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Set-Membership Position Estimation With GNSS
Pseudorange Error Mitigation Using

Lane-Boundary Measurements
Luís Conde Bento , Philippe Bonnifait, and Urbano J. Nunes

Abstract— Model-based positioning methods involve nonlinear
equations as is the case when using satellite pseudoranges on
global navigation satellite systems (GNSSs) and local measure-
ments on road features. As these are nonlinear models, classical
estimation methods cannot provide guaranteed position estima-
tion and can converge to local optima, sometimes far away from
the global optimum or the true value. Based on interval analysis,
set inversion, and constraints propagation on real values provide
a framework that guarantees to find the true position with a
characterized confidence domain. This paper describes an error
bounded set membership algorithm that computes the absolute
position of a road vehicle by using raw GNNS pseudoranges,
lane boundary measurements, and a 2D road network map as
geometric constraints. The algorithm is based on set inversion
using interval analysis, and bounds are set on the measurements
by taking into account a chosen risk. The GNSS pseudoranges
errors are modeled carefully, and road constraints are formalized
to provide additional information in the data fusion process.
The proposed algorithm, named lane boundary augmented set-
membership GNSS positioning (LB-ASGP), provides a novel and
inexpensive approach to improve position estimation performance
for road vehicles guaranteeing the enclosure of the computed
solution with high confidence. Results from simulations and field
experiments show that the LB-ASGP significantly reduces GNSS
errors in the direction perpendicular to the lane thanks to the
lane boundary measurements.

Index Terms— ITS, interval analysis, bounded-error, GNSS
and sensor data fusion.
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I. INTRODUCTION

AUTONOMOUS vehicles can lead to more efficient traffic
management by relieving traffic congestion, therefore

leading to economic and environmental benefits [1], [2].
To implement autonomous driving, position and velocity of
the vehicles must be determined with high confidence.

Autonomous navigation widely uses standalone low cost
GNSS receivers (single epoch positioning) for vehicle posi-
tioning, but these are not accurate enough and are susceptible
to provide faulty solutions. To provide integrity it is required
to complement GNSS receiver data with other absolute sensor
measures. Therefore, the data fusion of multiple and redundant
sensory information plays a key role for autonomous vehicle
navigation [4].

In [3], a cooperative method to improve position estimation
accuracy with integrity is presented. This method named Lane
Boundary Cooperative Augmented Set-membership GNSS
Positioning (LB-CASGP) involves a sensor fusion approach
that exploits lane boundary measurements and cooperation
between road users through V2X communication to improve
both cross-track and along-track vehicle positioning. In this
paper we describe an algorithm called Lane Boundary Aug-
mented Set-membership GNSS Positioning (LB-ASGP), which
is a core part of the LB-CASGP approach [3]. By using local
sources of information (such as: GNSS raw measurements,
digital maps and lane boundary detection), meaning that it
does not require V2X communication, the LB-ASGP is able
to cope with communication shortage events. An improvement
to traditional techniques is achieved by guaranteeing, with
respect to a chosen integrity risk, that the solution will be
found and correctly bounded to the estimated set-membership
domain, even with low cost sensors. This is achieved even
if the equations are highly non-linear using a bounded-error
algorithm. The position improvement achieved by adding lane-
boundary, can provide sufficient accuracy for driverless cars
with additional sensor data like LIDARs [9], [10].

Two algorithms are described in detail and compared:

• SGP - The set membership algorithm proposed in [15];
• LB-ASGP - The proposed algorithm in this paper.

The LB-ASGP algorithm assures the characterization of
a bounded solution for vehicle positioning, constrained
by geo-referenced lane boundary measurements and GNSS
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pseudoranges to reduce the constellation satellite-specific
error. The sensor fusion approach exploits lane boundary mea-
surements to improve cross-track vehicle positioning. When
using classical methods for vehicle positioning, the risk arises
when trying to bound the obtained estimation error, while
in bounded-error models the risk of the solution set not to
include the ground truth is only linked to the risk taken when
formulating initial assumptions on measurements.

The LB-ASGP inputs are raw GNSS data and lane boundary
information acquired thanks to a perception system. The
data fusion of different absolute positioning data, in a set-
membership algorithm rather than classical nonlinear iterative
least squares, is the main contribution of the present study.

Interval algorithms can be easily used to solve a wide
spectrum of problems involving uncertainty guaranteeing solu-
tion at a defined risk. LB-ASGP is simple to implement
thanks to interval algorithms, i.e. the solution set can be
rigorously enclosed with a box in a simple way. The proposed
method provides also an estimate of the satellite-specific errors
along the direction transverse to the road lane boundary. The
performance of the LB-ASGP algorithm, in terms of accuracy
as well as in terms of integrity are analyzed in simulations
and in field experiments.

The remainder of this paper is organized as follows.
Section II presents a summary of related work. Section III
discusses the components of the GNSS error, GNSS single
epoch receiver positioning, lane boundary sensor modelling,
set-inversion based on interval analysis and measurement
bounds setting. In Section IV, both the SGP and the
LB-ASGP set-membership positioning algorithms are formu-
lated and presented. The performance evaluation is presented
in Section V with simulation and experimental results used to
test, compare and validate the algorithm. Finally, Section VI
summarizes the study and provides concluding remarks.

II. RELATED WORK

The use of multiple sensors to improve vehicle positioning
accuracy is a common technique applied in Intelligent Trans-
portation Systems (ITS) [5].

The California Partners for Advanced Transit and High-
ways (PATH) used an on-board sensing system acquiring
both the vehicle’s state and road reference system based on
magnets [6]. However in order to achieve good results the
distance between magnets is required to be low, increasing
the infrastructure costs.

Both [7] and [8] used cameras to detect lane marking and
improve pose estimation. A LIDAR-based lane marker detec-
tion has been proposed in [9] to robustly estimate deviations
between a digital map and the real world. A localization
method where the fusion of a mono-camera, a low-cost GNSS
and a map data is presented in [7]. This method uses lateral
spatial information from a vision-based lane detection module
and longitudinal and lateral spatial information provided by a
vision-based traffic sign detection module for high-accuracy
positioning. The proposed method achieves centimeter-level
localization accuracy and does not need any change on
the infrastructure environment. In [8], a lane marking aided
vehicle localization uses a lane detection system to retrieve

accurate lateral and orientation vehicle information with
respect to road lane markings, and combines this information
with GNSS estimates and dead-reckoning in order to provide
localization information with high availability. A shaping filter
of the GNSS errors combining random constant and auto-
regressive models was implemented. Results show that the
filter with this modelling is able to fuse continuous GNSS
fixes even if they are affected by large errors.

In [11] and [12], a set of vehicles equipped with GNSS
receivers and a lane-boundary sensor, share their information
through a V2V network. Using a collaborative navigation
algorithm, the satellite-specific GNSS biases experienced by
all collaborators is estimated. The error-free differential cor-
rections are more accurate when the vehicle density is high.

The previously mentioned algorithms compute position
from GNSS measurements and are based on punctual iterative
methods that can be made robust to erroneous measurements.
Their main drawback is the risk to fall into a local mini-
mum if the initial guess is too far from the solution, or if
erroneous measurements are not properly handled. In [13],
a combination of a 3D ray-tracing method, GPS positioning
algorithm, particle filter, digital elevation model data, and
2D map data, enabled the detection of NLOS satellites and the
improvement of the position accuracy by using an inexpensive
GPS receiver. Set-inversion methods guarantee that no solution
will be missed inside an arbitrarily big initial box, even if the
equations are nonlinear [14].

Safety requires the modeling of any uncertainties associated
with the measurement of vehicle positioning. Drevelle and
Bonnifait [15], [16] quantified the localization confidence
based on interval analysis, set-inversion methods and con-
straint propagation algorithms. By computing disconnected
solution sets, the set-inversion methods can also handle several
hypotheses in cases of ambiguous solutions.

III. THEORETICAL BACKGROUND

A. GNSS Pseudoranges

The measured distance from the satellite s to the receiver r ,
is prone to delays from gases ionized by solar radiation I s

r
(ionospheric delay: up to 50 m for low elevation satellites) and
delays from water vapor T s

r (tropospheric delay: from 2.5 m
at the zenith to 15 m for low satellite elevations). Besides
physical phenomena errors, additional system errors include
satellite orbit estimation errors Es , the clock offset errors
cor (cor = c · (δtr − δts), where c is the speed of light in
the vacuum), relativistic errors, diffuse multipath and thermal
noise errors εs

r .
A pseudorange measurement is given by the following

equation [20]:

ρs
r =

√
(xs − xr )2 + (ys − yr )2 + (zs − zr )2 + cor

+ I s
r + T s

r + Es + εs
r (1)

or equivalently:

ρs
r = �xs − xr� + cor + vs

r (2)

where vs
r represent all errors, xr = (xr , yr , zr ) and xs =

(xs, ys, zs) denote the position vectors of the receiver at the
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Fig. 1. Geometric layout of lane-boundary distance measurement.

observation epoch (signal reception time) and the satellite
at the emission time, respectively. To compute the receiver
position xr and the receiver clock offset cor , it is required to
have at least four satellites in view.

B. Lane Boundary Absolute Measurements

Road networks can supply additional source of absolute
positioning data, provided that the lane boundary is marked
on the road and that it is geo-referenced in a Geographic
Information System (GIS). Geo-referenced lane boundaries
provide means to reduce vehicle positioning error (x̂r and ĉor ).

Figure 1 illustrates the geometric layout, considering that the
lane-boundary sensor supposed here to be collocated with
the GNSS receiver, where rr (s) is the function describing
the lane-boundary 2D coordinates, s is the distance from the
reference point Rr to the lane-boundary frame {ut,r ; ur,r },
ut,r is the transverse unit vector, dlb is the perpendicular
distance from the sensor to the lane boundary, and θlb is
the angle of the lane. Lane-boundary sensors cannot measure
location along the lane as they provide only the distance to
the lane markings. The transverse component of the distance
to the lane boundary (dlb) can be expressed by:

dlb = −ut,r
T · (Rr − xr)+ εlb

r (3)

where εlb
r models the sensor measurement errors.

C. Set Inversion

Set-membership methods [22] solve the inversion problem
in a different way than Iterative least squares [20], which
are commonly used for vehicle positioning. The Cartesian
product of n intervals is an interval vector here denoted
by [x] = [x, x]. An interval vector is a subset of Rn , also
designated as box. The interval function [f]: IRn → IRm is
an inclusion function for f if

∀[x] ∈ IRn, f([x]) ⊂ [f]([x]) (4)

where f defines a mapping Rn → Rm , IR is the set of real
intervals and IRn is the set of n-dimensional boxes. A box [x]

TABLE I

TEST BOXES FOR SET MEMBERSHIP

can be refined by using a sub-paving. A sub-paving can be
defined as the union of non-overlapping sub-boxes, excluding
all zero-sized boxes. Bracketed between an inner sub-paving
X and an outer sub-paving X, lies the compact set X, where
X ⊂ X ⊂ X. Using the Set Inversion Via Interval Analy-
sis (SIVIA) algorithm [23], an outer approximation X to the
solution set X can be computed.

The procedure to compute the outer sub-paving X of the
set, that fulfills positioning constraints, starts by considering
a sufficiently large superset X0 to contain the solution set.
A test on each box [x] is performed using the set inversion
algorithm, resulting in one of three outputs and consequent
actions (see Table I). Following the box feasibility test, one
can compute the outer sub-paving X = X+�X.

The inverse evaluation problem is characterized by [18]:

X = f−1(Y) = {x ∈ Rn |∃y ∈ Y, f(x) = y} (5)

where Y is a known interval vector of m measurements. The
set inversion problem consists in determining the set X, such
that f(X) ⊂ Y, where Y ⊂ Rm .

D. Measurement Bounds Setting

Based on set theory, bounded-error methods can compute a
solution set not necessarily of minimum size, but guaranteed
to fulfill the integrity risk requirement [3], [17].

The error measurement model to set the error bounds on
each pseudorange measurement ρs

r is assumed to follow a cen-
tered Gaussian distribution. The measurement error bound α
is chosen while taking into account the maximum risk r of
each measurement interval to not contain the actual value.
Given a centered Gaussian distribution with a variance σ 2

pr
and a cumulative distribution function of the standard normal
distribution 	, the measurement error bounds α are given by:

{
[ρs

r ] = [ρs
r − ασpr , ρ

s
r + ασpr ]

α = −	−1( r
2 )

(6)

IV. POSITION ESTIMATION ALGORITHMS

Computing a set where a vehicle is located is achieved using
bounded errors measurements. Set-inversion methods [22] are
very well adapted for this type of problems by a twofold rea-
son: 1) It is guaranteed that there is no loss of solutions;
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Fig. 2. Dataflow and architectures of SGP and LB-ASGP algorithms.

2) No risk is added in the computation of a compact set, i.e. the
risk that the pseudoranges true value is not contained in the
measurements interval will determine the risk that the true
receiver position is not on the position set.

A. Set Membership GNSS Positioning

In order to compute a location set, where the vehicle is
guaranteed to be at known risk, the Set membership GNSS
Positioning (SGP) method [11] requires that its inputs embody
the uncertainty in the form of interval vectors. Therefore
both pseudorange measurements and the satellite positions are
represented as boxes, whose bounds are determined given a
chosen risk, [xs] = ([xs], [ys], [zs]) and [ρs

r ] represent the
interval vectors for the satellite positions and pseudorange
measurements respectively [15].

Given the satellites’ positions [xs] = ([xs], [ys], [zs]) and
the m available pseudorange measurements, it is possible to
compute the set X compliant with the inputs stated above:

XSG P = {(xr , yr , zr , cor ) ∈ R4|∀s = 1 · · ·m, ∃ρs
r ∈ [ρs

r ],
∃(xs, ys, zs) ∈ [xs], ρs

r = �xs − xr� + cor }
YSG P = ([ρs

r ], [xs]) (7)

X is subset of R4, composed by a finite list of
boxes [X] [22], where #X is the number of boxes belonging to
the subset. The set X is a 4D set, composed of 4D boxes with
their axis along xr , yr , zr and cor . A 2D punctual estimate is
computed by projecting to the XY plane the center of all boxes
weighted by two parameters:
• The volume of each box: inner sub-paving boxes having

not the same size contribute differently, therefore large
boxes have to contribute more than small ones;

• The distance from a weighted average of ĉor : Boxes with
a large time uncertainty cor are less accurate for posi-
tioning. Therefore, the weight should be higher for boxes
closer to the ĉor estimate.

The ĉor estimate is obtained by:

ĉor =
∑n

k=1

(
Xk(4)+Xk(4)

2 · (Xk(4)− Xk(4))

)

Xnorm(4)

∣∣∣∣
∀[Xk(4)] ∈ X ∧ k = #X (8)

The 3D position estimate x̂r = (x̂r , ŷr , ẑr ) is:

x̂r =
∑n

k=1

(
Xk(i)+Xk (i)

2 ·
(

Xk(i)− Xk(i)
)
· Cw f (k)

)

Xnorm(i)

∀[Xk(i)] ∈ X ∧ k = #X ∧ i = 1, · · · , 3 (9)

Where Xnorm is the normalization term and Cw f is the
weighting factor, both are computed has described in [3].

The x̂r estimate is the center of gravity of the sub-paving,
weighted by the volume as well as the distance from a
weighted average of ĉor of each sub-paving. The projection
of the x̂r to the XY plane provides the 2D position estimate
x̂r,2D,SG P.

B. Lane Boundary Augmented Set Membership
GNSS Positioning (LB-ASGP)

Constraints provided by lane-boundary can further improve
the performance of the set-membership GNSS location zone
determination (see Fig. 2).

An arbitrary number of sensors can be fused by means
of set-membership methodologies, given that both the model
and the measurement errors are bounded [19]. Under the
assumption of correct bounds on models and measurements,
set-membership algorithms provide guaranteed results up to
the chosen integrity risk. The system composed of a lane-
boundary sensor and a GIS provides an additional constraint
to a box [x], in the direction transverse to the road.

To represent the uncertainties of the information stored
in the GIS, the transverse ut,r vector is represented by
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a box [ut,r]. Similarly, the orthogonal distance from the vehicle
x-axis to the lane-boundary dlb is inaccurate and therefore is
also represented by a box [dlb].

With the additional lane-boundary sensor measurements in
the SIVIA algorithm, the search space is further reduced:

XL B−ASG P ={(xr , yr , zr , cor )∈R4|∀s=1 · · ·m, ∃ρs
r ∈[ρs

r ],
∃(xs, ys, zs)∈[xs], ∃ut,r∈[ut,r], ∃dlb ∈ [dlb],∣∣∣∣
ρs

r = �xs − xr� + cor

dlb = −ut,r
T · (Rr − xr)

}

YL B−ASG P = ([ρs
r ], [xs], [ut,r], [dlb]) (10)

In order to have an outer approximation X of the localiza-
tion set X by using SIVIA, it is necessary to start with a set
X0 where the solution set is known to belong. The LB-ASGP
can be divided into three stages (see Algorithm 1):

Algorithm 1 [x̂r,2D;Ct,cme] = ASG P_L B([fSGP],
[fLB−ASGP],YSG P,YL B−ASG P,X0)

L← root (X0)
faux = [fSGP; fLB−ASGP]
Yaux = [YSG P,YL B−ASG P]
for jj=1 to 2 do

f ← faux( j j)
Y← Yaux( j j)
[X,�X] = SI V I A(f,Y,L)
X = X+�X

L← X

for i=1 to 4 do
Xall(i)

end for
ĉor ← equation (8)
for k=1 to n do

Cw f (k)
end for
for i=1 to 3 do

x̂aux,r(x̂aux,r, ŷaux,r , ẑaux,r )← equation (9)
end for
x̂r ( j j) = x̂aux,r

end for
Ct,cme = −ut,r ×

[
x̂r (2)− x̂r (1)

]
x̂r,2D,L B−ASG P = [x̂r,2D, ŷr,2D] = x̂r (2)× PXY
(PXY: 3D projection to XY)

• Compute the set XSG P ⇒ starting with a large superset
X0 and given the measurements [ρs

r ] and the satellite
position [xs], compute the set XSG P using function fSGP
given by: fSGP =

{
ρs

r = �xs − xr� + cor ;
• Compute the set XL B−ASG P ⇒ starting with XSG P and

given the measurements [ρs
r ], the satellite position [xs],

the transverse vector [ut,r] and the lane boundary [dlb],
compute the set XL B−ASG P using function fLB−ASGP

given by: fLB−ASGP =
{

ρs
r = �xs − xr� + cor

dlb = −ut,r
T · (Rr − xr)

;

• Compute the 2D estimates x̂r,2D,SG P and
x̂r,2D,L B−ASG P ⇒ The 3D estimates x̂r,3D,SG P

and x̂r,3D,L B−ASG P are computed, using sets XSG P and

XL B−ASG P respectively (equations 8 and 9). Finally,
2D position estimates x̂r,2D,SG P and x̂r,2D,L B−ASG P are
computed.

Algorithm 1 additionally provides an estimate of the
satellite-specific errors Ct,cme, along the direction transverse
to the lane boundary. This component reflects the errors
which causes the receiver position estimate to suffer from
an offset in the direction orthogonal to the lane boundary
marking. The Ct,cme is obtained by taking into account
only the road transverse component that has shifted the
estimated position obtained using the SGP algorithm to the
estimated position obtained using LB-ASGP: Ct,cme = ut,r ×[
x̂r,L B−ASG P − x̂r,SG P

]
(see Fig. 2).

V. RESULTS

Simulations and field experiments were conducted, to ana-
lyze the performance of the proposed LB-ASGP algorithm in
comparison with SGP. In simulation, the performance of the
set-membership based algorithms is compared to standard iter-
ative least squares positioning (IGP) and augmented iterative
least squares algorithms (LB-AIGP).

A. Simulation Setup

A Matlab-based open-source simulator ISR-TRAFSIM
4.0 has been used as the simulation environment (available at:
http://home.isr.uc.pt/~conde/isr-trafsim/). The simulated sce-
nario consists of a urban road network presented in Fig. 6(a),
where six vehicles travel. In Fig. 6(a), the starting vehicle
positions and their headings are depicted: each vehicle is
marked with a pair of coordinate axes indicating local vehicle
x-axis and y-axis which represent along-track and cross-track
directions respectively. To emulate the GNSS constellation and
the signals propagation, the GPSoft [21] software was used.
GPSoft enables emulation of Glonass, Galileo, GEOs, GPS
and GPS Modernization (C/A-code on L1, L2 and L5) as
well as dual-frequency P-code measurements. The emulation
of C/A and P-code pseudorange and integrated Doppler with
user definable civil and military carrier frequencies is available
including characteristics such as: thermal noise, ionospheric
delay, tropospheric delay and diffuse multipath [21]. The
errors are emulated such that the proper temporal and spatial
correlation effects are observed in the measurements, their
characteristics are the following:
• Ionospheric – the average injected error is 4 meters,

emulated through a half cosine function of the local time
scaled by the satellite elevation factor;

• Tropospheric – the injected error ranges from 3 meters
for a satellite at zenith to 25 meters for a satellite at
5 degrees elevation;

• Diffuse multipath – standard deviation of pseudorange
diffuse multipath errors at zero-elevation is 1.6 meters.
Each satellite/receiver pair has its own uncorrelated dif-
fuse multipath error.

• Thermal noise – 1 meter of standard deviation.
The C/A-L1 code was used to emulate the satellite-receiver

signal travelling from the satellite s to the receiver r .
The bounds on pseudoranges are computed using [ρs

r ] =
[ρs

r − ασpr , ρ
s
r + ασpr ] (see equation 6). Table II presents the
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Fig. 3. Simulation - Vehicle 1 - 2D1/2 set-membership solution (a) and 2D1/2 lane-boundary constrained set-membership solution (b): (top) 3D projection
onto the YZ plane (lateral distribution); (middle) 3D projection onto the XZ plane (longitudinal distribution); (bottom) 3D projection onto the XY plane
(top view distribution). The clock offset cor follows the gradient of (c).

TABLE II

PSEUDORANGE INTERVALS RISK r AND α ERROR BOUNDS AS

A FUNCTION OF THE NUMBER m OF MEASUREMENTS

pseudorange intervals risk r and the error bounds α, given the
global risk R = 10−4 and the number m of measurements.
The lane-boundary sensor error is characterized by a standard
deviation of σlb = 0.25 m.

B. Experimental Setup

The automotive setup consisted of two standard road vehi-
cles. Two low cost GNSS receivers with raw-data capabilities
were mounted on each vehicle, spaced 2 meters longitudinally.
Therefore, four sources of GNSS data were available, enabling
the test of the algorithm has if it were four vehicles. Addition-
ally, each vehicle was also equipped with a centimeter grade
GNSS receiver used as ground-truth. The ground-truth receiver
was setup in RTK-GPS mode using a network of permanent
reference GNSS stations. The test site cover 0.4 K m2 and it
has 10 K m of roads, there are trees and buildings spreaded
around the site, creating disturbances on the received signals.
The following equipment was used in the experimental tests:
• Low cost vehicle GNSS receivers – ublox LEA-6T

embedded GPS-receiver;
• High cost ground-truth GNSS receivers – high perfor-

mance RTK-GPS system TOPCON HiperPro

• RTK network – military network SERVIR capable of
providing raw-data observations and corrections for real-
time RTK or post-processed PPK

Lane camera measurements were emulated using RTK-GPS
with a 25-cm additional white Gaussian noise, modelling both
camera and GIS errors [24].

C. Set-Membership GNSS Positioning (SGP)

When using set-membership GNSS methods, an important
focus is on the characterization of domains which contain the
solution, rather than on the search of punctual results which
might be misleading. Figure 3 shows the simulation results.
The initial searching volume was set to 27×106[m3] which is
an arbitrarily high value with little impact on the processing
time.

The column (a) subplots of Fig. 3 present the enveloping
box for the position of vehicle 1, located at (xr1, yr1, zr1) =
(0, 100, 0)[m], when the constraints provided by the satellites
constellation are used to reduce the search space of the initial
box. If a box does not belong to the solution set, it is
not explored anymore and discarded. The wide domains are
therefore reduced to a small enclosing set of boxes. The set-
membership GNSS positioning location set X, presented on
the column (a) subplots of Fig. 3, is made of 407 boxes.

The satellite constellation setup produced a very small bias
towards the positive direction of the local coordinates Y-axis,
i.e. a bias towards the left side of vehicle 1. This bias can
be seen easily in the top subplot of Fig. 3(a) where the
3D projection onto the YZ plane (lateral distribution) of the
set-membership GNSS positioning location set X is presented.
From the bottom subplot of Fig. 3(a), it is possible to observe
a small bias towards negative direction of the local coordinates
X-axis, i.e. the satellite constellation produces a very small bias
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TABLE III

AVERAGE OF THE ABSOLUTE MEAN LATERAL ERROR

TABLE IV

LATERAL ERROR ANALYSIS FOR ALL VEHICLES

towards the rear side of vehicle 1. This bias is more visible on
the middle subplot of Fig. 3(a) where the 3D projection onto
the XZ plane (longitudinal distribution) of the set-membership
GNSS positioning location set X is presented. One can also
observe from the top and middle subplots of Fig. 3 a positive
bias along the local coordinates Z-axis.

When using the set-membership GNSS positioning location
set X, the position estimate [xr , yr ] is determined by project-
ing the solution of the center of gravity (equations 8 and 9).
The clock offset cor distribution for each paving is depicted
in the 2D 1/2 subplot of Fig. 3, where the clock offset cor

follows the gradient of Fig. 3(c).
The simulated vehicles 1, 3, 5 and 6 travel in a road lane

parallel to the local coordinates X-axis, while vehicles 2 and 4
travel in a road lane parallel to the local coordinates Y-axis,
as shown in Fig. 6(a). The absolute mean lateral error value
along the local coordinates X-axis is higher than that along
the Y-axis (see Table III). Therefore, this satellite constellation
configuration generates an error with the major axis along the
negative direction of the local coordinates X-axis.

From the simulation results shown in Fig. 6(a) and Table IV,
one can observe that the algorithm has a very small mean
lateral error and a high standard deviation σ . This error profile
is due to the fact that vehicles traveling in different directions
have opposite error signals. The cumulative 3σ boundary of
the lateral positioning error for SGP algorithm is very high
meaning that the positioning method is rather inaccurate most
of the time.

Figures 4 and 5 presents the results achieved in field
experiments, where the dashed line with ’*’ markers and the
solid line with ’�’ markers, represent the position errors when
using algorithm (SGP) and (LB-ASGP) respectively.

Figure 4 presents the results of the lateral normalized
positioning error, while Fig. 5 displays normalized positioning
lateral (top), longitudinal (center) and 2D Euclidean (bottom)
error distribution, as well as its cumulative distribution func-
tions. From the results depicted in Fig. 4, it is not possible

Fig. 4. Field experiments - Lateral normalized positioning error distribution,
for all trajectory path of vehicles 1 to 4, using SGP and LB-ASGP estimation.

Fig. 5. Field experiments - Vehicles positioning errors, lateral (top),
longitudinal (center) and 2D Euclidean (bottom), using SGP and LB-ASGP
estimation: (a) normalized positioning errors distribution. (b) cumulative
distribution functions.

to observe a predominant axis error, since the trajectories
followed by all vehicles have a closed loop shape. The absolute
mean lateral error of (SGP) for all the vehicles is moderate,
see Table III. The field experimental results, depicted in Fig. 5
and Table IV, confirm the observations made in simulation.
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Fig. 6. Trajectory and zoomed trajectory followed by each vehicle: (a) Simulation - vehicle 1 trajectory in the bottom-left zoom subplot; vehicle 2 trajectory
in the bottom-right zoom subplot; vehicle 4 trajectory in the top-left zoom subplot and vehicle 6 trajectory in the top-right zoom. (b) Field experiments

The lateral errors are quite large and highly spread for
the SGP algorithm. The cumulative distribution 3σ of the
2D Euclidean error is also very high. The mean, standard
deviation, maximum and minimum errors in positioning are
similar for both IGP and SGP algorithms, being a slightly
higher for the SGP algorithm.

D. Set-Membership Augmented GNSS Positioning (LB-ASGP)

The results presented in this section make use of the lane-
boundary measurements. Column (b) subplot of Fig. 3 presents
the enveloping box for the position of vehicle 1, located at
(xr1, yr1, zr1) = (0, 100, 0)[m], when the constraints provided
by GIS and lane-boundary sensor are used to reduce to con-
straint the initial box. The set-membership GNSS positioning
location set X is reduced after a characterization of every
zone compatible with the lane-boundary measurements. The
resulting lane-boundary set is composed by 137 boxes.

By analyzing the column (b) subplots of Fig. 3, it is possible
to observe that the 3D projection onto the YZ plane (lateral
distribution) of the set-membership GNSS positioning location
set X is significantly reduced. The impact of the positive bias
along local coordinates Y-axis that this satellite constellation
configuration generates on vehicle 1 is also reduced as a
result. It is possible to observe that the 3D projection onto
the XZ plane (longitudinal distribution) of the set-membership
GNSS positioning location set X, maintains its shape, i.e. the
impact of the predominant negative error along local coordi-
nates X-axis generated by this satellite constellation configu-
ration on vehicle 1 is not reduced.

After having applied the lane-boundary constrain on the
estimated set X, a new position estimate is performed. The
LB-ASGP algorithm has considerably less mean absolute lat-
eral error than SGP, with an error reduction of at least 90%.
From top subplots of Fig. 5 and Table IV one can observe that
the algorithm has nearly zero mean lateral error distribution
and a low standard deviation σ . This distribution profile

error is due to the inclusion of lane-boundary constraints.
The cumulative distribution 3σ boundary of the lateral posi-
tioning error for LB-ASGP algorithm is greatly reduced mean-
ing that the positioning method has an accuracy of better than
one meter in simulation and 2.5 meters in field experiments,
most of the time. The 3σ is reduced by at least one factor
of 4 when using the LB-ASGP algorithm. From center subplots
of Fig. 5 and Table IV, one can observe that algorithm
has nearly zero mean longitudinal spread error distribution
and a high standard deviation σ . As expected, this distribu-
tion profile is similar to the one obtained without the lane-
boundary constraints, since the lane-boundary sensors only
provide additional geometric diversity for the axis orthogonal
to the road lane. The cumulative distribution 3σ boundary
of the longitudinal positioning error for LB-ASGP algorithm
maintains a very high value as expected.

The bottom subplots of Fig. 5 and Table IV present the
2D Euclidean error distribution. For both simulations and field
experiments, the mean and standard deviation σ error of the
LB-ASGP algorithm are reduced, this being more evident on
the field experiment, therefore validating the simulations.

Figure 6(a) shows the trajectory followed by all vehicles and
position estimation for all presented algorithms in simulation.
The subplots represent the zoomed trajectories for vehicles 1,
2, 4 and 6 respectively bottom-left, bottom-right, top-left and
top-right zoom subplots. As mentioned earlier, this satellite
constellation configuration generates errors along both X and
Y local coordinates axes, with the major error axis along
the negative direction of the local coordinates X-axis (see
position estimation of vehicles 2 and 4 using SGP in Fig. 6(a)).
Therefore, the improvement of position estimation by using
lane-boundary sensors is more noticeable for vehicles trav-
elling along the local coordinates Y-axis and with the lane-
boundary sensors measurements along the local coordinates
X-axis, as with vehicles 2 and 4. The position estimation
improvement of LB-ASGP algorithm for vehicles 2 and 4 is
shown in subplots bottom-right and top-left respectively, where
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Fig. 7. Field experiments - simplified HPL Stanford diagram for the two set-membership methods.

the position estimate is shifted right towards the real position.
The position estimation improvement for vehicles 1 and 6
is less evident since these vehicles travel along the local
x-coordinate and the error along the local y-coordinate is
medium positive (see position estimation of vehicles 1 and 6
using SGP in Fig. 6(a)). The estimates of vehicles 1 and 6 are
shifted down towards the real position, this correction can be
observed on the bottom-left and top-right subplots respectively.
This correction reflects a medium improvement of LB-ASGP
algorithm on the position estimate.

Figure 6(b) shows the trajectory followed by all vehicles and
position estimates for all presented algorithms in field exper-
iments. By analysing the subplots of Fig. 6(b), it is possible
to observe that the satellite constellation configuration, during
the field experiments, generates an error with the major axis
along the north-east direction (i.e towards the top-right corner
of Fig. 6(b)). This bias is successfully mitigated using the
LB-ASGP algorithm.

One can observe that the mean, standard deviation, max-
imum and minimum errors in positioning are similar for
both LB-AIGP and LB-ASGP algorithms, being slightly higher
for the LB-ASGP algorithm. The LB-AIGP and LB-ASGP
algorithms have significantly less mean absolute lateral error
than IGP and SGP, with an error reduction of at least 90%.

E. Integrity Analysis

If the solution set of SGP or LB-ASGP is an empty set,
a fault is detected. The method then directly signals an
integrity failure and the epoch is discarded, meaning that there
is no position estimation available (see Fig. 2).

Horizontal Protection Level (HPL) and Vertical Protection
Level (VPL) are often used in the context of aviation integrity
analysis [26]. Regarding the context of intelligent vehicles
only HPL is of interest [25]. A common representation of
the histogram of positioning solutions in terms of actual error
and protection level, is through the use of Stanford diagrams.

Figure 7 is a simplified HPL Stanford diagrams. We have
implemented a classical Receiver Autonomous Integrity Mon-
itoring (RAIM) algorithm. The HPL computation was tuned

with a probability of missed detection equal to 0.001 and a
false alarm rate of 3.33333× 10−7. A misleading information
event occurs when the position error is not bounded by
the HPL.

Figure 7 shows the integrity performance of both SGP and
LB-ASGP punctual estimation, achieved in field experiments
during time periods analyzed. The RAIM algorithm was
implemented using the estimates provided by each algorithm
(SGP or LB-ASGP). For each algorithm, the navigation solu-
tion of all the vehicles has been merged in the same plot in
order to show the total domain integrity per algorithm.

A significant improvement is achieved by using LB-ASGP
since the system is under normal operation (i.e. without
misleading information events) 93% of the time. The SGP
algorithm is 88% of the time under normal operation. For
some samples, the error exceeds the HPL and this situation is
six times higher for SGP than for LB-ASGP. We can therefore
conclude that the lane-boundary measurements also improve
the integrity of the computation.

VI. CONCLUSION AND FUTURE WORK

This paper has presented an enhancement to a previous
algorithm (SGP) [15], based on constraints propagation on real
intervals. This new positioning algorithm (LB-ASGP) uses a
lane-boundary sensor capable of measuring the distance from
the vehicle to the lane, therefore improving the performance
of a standalone GNSS algorithm. The two set-inversion based
algorithms (i.e. SGP and LB-ASGP) are very reliable, i.e. they
are insensitive to local minimum convergence issues. They
also have the advantage of not losing any solution in the
computation process, and the risk taken of failing to include
the solution in the set is only dependant on the risk taken on
setting the bounds on the measurements.

Using the same software implementation in both simulation
and field experiments, the results revealed improvements in
both magnitude of errors and confidence domains. Positioning
using non-augmented (IGP and SGP) algorithms has similar
results. This fact is also observable with the augmented
(LB-AIGP and LB-ASGP) algorithms where both algorithms
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have similar results. In terms of accuracy, the lane-aided
algorithm demonstrates a significantly better performance than
the algorithm that relies on GNSS only. In particular, the main
part of the cross-track errors associated to the GNSS posi-
tioning as concerns the algorithm LB-ASGP is significantly
reduced by the data fusion of the geo-referenced lane boundary
measurements. We have noticed that integrity is also improved
thanks to the map measurements.
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