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Abstract— Despite the tremendous growth of research re-
garding fully autonomous vehicles in the past few years, many
safety critical scenarios, such as the crossing of roundabouts,
are still open issues. One of the main challenge is to deal
with the lack of visibility in complex environments. Vehicle-to-
vehicle and vehicle-to-infrastructure communications offer an
appealing solution to handle these situations in a cooperative
way. To avoid computing an ad hoc control strategy for every
possible scenario, we propose in this paper to adapt the concept
of virtual platooning to roundabout crossing. This idea allows a
single platooning control law to handle complex scenarios such
as intersection and roundabout crossings. This work combines
the use of high definition maps and a curvilinear coordinates
framework to deal with any kind of roundabouts. The proposed
approach is not limited to communicating autonomous vehicles
but can also be used with manually driven communicating
vehicles or non-communicating vehicles with the help on the
infrastructure. A formal proof of the correctness of this ap-
proach is given and simulations have been carried out with a
high definition map of a real roundabout. We also introduce a
novel graphical representation called safety diagram to study
de performances of our approach.

I. INTRODUCTION

During the last decades, the research on autonomous
driving systems has grown significantly. However, severe
challenges for autonomous driving remain on some road sec-
tions that are complex for autonomous navigation, typically
due to a lack of visibility. These are for instance tunnels,
crossroads, roundabouts and railroad crossings which are
known to be the cause of most of the road accidents.
Roundabouts are increasingly used in urban areas because
they allow a safer approach than traditional crossroads with
traffic lights. In fact, compared to traffic signals, the research
of the Insurance Institute for Highways Safety (IIHS) is in-
dicating that roundabouts can lead to about a 90% reduction
in fatalities and a 75% reduction in crashes with injuries
[1]. Moreover, roundabouts guarantee also efficiency and
are environmentally friendly, because a roundabout does not
require a driver to stop unless there is traffic already in the
circulating lanes. This can avoid to wait for a light to turn
green or come to a complete stop if there is no traffic on the
lanes.

While it is common to find papers in the literature
that propose strategies to handle a crossroad intersection
[2], [5], even focalized on cooperative driving control as
[8], much fewer researches have been conducted regarding
roundabouts. In [3], the authors proposed an algorithm that
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Fig. 1: The green part of the road is represented as a link Lk
defined by the nodes ni and nj while its shape is described
by the set of shape points {pk,h}.

attempts to solve the roundabout crossing problem with the
help of game theory, while some approaches to control
vehicle inside a roundabout have been proposed in [10],
[11]. Desaraju et al. [6] considered partial order techniques
to develop a strategy in order to avoid a collision between
two vehicles circulating into a roundabout. In these cases, the
aspect that regards the control of the vehicles has mostly been
considered, rather than the decision making part. Regarding
the roundabout models, Rastelli et al. [10] used a very simple
model based on a circle connected with some branches to
model entries and exits, while the authors in [11] used Bézier
curves to model entries and exits. In this paper, a decision
making method for crossing a roundabout based on an high
definition map and virtual platooning is proposed. One of the
main advantages of virtual platooning [9] is to allow a single
platooning control law to be adapted to several scenarios such
as intersection crossing or lane merging. The aim of this
paper is to generalize this concept to roundabout crossing.
The map model that we use in this paper is the one exploited
also in [7], and for the map matching we use the criterion
explained in [7] and [4].

The paper is structured as follow: In section II, we describe
the map model, the vehicle localization and curvilinear pose
computing w.r.t. the map. In section III, the virtual platooning
algorithm in the case of a crossroad intersection is presented.
Section IV introduces the roundabout crossing algorithm
based on virtual platooning for both autonomous and man-
ually driven vehicles; while in section V the correctness of
the approach is proved. Finally, in section VI, we present
experiments carried out through simulation and introduce a
novel diagram to analyze the performance of the algorithm.



II. MAP MODEL AND CURVILINEAR POSE

In this section, we introduce a model of the driving
environment and of the vehicle pose in a map based context.
Starting from the Lanelet map definition of [4], [7], we
consider a links and nodes representation of the map. In
particular, we use the following map components:
• Node: it is a set N = {n1, . . . , nm} of 2D points with

coordinates [x; y] and it is used to mark the start and
the end points of a part of the lane, in particular where
two lanes split, merge or cross.

• Link: it is the portion of the lane between two nodes,
starting and ending nodes that define the flow direction
of the lane. The geometry of this part is represented as
a polyline, which is a sequence of shape points. It is
important to note that no crossing can occur within a
link, but only at the starting or ending nodes. A link is
typically defined as Lk = (ni, pk,1, . . . , pk,mk

, nj).
• Shape points: 2D points used to model the geometrical

shape of the lane, i.e., the shape of the line inside a
link. A node is also considered as a shape point.

• Lane segment: a segment Lsk,i = (pk,i , pk,i+1, lk,i)
attached to a link Lk composed by two consecutive
shape points which length is defined as lk,i = ||pk,i+1−
pk,i||. Every link Lk is an ordered sequence of segments
with the first segment Lsk,0 having its starting shape
point pk,0 equal to the starting node of the link Lk and
the last segment Lsk,mk+1

having its ending shape point
pk,mk+1

equal to the ending node of the link Lk.
In this paper, we assume that both autonomous and man-
ual vehicles define their paths as a sequence of links
T=(L1, L2, ...), to follow w.r.t. the map. We also suppose
that all the vehicles share the same map. Moreover, in our
representation, the links typically represent the center of
the lanes, i.e. the nominal position of a vehicle inside the
lanes. Therefore, it is much more convenient to represent a
vehicle pose with curvilinear coordinates instead of Cartesian
ones. For a given Cartesian pose [x, y, θ]T we compute
the corresponding Lanelets curvilinear pose [s, n, ψ]T w.r.t.
the associated lane segment. The choice of the Lanelets
approach allows us to have a continuous map matching on the
curvilinear abscissa. This avoids discontinuous projections
which occurs with Euclidean map matching [7].

We compute the curvilinear abscissa s w.r.t. the matched
lane segment Lsk,i, belonging to the link Lk, according to
the following formula:

s =

i−1∑
j=0

lk,j + λlk,i, (1)

where lk,j is the length of the j-th segment of the link Lk,
λ is the convex combination parameter computed with the
Lanelets map matching criterion, under the constraint pλ =
λpk,i+(1−λ)pk,i+1 [4], and the cumulative sum is computed
from the length of the lane segment Lsk,0, up to the segment
Lsk,i−1 which precedes the map matched one.

In the case of autonomous vehicles, where the paths
of each vehicle are known a priori, the map matching is

straightforward, because we reason on a single polyline.
In contrast, for manual vehicles, ambiguities occur because
several paths may be potential paths, e.g., when a road
splits. In order to choose properly the correct road, we
consider a map matching criterion that considers not only
the lateral distance |n|, but also the relative heading |ψ|
between the vehicle heading and the abscissa axis of the
local frame attached to Lsk,i. Figure 1 illustrates both the
map representation and the curvilinear pose computation.

III. VIRTUAL PLATOONING

In this section, we focus our attention on the backbone of
our system: the virtual platoon technique [9]. This method
allows to compare the distances between two or more ve-
hicles to a common point, even if they are not lying on
the same lane. The aim is to establish a total order on the
vehicles, based on the inter-distances comparison, in order
to find which vehicle has to cross the roundabout first. The
algorithm operates as explained in Algorithm 1.
Algorithm 1 Virtual platooning algorithm.
• Find the first common node n (if it exists) between two

paths Ti, Tj belonging to two vehicles Vi and Vj , with
i 6= j.

• Compute the curvilinear distances di,n and dj,n from
the vehicles positions to the common node n.

• Compute the virtual curvilinear inter-distance dij,n =
di,n − dj,n.

• If dij,n ≥ 0, then Vi has to cross the intersection after
Vj which is the leader, otherwise Vi crosses before Vj .

• Performing platooning control according to the order
decided in the previous step.

Once the crossing order is decided, it is possible to use a
platooning algorithm to keep each vehicle to a given inter-
distance from its leader (virtual or real). In order to compute
the curvilinear distance di,n of a vehicle Vi to a node n with
respect to its path T = (L1, L2, ..., Lk, ..., Ln, ...), where Lk
is the link on which the vehicle is and Ln is the link in which
the ending node corresponds to the intersecting node n, we
consider the map representation explained in Section II. Let
sVi|Lk

be the curvilinear abscissa of the vehicle Vi lying on
the link Lk, we can obtain di,n as follows:

di,n =

n∑
j=k

Lj − sVi|Lk
, (2)

where Lj is the length of the link Lj , i.e., the sum of the
lengths of its lane segments.

Figure 2 illustrates a typical situation where two vehicles
Vi and Vj have to cross an intersection. In this scenario,
both Vi and Vj compute their curvilinear distances w.r.t. the
common node n. After that, Vj is virtually projected onto
the lane of Vi (Fig. 2b), in order to compute dij,n. The
same thing happens for Vi. Finally, one can see that a total
order between the vehicles has been established according
to the sign of dij,n for Vi and dji,n for Vj . It is important
to note that the order computed by each vehicle is the same
for everyone, and the quantity |dij,n| can be considered as
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Fig. 2: Classical virtual Platooning for crossing a junction. (a) Initial scenario. The paths of vehicles Vi and Vj intersect at node
n, with the distance di,n and dj,n respectively. (b) Virtual platoon of Vj w.r.t. the virtual projection V

′

i of Vi onto its own
lane with an inter-distance dji,n. (c) Real platoon of Vj w.r.t. the vehicle Vi. Please note that this crossing order does not
take into account traffic rules (e.g. stops or give way) as it is only computed w.r.t. the inter-distance between vehicles.

the virtual curvilinear inter-distance between the vehicles
Vi and Vj . Note also that this approach works only under
the assumption that vehicles can communicate their intended
paths to the others.

IV. ROUNDABOUT CROSSING ALGORITHM

A. Autonomous Vehicles Case

In this section, we apply the concepts seen before in the
case of a roundabout crossing for cooperative autonomous
vehicles that exchange their pose and path. Suppose a vehicle
Vi needs to cross a roundabout in the presence of other
vehicles V1, V2, . . . , Vn. The main idea is to find the leader
vehicle Vj , if it exists, w.r.t. which the vehicle Vi needs
to do platooning with. Vj is the vehicle with the smallest
positive virtual inter-distance to Vi among all the vehicles
whose paths crosses the one of Vi. If a vehicle has no
leader, it means that there are no other vehicles on its path.
Therefore, it can drive at its nominal velocity, without any
risk of collision. Otherwise, it regulates its velocity in order
to keep a safety inter-distance to its leader vehicle Vj . The
same procedure is followed by all the other vehicles. This
procedure, described in Algorithm 2, allows all the vehicles
to cross the roundabout safely in a distributed manner.

Our approach has several assumptions. First, we suppose
that the pose [x, y, θ]T is well estimated, with low uncer-
tainty for all the vehicles. We also assume that there is a
perfect communication between all the vehicles without mes-
sages loss. Another assumption is that all the paths are known
and shared, which is reasonable for cooperative autonomous
vehicles, but not for manually driven communicating cars.
We present hereafter a method to handle this issue.

B. Mixed traffic with Autonomous and Manually Driven
Vehicles

The approach explained previously shows how to handle
scenarios in which only autonomous vehicles are involved.
In more general contexts, one has to deal with the possible
concomitant presence of both autonomous and manually
driven vehicles. While it is reasonable to assume that au-
tonomous vehicles can share their intended paths, it is not
the case for manually driven vehicles, as they are not known
a priori, i.e., the path depends on the driver’s intentions.

Algorithm 2 Roundabout crossing procedure for vehicle Vi.
Require: [xi, yi, θi], Ti

1: d← +∞
2: Send (xi, yi, θi, Ti)
3: [V1, V2, . . . , Vc]← Receive()
4: sVi|Li

← CurvAbscissa([xi, yi, θi], Ti)
5: for j = 1 : c do
6: n← FindFirstCommonNode(Ti, Tj)
7: if n = ∅ then
8: Continue (Vj does not cross the path of Vi)
9: else

10: sVj |Lj
← CurvAbscissa([xj , yj , θj ], Tj)

11: dij ← Interdistance(sVi|Li
, sVj |Lj

, n, Ti, Tj)
12: if dij < 0 then
13: Continue (Vj goes after Vi)
14: else
15: d← min(d, dij)
16: leader ← Vj
17: end if
18: end if
19: end for
20: if leader = ∅ then
21: Continue (go with nominal velocity)
22: else
23: LongControl(leader, d) (platooning with leader)
24: end if

Regarding the manually driven vehicles, we suppose only
that their localization w.r.t. the map frame is known with low
uncertainty by all the vehicles. This can be done supposing
either to have manually driven communicating cars or to
have an infrastructure able to localize the vehicles in the
environment.

A simple way to extend the approach proposed previously
to handle manually driven cars is to make the system aware
of them by predicting their unknown paths. We propose a
new approach based on replacing a manually driven vehicle
V by two virtual copies V

′
and V

′′
. The idea is to assign

to each virtual copy of V the two extreme paths w.r.t. the
current position of V , that is the first exit branch for V

′

and the last exit branch (U-turn) for V
′′

, as it is shown in
Fig. 3a. When a branch occurs, the paths of the two virtual
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Fig. 3: Mixed scenario. (a) Generation of the virtual vehicles V
′

and V
′′

as copies of the vehicle V and their paths. (b)
Branching scenario, the two vehicles V

′
and V

′′
follow their virtual paths until the most unlikely copy w.r.t. the real pose

of V is deleted. (c) Recomputing of the virtual copies and their paths according to the new branch.

copies start to diverge from each other. Therefore, the map
matching algorithm will assign two different projections for
each of them (see Fig. 3b). Once the map matching criterion
becomes unlikely regarding to the current pose of V , the
virtual copy is deleted and there is no longer ambiguities on
the path of the manually driven car. Then, two scenarios can
occur:

1) The vehicle V is on an exit branch: in this case, the
remaining copy keeps going on this branch until it
disappears from the scenario. No new virtual copies
need to be introduced.

2) The vehicle V is on an internal branch: in this case, the
remaining copy is itself replaced by two new virtual
copies updated w.r.t. the new configuration (Fig. 3c).

It is fairly simple to implement this approach by simply re-
placing the line 3 of Algorithm 2, by the code of Algorithm 3
where the idea is just to manipulate the virtual copies in place
of the manual vehicles, and the line 10 of Algorithm 2, with
the code of Algorithm 4 to delete the irrelevant copy after a
branching.

The threshold gives the limit to which the vehicle can be
far from the center of the lane, we suppose that a manually
driven vehicle always remains in the neighborhood of the
lane (proximity constraint [7]), this will guarantee that at
least one of the virtual copies will remain after a branching.
Algorithm 3 Algorithms for virtual copies generation.

1: [V1, V2, . . . , Vc]← receive()
2: for j = 1 : c do
3: if isManual(Vj) then
4: [T

′

j , T
′′

j ]← ExtremeTraj([xj , yj , θj ])
5: [V

′

j , V
′′

j ]← Copy(V )

6: V
′

j ← UpdateTraj(T
′

j )

7: V
′′

j ← UpdateTraj(T
′′

j )

8: Add(V
′

j , V
′′

j )
9: Remove(Vj)

10: end if
11: end for

V. CORRECTNESS

In order to validate the algorithm, let us prove its correct-
ness, i.e., the absence of unwanted behaviors. In particular,
we are interested in proving both the absence of deadlock
(all the vehicles are waiting to cross the roundabout) and

Algorithm 4 Algorithm for virtual copies deletion
1: [sVj |Lj

, nVj |Lj
, ψVj |Lj

]← CurvCoords([xj , yj , θj ], Tj)
2: if isVirtual(Vj) AND f(nVj |Lj

, ψVj |Lj
) < Threshold

then
3: Remove(Vj)
4: end if

starvation (one vehicle is waiting indefinitely). To do so, we
decompose the problem in two possible situations. In the first
one, we consider the case in which it exists a total ordered
sequence among the vehicles, and in the second one, where
it is not the case. We remind that every vehicle computes
its own order sequence based on the current configuration of
the other vehicles w.r.t. its own path.

A. Totally ordered case

The first case considers the situation where there exists a
totally ordered sequence for the vehicles. This will lead to
a nominal virtual platooning scenario, where all the vehicles
go through the roundabout one after the other, following
the common order. We show that this occurs when, for any
pair of paths, there is either no intersecting node or the first
intersecting node is unique.

Let V1, V2, . . . , Vc be a set of c vehicles crossing a round-
about and T1, T2, . . . , Tc their respective paths. We suppose
that for any pair of paths (Ti, Tj), either Ti ∩ Tj = ∅ or
TiuTj = TjuTi = n, where TiuTj corresponds to the first
common node between Ti and Tj relative to Ti, i.e., w.r.t.
the ordered sequence of links of Ti.

We use a proof by contradiction to demonstrate that there
exists a total order between the vehicles. Suppose there is no
total order, that is there exists two vehicles Vi, Vj for which
Vi decides that it goes before Vj :

di,nij < dj,nij with nij = TiuTj , (3)

and Vj also decides to go before Vi:

di,nji
< dj,nji

with nji = TjuTi. (4)

However, as we have supposed that TiuTj = TjuTi, which
leads to nij = nji, the two relations (3) and (4) lead to a
contradiction. This concludes the proof.
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Fig. 4: Dangerous cases: (a) Potential deadlock case with the involved quantities. (b) Both vehicles are leaders at the same
time, TiuTj = nij for Vi and TjuTi = nji for Vj . (c) Vi becomes leader of Vj as it overcomes nji and TiuTj = nij for
Vi and TjuTi = nij for Vj .

B. Differently ordered case

We suppose now that the first intersecting node between
two paths can be different, i.e., ∃i, j such that TiuTj = nij
and TjuTi = nji with nij 6= nji. We want to show that no
deadlock can occur even in this case. Let consider a deadlock
configuration in which both vehicles are waiting for the other
to cross the roundabout. This means that

di,nij
> dj,nij

and dj,nji
> di,nji

. (5)

We want to prove that this configuration cannot occur. Based
on Fig. 4a, we can write the following expressions:

dj,nij
= dj,nji

+ dnji,nij
and di,nji

= di,nij
+ dnij ,nji

, (6)

where dnji,nij
> 0 and dnij ,nji

> 0 are the curvilinear
distances from the node nji to the node nij and from the
node nij and nji according to the flow direction of the
roundabout.

If we take the relation di,nij
> dj,nij

and substitute the
corresponding values, we obtain the following inequalities:

di,nij
> dj,nij

⇔ di,nji
− dnij ,nji

> dj,nji
+ dnji,nij

⇔ di,nji
> dj,nji

+ dnji,nij
+ dnij ,nji

⇒ di,nji
> dj,nji

(7)

This contradicts the deadlock condition (5). The same rea-
soning can be generalized to any number of vehicles.

We have proved that no deadlock occurs, but there exist
some cases in which potentially unsafe configurations can
arise. Figure 4b shows a case in which, as it was told before,
all the vehicles think to be the leaders, in fact we have
di,nij < dj,nij and dj,nji < di,nji . Nobody perform control
w.r.t. the other, and both the vehicles proceed with their
nominal velocities. If the distance between nij and nji is not
sufficiently large, we can have not enough space to brake Vj
when it overcomes the node nji and becomes the follower
of Vi. (Fig. 4c).

VI. EXPERIMENTS AND RESULTS

To show the behavior of the algorithm, we consider dif-
ferent experimental scenarios. Simulations have been carried
out considering the map representation of large roundabout
in the city of Compiègne (see Fig. 5). This roundabout
presents two lanes into the central part and two-lanes roads

Fig. 5: The “Guy Deniélou” roundabout in the city of
Compiègne, France. The green line represents the outer lane
of the roundabout while the blue one is the inner one. The
north-east exit of the roundabout was not mapped and was
ignored in this study.

for some branches. In the simulations, we considered only
the outer lane for the roundabout and the right side lane for
the branches with multiple lanes which are represented as
the green lines in Fig. (5). The generalization to multiple
lanes is straightforward by adding intersections nodes where
the green and blue lines cross. The original virtual platoon
algorithm enables to handle such situations. We also suppose
the communications between vehicles to be perfectly reliable
and we compute analytically the evolution of the curvilinear
abscissa along the road path as a function of the actual
curvilinear abscissa and the vehicle velocity instead of using
the map matching with real poses. This needs to be done
because it is no possible to change dynamically an offline
recorded data set, in order to make the data synchronized
with the control proposed by the algorithm.

In order to properly control the vehicles during platooning,
we use a longitudinal control law based on the inter-distance
between the leader vehicle (virtual or real) and the followers
which implements the law. In our case, the wanted curvilinear
inter-distance is a linear function of the velocity v of a
vehicle in the following form:

d = d0 + h · v, (8)



where d0 is the standstill distance and h is the time headway.
To do the feedback, we use a proportional-derivative control
law computing the acceleration of the follower as follows

a(t) = α1(sl(t)− d− sf (t)) + α2(ṡl(t)− ṡf (t)), (9)

where α1 and α2 are two gains, sl(t) and sf (t) the curvi-
linear abscissa of the leader and the follower vehicles,
and ṡl(t), ṡf (t) their corresponding velocities. Saturation
functions in the form v(t) = max(vmax, v(t)) and v(t) =
min(vmin, v(t)) are considered to bound the velocity into
fixed limits. Acceleration saturations have also implemented.

A. Case study: Safety diagram

Let introduce a new concept called “Safety diagram”
in order to illustrate the behaviors of the vehicles in the
scenario. The aim of this diagram is to show when safety
margins are violated, i.e., when the curvilinear inter-distance
w.r.t. the first non-virtual obstacle along a vehicle path is too
short given its current velocity. Consider a diagram as the one
in Fig. 6, where the inter-distance is plotted as a function of
the velocity of the vehicle. We can see that Eq. (8) draws
a boundary between the safe and unsafe zones. If a point
(v, d) is above that line, it means that the inter-distance d
is sufficiently large for the velocity v. Inversely, if the point
(v, d) is found under the boundary, it means that d is too
short for the vehicle velocity v, i.e., an unsafe case occurs.
Finally, if (v, d) lies on the boundary, it means that the
vehicle is perfectly at the desired curvilinear inter-distance
in the platoon w.r.t. its velocity v.

To illustrates a typical scenario that occurs in our algo-
rithm with the corresponding safety diagram interpretation,
let us consider a leader vehicle driving at a constant velocity
vl and a follower in virtual platoon w.r.t. the leader. Figure 6
shows the behavior of the follower that is entering the
roundabout at time t = t0 and finds a leader vehicle ahead
of him. From t0 to t1 the follower accelerates to reach
the desired inter-distance from its leader, until the speed
saturation occurs at t1. Then from t1 to t2, it continues to
move at the maximum allowed speed vmax, decreasing the
inter-distance until t2 when it starts braking as it catches the
leader. Finally, at t3, the follower reaches the optimal inter-
distance w.r.t. the leader and continues driving at the same
velocity as the leader.

B. Monte Carlo simulation

To test our approach, we developed a simulator able to
generate random vehicles over time, with stochastic trajec-
tories. The simulator implements the algorithm described
in section IV, allowing us to choose the frequency for
generating both autonomous and manually driven vehicles,
in order to cover every possible scenarios. Figure 7 shows the
resulting safety diagram for a given simulation with a dozen
vehicles mixing both autonomous and manually driven ones.
One can see that all the trajectories tends to converge towards
the safety boundary which is the optimal inter-distance. The
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Fig. 6: Safety diagram illustration. The blue dots represent
the (v, d) values of the following vehicles w.r.t. the leader
with velocity vl = 3m/s and vmax = 10m/s. The orange
line represents the safety boundary with d0 = 7m and h =
2s.
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Fig. 7: Safety diagram for a stochastic simulation with a
dozen vehicles.

control law may allow the vehicle to oscillate around the
optimal inter-distance, we can see that it does not deviate
significantly under the safety boundary.

In order to present an exhaustive analysis of this algorithm,
we have implemented a Monte Carlo simulation. The aim is
to extend the analysis to cover as many cases as possible, in
order to study statistically the performances of the algorithm.
We report the results of two Monte Carlo simulations:

1) autonomous vehicles only; (Fig. 8a)
2) autonomous and manually driven vehicles. (Fig. 8b)
In figures 8a and 8b, we display the empiric joint proba-

bility density function of the velocity and the corresponding
inter-distance using a logarithmic scale. One can see that
most of the points are located above the safety boundary.
However, there are also a few points in the unsafe region.
Several reasons can explain this behavior. First, the imperfect
tuning of the controller can lead the vehicles to have oscil-
lations along the optimal boundary. Second, the differently
ordered case presented in section V-B also allows vehicles
to have their inter-distances lower than the optimal ones.
Figure 8c shows the distribution of the relative deviations
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(a) Autonomous vehicles only.
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(b) Autonomous and manually driven
vehicles.
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Fig. 8: (a-b) Empiric joint log-probability density function after a Monte Carlo simulation with 100 iterations. (c) Distribution
of the relative deviation between the actual and optimal inter-distance. The circle depicts the unsafe region with a proportion
of about 1%.

from the optimal inter-distance computed as follows:

er =
dv − (d0 + hv)

d0 + hv
=

dv
d0 + hv

− 1, (10)

where dv is the actual distance w.r.t. the first non virtual
obstacle. Moreover, we have computed the proportion of
points that deviate more than the 5% into the unsafe region,
and we have found out that this percentage is in the order
of 1%.

From these figures, one can see that the algorithm per-
formed similarly in both cases. The autonomous only sce-
nario allows the vehicles to drive with inter-distances closer
to the optimal ones.

VII. CONCLUSION

This work has shown an adaptation of the virtual platoon-
ing concept to the roundabout crossing problem. This idea
has the advantage to be easily implementable in a embedded
system that exploits a map based approach. This work has
also shown the importance of exploiting a map to model a
roundabout since all the calculations are done in a curvilinear
framework. As proven, the algorithm has no deadlock. We
have also proposed a strategy to handle situations where
both autonomous and manually driven vehicles are involved.
Finally, a new safety diagram has been introduced to study
the algorithm performances w.r.t. a given safety bound.

The approach described in this paper has been studied in
the case of single lane roundabouts but can be generalized
to multi-lanes scenarios by combining our method with the
original intersection crossing virtual platoon.

Based on the obtained results, we can state that the
algorithm has promising performances. Future perspective is
to adapt this model to a real-world environment, in order to
take into account the uncertainty aspects in the localization
process, the possibility of an imperfect communication and
the issues linked to the detection and tracking of uncertain
objects. Traffic regulations have also to be added to the
framework to make this approach effective.
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