

cosθ i sinθ i

−sinθ i cosθ i

]
2: iyGNSS = iT O · OyGNSS

3: iRGNSS = iT O · ORGNSS ·(iT O )T

Output: iyGNSS, iRGNSS

A classical Kalman update step is then performed to
update (ix, iP ) with an innovation gating to reject the GNSS
fix outliers (e.g., multipath on close buildings). For accurate
data fusion, the level arm of the antenna with respect to the
body frame has to be taken into account (see Tao et al., 2013,
for details).

4.2.3. Camera Update

In order to update the filter, the map is used as it contains the
coordinates of the lane marking. Map matching is therefore
done when camera measurements are available.

For feature-based indoor localization, geometric con-
straints for data association can be classified as either
location-independent constraints or location-dependent
constraints (Arras, Castellanos, Schilt, & Siegwart, 2003).
For our purposes, the aim of map matching is to determine
which lane marking segment [AB] (see Fig. 3) has been de-
tected by the camera. We use the lane marking type and
the orientation of the lane marking segment as location-
independent constraints. As soon as a vehicle position is
available, we utilize the distance between the estimated
point L and the possible lane marking segment as a location-
dependent constraint.

In a first stage, a set S of candidate segments is selected
based on the following conditions.

� The lane marking type is consistent with the lane marking
type reported by the camera.

� The orientation of the segment is close to the heading of
the vehicle.

� The distance dist between point L and the candidate
segment is less than the width of the road.

In a second stage, the segment s with the smallest dist

is chosen as the map-matching result:

Map matched = arg min
s∈{S}

{dist} .

The lane marking map used in this paper consists
mainly of two-lane roadways with dashed lane markings
in the center of the road, and solid lane markings on both
sides of the road. In this case, the lane marking-type con-
straints are very good at distinguishing different lanes. This
strategy works well in our tests.

Since the map is defined in RO , the first step consists in
converting the pose in the ENU frame. The algorithm checks

whether the vehicle is on a different road, in which case the
road working frame is modified and the state with its co-
variance matrix is converted. It only remains to obtain the
coordinates of the lane marking in the road frame described
by Algorithm 4 and to update the state and covariance ma-
trix by applying the estimation stage of the EKF. In practice,
the location of the camera in the body frame is taken into
account to get an accurate correction (see Tao & Bonnifait,
2016).

Algorithm 4 Function RO2Ri_Point
Input: OA, θi

1: iT O =
[

cosθ i sinθ i

−sinθ i cosθ i

]
2: iA = iT O · OA

Output: iA

5. EXPERIMENTAL SETUP AND TRIAL CONDITIONS

To evaluate the RC EKF, we used real data from out-
door experiments that were carried out near Paris, France.
Three tests were performed on the same road with an
experimental automotive vehicle (see Figure 13) in urban
conditions.

The experimental vehicle was equipped with an IMU
Oxford RT3000 coupled with RTK-GPS. It provided ground
truth data at a rate of 100 Hz. A CAN-bus gateway was used
to access the wheel speed sensors and the yaw rate gyro. The
measured input [v, w] from the CAN bus was available at
100 Hz. A Mobileye camera installed behind the windscreen
detected lane markings at 10 Hz (see Figure 13(c)). A low-
cost u-blox 6T GPS receiver with a patch antenna was also
part of the equipment (see Figure 13(b)), and this provided
position measurements at 5 Hz without any correction.

Figure 14(a) shows the satellites in view for the first two
tests and Figure 14(b) for the third test. It will be remarked
that the GPS satellite geometries were quite different in the
morning and in the afternoon.

Figure 15 shows the test area in the local ENU frame.
The gray bounds represent buildings that are from Open-
StreetMap to show the urban conditions of the test area.
The black lines represent the lane marking map expressed
by polylines. The test area consists mainly of two-lane road-
ways with dashed lane markings in the center of the road
and solid markings on both sides of the road. The map has
a centimeter-level precision, but a lower accuracy. As the
mission goal of the car is given in the map frame, a small
map offset has little effect once the GNSS errors have been
compensated for in the map frame.

The traveling distance for each test was about 2 km,
with a typical speed of 30 km/h. Taking test 1 as an example,
the red line represents the test trajectory (see Figure 15). The
vehicle started at t = 0 s and halted at t = 327 s. Between
t = 80 and 140 s, the vehicle was in a strong, 300-m-long
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Figure 13. Experimental setup.

Figure 14. Azimuth-Elevation plot of the tracked GPS satellites during the experiments. In total, there are 10 satellites in view.
The satellite geometries were different between the morning and the afternoon.

urban canyon. Around t = 123 s, it encountered situations
with GPS multipath and satellite masking. In addition, the
camera was unable to detect lane markings at intersections
or on roundabouts. Figure 16 shows some typical scenarios
recorded by the experimental vehicle.

6. RESULTS

As described in Algorithm 2, the output of our localization
solver is the vehicle state converted into frame RO . Local-
ization performance is studied in RO by replaying recorded
data. The method proposed in this paper is compared with
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Figure 15. Test scene and trajectory in the local ENU frame. The red line is the vehicle trajectory in the first test. The black lines
are lane markings. The gray boxes are buildings. The vehicle entered an urban canyon around t = 123 s. Several typical locations
(a, b, c, d, e, and f) are tagged along the trajectories. The corresponding scenarios are displayed in Figure 16.

a classical loosely coupled EKF implemented in the ENU
frame RO , in which GNSS bias on x and y are modeled as a
first-order AR process to maintain the observability of every
component of the state. The two filters were implemented
in C++ so that they could be tested with the same develop-
ment framework and with the same tuning parameters.

Figure 17 illustrates what happens when the vehicle
moves from one road to another. The green bar indicates
the orientation of the x-axis, and the red bar the y-axis of
the road frame. The blue lines represent the road centerlines,
and the white lines are the lane markings. The black ellipse
represents the estimated confidence domain (3σ ).

6.1. Accuracy Analysis

Table I gives the global performance metrics for the three
tests. The outputs of the u-blox receiver, the EKF in the
ENU frame (ENU EKF), and the RC EKF are compared. The
cross-track and along-track PEs are analyzed and compared.
It can be seen that the RC EKF greatly improves localization
accuracy, with 95% of the cross-track PEs less than 0.55 m.

Table II gives the relative improvement by the RC EKF
with respect to the EKF in the ENU frame, in terms of me-

dian, 95th percentile and maximum of the cross-track and
along-track PEs.

Figure 18 shows the cumulative distribution of the ab-
solute PEs by the RC EKF and ENU EKF for the three tests.
The RC EKF gives a better estimation in both the cross-track
and the along-track directions.

Figure 19 shows the cross-track and along-track PEs
over time, with ±3σ bounds estimated by the RC EKF.
The uncertainty on the cross-track position increases greatly
when the camera does not detect lane markings.

6.2. Consistency Analysis

Before looking at the consistency of the localization solver,
let us examine the distribution of the size of the confi-
dence domain estimated by the filters. For this purpose,
we consider the determinant of P HPE, denoted as |P HPE|,
since this is the usual measure of uncertainty where P HPE =
(
σ 2

x σ 2
xy

σ 2
xy σ 2

y

), and σ x , σ y , and σ xy are estimated by the filter. In

practice, confidence is compared with a threshold so that
the client application is told either “use” or “don’t use.” It
is important, in terms of the availability of the positioning
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Figure 16. Scenarios recorded by a webcam mounted on the experimental vehicle. The roads in the trials had two lanes with
mainly dashed lane markings in the center of the road and solid lane markings on both sides, as in (a). In (b), the vehicle encounters
a roundabout with few lane markings. (c) A typical turning scenario: the lane marking detection always fails in such cases. (d) The
most challenging situations in our experiments, where multipath effect and camera failure occur at the same time. In (e), the vehicle
arrives at a fork where the lane detection fails. In (f), the camera fails to detect the highly curved lane markings. Their positions in
the map are tagged in Figure 15.

information, to provide confidence zones that are as small
as possible. Figure 20 plots the cumulative distribution of
the size of the uncertainty and shows that the confidence
domain given by the ENU EKF is a little tighter than that
given by the RC EKF, but with the same magnitude.

Let us now look at the consistency. The consistency
of a filter can be analyzed by constructing the normalized
estimation error squared δ2, which has to follow a χ 2 distri-
bution under the Gaussian assumption:

δ2 = (x − x̂)T P −1 (x − x̂) . (40)

Journal of Field Robotics DOI 10.1002/rob



18 • Journal of Field Robotics—2017

Figure 17. Change of road frame from one road to another in a real experiment. The vehicle is changing from the southeast road
to the northeast road.
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Figure 18. Cumulative distribution functions (CDF) of the PEs. The performance gain using the RC EKF is particularly significant
in the along-track direction.

The normalized horizontal positioning error (HPE)
squared e2 is defined by the 2D position components of
the state vector:

e2 =
(

ex

ey

)T

P −1
HPE

(
ex

ey

)
, (41)

where ex = x̂ − xref and ey = ŷ − yref, with (xref, yref) the
ground truth of the vehicle horizontal position and (x̂, ŷ)
the estimated position.

If the model assumptions and the tuning filter are cor-
rect, then Eq. (41) follows a χ 2 distribution with two degrees
of freedom (denoted as χ 2(2) in the following).

In order to study the consistency of the HPE, we look at
the percentage of samples exceeding a determined thresh-
old given by a χ 2(2) distribution.

(
ex

ey

)T

P −1
HPE

(
ex

ey

)
> k2, (42)

where k2 is the predefined threshold linked to the chosen
risk.

It is easy to check that Eq. (42) is equivalent to the
following equation:

√
e2

x + e2
y > k

√
1

uT
e P −1

HPEue
, (43)

where ue =(
ex

ey
)/

√
e2

x + e2
y is the unit vector supporting the

HPE.
Let us define σ HPE as the standard deviation along the

HPE vector:

σ HPE =
√

1
uT

e P −1
HPEue

. (44)
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Figure 19. Cross-track and along-track PE obtained with the RC EKF.

Journal of Field Robotics DOI 10.1002/rob



20 • Journal of Field Robotics—2017

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|P
HPE

| of all the tests (m)

F
(|

P
H

P
E
|)

LC RC EKF
LC ENU EKF
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EKF.

Figure 21 illustrates the definition of kσ HPE, where the
equation of the ellipse is

(
x − x̂

y − ŷ

)T

P −1
HPE

(
x − x̂

y − ŷ

)
= k2.

Table I. Error statistics.

Cross-track PE (m) Along-track PE (m)

I II III I II III
Mean 1.30 0.07 0.04 1.55 −0.32 −0.19
Std. dev. 1.12 0.29 0.26 1.18 0.32 0.29
Median 0.96 0.10 0.09 1.31 0.30 0.24
95th percentile 3.20 0.68 0.55 3.88 0.88 0.73
Mmax 6.78 1.83 1.37 4.69 1.50 1.36

PE: positioning error; I: u-blox; II: ENU EKF; III: RC EKF

We have chosen to set the consistency risk at 10−2 (1%),
which is a common choice in robotics, but this value can
easily be adjusted to any specific requirement. According to
the χ 2(2) distribution, k2 = 9.21. In this case, the correspond-
ing bound of the 2D estimated position is 3.035σ HPE, with
σ HPE being estimated in real time by the solver. Therefore,
a consistency failure occurs when the real error is beyond
this 3.035σ HPE bound, which means√

e2
x + e2

y > 3.035σ HPE. (45)

Figure 22 shows the consistency performance of the
ENU and RC EKFs using a 2D histogram. The points within
the gray area satisfy Eq. (45) and indicate consistency fail-
ures. The RC EKF is seen to be more consistent, since there
are fewer points in the gray area.
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Figure 21. (x̂, ŷ) is the estimated position. (xref, yref) is the ground truth of the vehicle horizontal position. Here, the reference is
located outside of the confidence domain.
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Figure 22. Consistency plots for the two filters on the three tests (1% consistency risk). The density of the points for the RC EKF
is better located above the black line than for the ENU EKF.

Table II. Improvement by the RC EKF with respect to the ENU
EKF.

Median 95th percentile Max

Cross-track positioning 10% 19% 25%
Along-track positioning 20% 17% 9%

Table III. Consistency failure rate of the three methods.

Consistency failure rate

Test 1 Test 2 Test 3 Global

ENU EKF 41.2% 31.8% 47.1% 39.9%
RC EKF 9.9% 22.9% 20.5% 17.6%

RC stands for road centered.

The consistencies for the three tests are reported in Ta-
ble III. The consistency performance of the RC EKF dom-
inates the ENU EKF in every test. The global failure rate
of the loosely coupled method is 39.9%, which indicates
that the filter is significantly overconfident. When using the
RC EKF, the improvement in consistency is more than 55%
(from 39.9% to 17.6%). The absolute values are not impor-
tant here, but it is worth noting the relative improvement.

6.3. Robustness of the Road-Centered EKF

Robustness refers here to the ability of the localization sys-
tem to withstand external perturbations such as GNSS mul-
tipath or lane marking large measurements errors. The so-
lution proposed in this paper is to reject the exteroceptive
measurements that are doubtful. In this kind of situation,
the filter uses DR sensors and continues to provide estimates
for the navigation of the car.

6.3.1. Robustness to GNSS Multipath

In Figure 23, the yellow box indicates a period during which
a GNSS multipath occurs because of an urban canyon. For

instance, in test 1, the GNSS receiver is affected by the mul-
tipath during the time interval t = 120–128 s (Figure 16(d)
shows the scenario). The green and blue points in Figure
23 indicate lane marking detections on the left and right
sides, respectively. Unfortunately, there are no lane mark-
ing measurements when the multipath effect begins. The
cross-track PE rises to 1.2 m for the RC EKF and to 1.83 m
for the ENU EKF, and the cross-track PE of the RC EKF is
smaller overall than for the ENU EKF during the multipath
effect. The camera provides a lane marking measurement
on the right side of the lane at t = 122.2 s. The cross-track
PE of the RC EKF quickly falls to less than 0.5 m.

6.3.2. Robustness to Outages of the Camera Lane Marking
Measurements

Now, let us see what happens at an intersection without any
camera detection.

In Figure 23, the blue box indicates a period during
which the vehicle is crossing an intersection. There is no
lane marking detection in this kind of situation. The cross-
track positioning performance of the RC EKF is seen to be
much better during this period, and the cross-track errors
remain bounded by 1 m.

In order to further validate the robustness to outages of
lane marking measurements, we simulated camera outages
at t = 160–170 s, 215–240 s, and 250–260 s in test 1 (the
gray boxes in Figure 24) when the vehicle was moving in a
straight line (cf. Figure 15). Results show that the cross-track
positioning by the RC EKF is again much better than for the
ENU EKF. The PEs are less than 0.5 m, which indicates a
lane level positioning capability.

7. CONCLUSIONS

An enhanced model of GNSS errors for use in a multisensor
data fusion algorithm that includes GNSS estimates, camera
measurements on geo-referenced lane markings, and vehi-
cle odometry was developed in this paper. The proposed
error model addresses time correlation and bias of GNSS
errors by using a road frame that is always aligned with
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Figure 23. Cross-track PE during multipath and intersection. The green and blue points indicate lane marking detections on the
left and right sides, respectively.
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Figure 24. Cross-track PEs with camera measurement masks.

the main direction of the carriageway. The observability of
this model was demonstrated within an algebraic observ-
ability framework. The proposed state space model also
allows a bijective transformation between two road frames
that guarantees the continuity of the filter estimates when
the working frame changes from one road to another. An
RC EKF algorithm integrates the proposed shaping models
and manages the changes in the working frame. This was
tested using experimental data. In all situations, the pro-
posed method works better, in terms of accuracy and con-
sistency, than a localization solver implemented in an ENU
frame. During the experiments, GNSS multipath and satel-
lite masking were encountered, as well as outages of camera
measurements. Results show that the proposed method is
robust to these incidences.
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