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Abstract— In the paper a fast and consistent method to man-
age uncertainties on detected traffic agents providing reliable
results is presented. The information provided by a LiDAR-
based object detector is combined with a high-definition map to
identify the drivable space of the carriageway. Because the use
of a HD map requires the use of a localization system, the uncer-
tainty of the estimated pose shall be handled carefully. A novel
approach taking into account the localization uncertainty in
the perception task by direct propagation of it onto the LiDAR
points is proposed. It is compared with a classical propagation
that relies on linearized approximation. The good performances
of this approach in terms of integrity are demonstrated by the
use of real data acquired at the entrance of a roundabout being
a particularly complex situation.

I. INTRODUCTION

Many actions performed by self driving vehicles are
considered as safety critical, meaning that a system failure
can lead to serious consequences to road users. These maneu-
vers, such as intersection crossing or roundabout insertion,
require an accurate, reliable and consistent knowledge of
the surrounding environment to be correctly accomplished.
In particular, self-driving cars not only need to precisely
detect and localize all road users (cars, bikes, pedestrian,
etc.) in the sensor frame but should also be able to position
them in the driving environment. The use of High-Definition
(HD) maps can enhance the understanding of the driving
scene by providing for instance a way to discriminate a
vehicle driving on the road from one parked on its side.
However, the use of maps requires the vehicle to have a
localization system providing in real-time a good estimate
of the pose (position and heading). Because localization is
not always exact, its uncertainty shall be handled carefully
in order to avoid wrong obstacle mapping that could lead to
misdetections with possible catastrophic consequences.

In the paper, a method directly propagating the pose
uncertainty onto the LiDAR points, guaranteeing the integrity
computation of the space occupied by a perceived object is
presented. As HD maps provide a lane-level description of
the carriageways being very useful for autonomous driving,
the obstacles curvilinear occupancy is also computed with
reliable confidence bounds.

The paper is organized as follows: an overview of ex-
isting LiDAR-based detection algorithms and uncertainties
handling methodologies in autonomous driving field is shown
in Section II. The novel methodology is presented in Section
III-B along with a more classical linearized approximation.
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In Section IV, HD maps are used to compute lane level driv-
able space of the carriageways. Finally, experimental results
are given in Section V comparing the methods previously
exposed in terms of integrity and availability on overall
occupied space and lane level occupation. Such results has
been obtained by using real data acquired at the entrance of
a roundabout in the city of Compiègne, France (Fig. 2).

II. STATE OF THE ART

Obstacle detection is one of the topic arising most interest
in computer vision and there exists a very large literature on
image-based approaches. Recent methods using deep neural
networks [9], [32], [28] achieve remarkable performance in
terms of both precision and recall. Image-based methods
usually represent perceived objects in terms of 2D bound-
ing boxes in the image frame. Methods to perform a 3D
computation of such boxes from a single camera [23], [19]
or a stereo camera [17], [22] can also be found in literature.

More recently, LiDAR-based perception has gained more
interest as modern multi-layer LiDARs, (such as the Velo-
dyne VLP-32C used in this study) are capable of yielding a
complete view of the environment via a dense point cloud
(Fig. 2). The approaches can mainly be classified in two
categories: machine learning based and geometrical.

Machine learning methods for vision processing can be
adapted to LiDAR point cloud transforming them as a range
image [25]. Alternatively the problem can be addressed as a
point-wise classification one directly on the 3D data [30].
Nets such as VoxelNet [35], Fully Convolutional Neural
Networks [21] or PointPillars [20] can be adopted to perform
direct vehicles detection and bounding boxes estimation.

Geometrical approaches for obstacle detection are based
on the use of a prior knowledge of the driving scene
geometrical structure and are generally decomposed into the
following sub-problems.
1) Ground not-ground segmentation: LiDAR points belong-
ing to the ground surface are discerned from those not
belonging to it. Techniques can mainly be divided in grid-
based approaches [36], [18], [1], sector-based ones [13], [7]
or plan fitting algorithms [33].
2) Clustering: Points not being on the ground and belonging
to the same object are grouped together. Connected compo-
nents in a 2D or 2.5D grid returned by a grid-based segmen-
tation approach can be used [10]. Range image techniques
[33], [3] or radially bounded nearest neighbor methodologies
[16] can also be used to perform the operation.
3) Objects bounding: the space occupied by each clustered
object is computed providing a more suited representation.
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Fig. 1: Sensor to map reference frame transformation. A correct
localization (grey) and an erroneous one (red) are considered
highlighting four possible cases: true positive (1), false negative
(3), true negative (2) and false positive (4).

The task can be performed by surrounding polygons com-
putation algorithms or bounding boxes creation through L-
shape fitting [26], [34] or minimum area rectangle ones [4].

In autonomous driving field, uncertainty handling is an-
other widely studied topic. All the information provided by
sensors have in fact a certain level of inaccuracy. Conse-
quently, the intelligent vehicle localization and the other road
agents position can never be considered as exactly known.
Usually, localization uncertainty is reduced by enhancing
vehicle position. To perform this task, LiDAR sensors are
largely used by matching features to an a priori map [8], [15],
or by simultaneous localization and mapping, e.g. SLAM-
based approaches [6]. Alternatively the enhancement can be
performed via multiple vehicles cooperation [5], [12].

Uncertainty in vehicle positioning is handled in [27] by
defining protection levels on the pose in order to augment
car size and redefine the occupied space but not considering
the perception task. Moreover such lack of information is
usually kept in account to perform motion planning [31] or
maneuver prediction and decision making [14].

Unlike other methods, in the presented paper the local-
ization uncertainty is directly handled in the perception task
by adopting both the proposed methodology and a classical
linearization one [29] and comparing the obtained results.

III. HIGH INTEGRITY OBSTACLES 2D OCCUPANCY

To have a complete representation of the surrounding con-
text and correctly locate the perceived objects in the driving
environment for drivable surface extraction, it is necessary to
project them from the sensor reference frame to the map one.
To perform this task the localization uncertainty has so to be
carefully taken into account. In the paper the aforementioned
positioning lack of information is directly transferred into
the perception task to correctly map-matching the detected
object and to not incur in misdetections leading to possible
catastrophic consequences.

The aforementioned projection is depicted in Fig. 1 in
which grey points represent objects perceived by perform-
ing sensor to map frame transformation from ground truth
localization (grey car). Red ones are instead computed from
a wrong localization (red car). It is possible to observe how
different cases can be discerned performing frame transfor-
mation from a not correctly located sensor. By considering

(a) (b)

(c) (d)
Fig. 2: LiDAR point cloud processes. (a) Full LiDAR point cloud
and HD map (in yellow). (b) Clustering and bounding convex hulls
computation on not-ground point cloud obtained by segmentation.
(c) Convex hulls extension by localization uncertainty propagation.
(d) The real occupied space obtained by the rectangle rotation
is in red. The convex approximation adopted in the explained
methodology is in grey.

as true the position on the road, cases 1 and 3 constitute
respectively a true positive and a false negative in which the
perceived objects are correctly positioned inside and outside
the road surface. On the contrary case 2 represents a true
negative where an obstacle is detected on the carriageway
while being outside, leading to an unpredictable behavior.
More dramatic is case 4, a false positive corresponding to a
misdetection in which a road obstacle is not perceived.

To avoid dangerous circumstances, the localization un-
certainty is transferred in the perception by enlarging the
space occupied by each perceived object. The methodolo-
gies presented hereafter can be identically applied with 2D
surrounding polygons or 3D bounding boxes (see Fig. 2).

A. Linearized propagation

Let wq = [wx, wy, wθ]
T be the 2D pose of the vehicle in

the world frame and vz = [vxp,
vyp]

T the coordinates of a
point in the vehicle frame. The coordinate of such point in
the world frame is given by:

wz = f (vz,wq) =

[
cos(wθ) − sin(wθ)
sin(wθ) cos(wθ)

]
vz +

[
wx
wy

]
. (1)

Suppose the pose of the vehicle being estimated by
w q̂ = wq + εq and the error following a normal distribution
N (0,Σq). The uncertainty over the pose coded via the
covariance matrix Σq can be propagated upon the estimated
point position wẑ = f (vz,w q̂) using a first order approxi-
mation Σz ≈ JΣqJ

T where J is the Jacobian matrix of f
defined as
∂f (vz,wq)

∂wq
=

[
1 0 −vxp sin(wθ)− vyp cos(wθ)
0 1 vxp cos(wθ)− vyp sin(wθ)

]
(2)

Given a risk α ∈ [0, 1], it is possible to compute a
confidence domain C(α) such that it is possible to guarantee

Pr(wz ∈ C(α)) = 1− α. (3)
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(a) (b)
Fig. 3: Description of the extended convex hulls computation
representing the confidence domain of a perceived object. (a)
Perceived object in terms of bounding polygon including it. The
confidence domains on the three dimension around the vehicle
position are also depicted. (b) Extended convex hull built from the
confidence domain of each vertex of the original hull representing
the confidence domain of the perceived object.

There exists an infinite number of such confidence domains.
In the case of a Gaussian distribution with covariance matrix
Σ, this domain is commonly represented in the form of
an ellipse with its major and minor axis aligned along the
eigen vectors of Σ. This domain is chosen because it results
being the smallest, in terms of area, verifying Eq. (3). In the
presented case, an ellipse confidence domain is difficult to
be geometrically manipulated. In particular, it is complex to
compute the overall occupied space by a perceived object.
Consequently it is proposed the use of a rectangle having
sides aligned with the eigen vectors of Σ and with length li
computed as:

li = 2Φ−1

(
1 + (1− α)

1/2

2

)
λi, (4)

where λi is the i-th eigen value of Σ and Φ is the cumulative
probability density of the normal distribution N (0, 1).

Applying this formalism, each point of a perceived object,
in terms of LiDAR point or bounding polygon vertex, is
represented as a rectangle containing the position uncertainty.
The overall occupied space, with such uncertainty included,
is then obtained by computing the polygon bounding all the
rectangles vertices previously calculated.

This technique can be conceptually compared with a
Minkowski sum between the general polygon bounding
an object and the rectangle approximating the uncertainty
ellipsoid of the centroid of such polygon. In fact the ellipsoid
dimension depends on the hull vertex distance from the
sensor perceiving it.

B. Direct propagation

A drawback in the previously introduced approach is the
first order approximation induced by Eq. (2) leading to
underestimated covariance matrices. To overcome this issue,
an approach directly propagating vehicle pose confidence
domain onto the one of the perceived object is proposed.

First, the covariance matrix Σq of the vehicle pose in
the cross-track (CT ) and along-track (AT ) directions w.r.t.
the heading wθ of the vehicle is projected. Let σ2

CT , σ2
AT

and σ2
θ be the resulting variances in these three dimensions.

Similarly to the previous approach, a confidence domain is
built over the vehicle pose in the form of a “cube” in the
CT , AT , and heading three-dimensional space. The length
of each side is given by:

li = 2Φ−1

(
1 + (1− α)

1/3

2

)
σi, (5)

where i ∈ {CT,AL, θ}.
To propagate this confidence domain onto a point vz, the

rectangle confidence domain resulting from the uncertain
position is firstly computed:

[vxp ± lCT /2]× [vyp ± lAL/2] . (6)

Then, in order to take into account the uncertainty over wθ,
two other rectangles are computed by using a rotation of
angles ±lθ/2 (in the vehicle frame the heading is always
null, vθ = 0). In order to fully represent the space occupied
by the rectangle rotation, the circles generated by the farthest
vertices are computed. Then the tangent lines to such circles,
passing through the aforementioned vertices and the corre-
sponding ones in rotated rectangles, are extracted. Finally,
the tangent lines intersection points along with the corners
of the three rectangles are used to compute a convex hull
corresponding to the confidence domain of the point.

This procedure is depicted in Fig. 2 (d): the rectangles
represent the confidence domain resulting from the uncertain
position and its rotations. The lines t1, t2 and t3 are obtained as
tangent lines to the circle generated by the top left corner rotation,
passing through such vertex in the three rectangles. The same
reasoning is applied for the computation of t4 and t5 by the use of
the top right corner (in a symmetric case also the tangent through
the third rectangle vertex has to be computed). Points wi are
computed from the intersections of the previously calculated
tangent lines. Finally, the convex hull representing the point
confidence domain is computed using rectangle vertices and
tangent lines intersection points.

To obtain the confidence domain of the whole perceived
object, the convex hull of each of its points (in terms of
LiDAR points or bounding polygon vertices) is computed
and the resulting vertices are used for the computation of
an extended convex hull representing such domain. This
computation is well depicted in Fig. 3.

This procedure can be applied to the linearization method
by replacing the direct propagation confidence domain poly-
gons with the rectangles mentioned in Section III-A.

As all these computations are performed in the vehicle
reference frame, the transformation f is directly applied on
the vertices of the previously computed confidence domain
to get the final occupancy domain in the world frame.
Unlike the previously presented approach, no approximation
is necessary to propagate such confidence domain.
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IV. LANE-LEVEL CURVILINEAR OCCUPANCY

Once the 2D space occupied by a perceived object has
been calculated, it is possible to utilize the HD map in order
to compute whether it results being outside the road surface
or on it. For the obstacles on the carriageway or partially on
it, the lane level occupation area can also been computed.

A. Map-based filtering

The HD maps adopted in the presented study contain
the borders of the drivable surface. The world space is
therefore divided into two categories “road” and “not road”
with the aim of determining whether a detected object is on
the drivable surface or not. To exploit this task a general
intersection algorithm between the polygon defined by the
street borders and the confidence domain of an object can be
adopted. The resulting classification is therefore constituted
by three categories: “road”, “not road” and “uncertain”
(partially inside and partially outside the road).

B. Lane-level curvilinear occupancy intervals

For autonomous navigation, interaction between ego-
vehicle and surrounding road users can be performed at lane
level rather than at Euclidean space level. Therefore, the
curvilinear occupancy intervals generated by each obstacle
along the driving lanes result being more informative than the
2D occupancy space. In the available HD map, additionally
to the road borders, the middle of each lane of the road
is encoded as a polyline, i.e., a sequence of line segments.
In general, this task can be performed with every map
presenting lanes information.

To compute the curvilinear occupation of a 2D occupancy
polygon, first the intersection between such polygon and each
one representing a lane is computed. The result for each lane
is a sub-polygon representing the 2D space effectively occu-
pied on such lane. Then each vertex of this sub-polygon is
map-matched onto the HD map lanes. The lanelet formalism
has been used to compute the map-matching as it has been
shown to be more robust to discontinuities [11], [2]. To make
computation faster, the HD map has been organized with a
graph-based structure and a breadth-first search algorithm is
used during the map-matching step.

This operation is performed on all the obstacles being
classified as “road” or “uncertain” in order to keep the
integrity constraint. In fact, not considering an object which
confidence domain intersects a portion of the drivable sur-
face, even if small, could lead to collisions.

Regarding the polygon intersection two different situations
may occur:

1) Only one lane is intersected: The resulting-map match-
ing operation is performed directly on the original occupation
polygon vertices. A single occupancy interval is defined by
the minimum and the maximum curvilinear abscissa of all
the points on the polyline.

2) Several lanes are intersected: This may occur when
a vehicle is changing lane or when the occupancy space is
too large. This situation implies that there is no certainty re-
garding which lane is effectively occupied. From an integrity

(a) (b)
Fig. 4: Results from the lane-level curvilinear occupancy. (a)
Occupation intervals generated by a vehicle entering a roundabout.
(b) Occupation intervals from a vehicle driving between two lanes.

Fig. 5: The red polygon B̂i intersects two different lanes generating
two sub-polygons b̂i1 and b̂i2. All the vertices of each sub-polygons
are map-matched on the polyline in the middle of the occupied lane.
The result is a set of curvilinear intervals representing lane level
occupied space Ŝi = {ŝi1, ŝi2}.

point of view, every candidate lane has to be considered as
occupied by a curvilinear interval (Fig. 4).

The whole procedure is represented in Fig. 5.

V. EXPERIMENTAL RESULTS

In the paper the adopted method, for both segmentation
and clustering, is the recently developed one by Zermas et
al. [33]. The reader may refer to this paper for detailed
information. The ground not-ground segmentation step is
based on the assumption that the ground points belong to
planes, which means that those having low height values are
more likely to be on the soil. The point cloud is first divided
in multiple sub-point clouds and, for each of them, a plan is
computed. In this way is possible to have a better evaluation
of the road slopes. Once the planes have been estimated, a
thresholding is applied on the LiDAR points to discriminate
whether a point belongs to the ground or not. The output of
this algorithm is the not-ground point cloud.

In the clustering phase, the goal is to group all the not-
ground points belonging to the same object. To perform this
task, the 3D LiDAR points are treated as pixels in a 2D
cylindrical image and labeled by using a two-run connected
components algorithm [10].

Once all points of the point cloud have been assigned to a
cluster, they are first projected in a 2D space by discarding
the upward dimension, assumed to be orthogonal to the
ground surface, in order to have a representation correspond-
ing to the map one. Because the clusters may represent any
kind of obstacle, it has not been used a predefined bounding
shape, such as rectangles, usually chosen to bound vehicles.
On the contrary, each detected obstacle has been represented
by its minimal convex hull resulting in convex polygons
surrounding the clusters as shown in Fig. 2.
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(a) (b) (c)
Fig. 6: Integrity representation in terms of 2D occupied space (a)
and curvilinear occupied space (b). Red hulls and segments are
acquired from wrongly localized sensor (red car) while grey ones
are obtained from ground truth localization (grey car). (c) As the
red polygon B̂i does not contain the gray cluster Bi entirely, it
does not satisfy the 2D integrity property. Its projection Ŝi at lane
level along the blue polyline, however, includes the true curvilinear
occupancy Si.
TABLE I: Average computational time in ms for the whole
processing (segmentation, clustering, uncertainty propagation, map
filtering and map matching).

Step Segm. Clust. Propagation Map Filt. Map Match.
Direct 7.753 9.317 0.183 11.384 5.075

Then uncertainty propagation has been performed through
the methodology presented in Section III-B in order to extract
the overall 2D space occupation, also at lane level, and avoid
the dangerous situations depicted in Fig. 1.

To validate the proposed method, several experiments have
been carried out. A dataset has been recorded at the entrance
of a roundabout in the cities of Compiègne and Rambouillet,
France. A Renault ZOE experimental vehicle was equipped
with a Velodyne VLP-32 LiDAR and a GNSS/IMU NovAtel
SPAN-CPT with RTK correction to provide a ground truth
localization. The Velodyne VLP-32 LiDAR provided scans
at a frequency of 10 Hz. The dataset is composed of ten
sequences of about 10 minutes of road traffic, with a moder-
ately dense traffic flow. To simulate errors on the localization,
a Gaussian noise was injected into the pose provided by the
ground truth. The standard deviation values for such noise
are σx = 0.1 m, σy = 0.16 m and σθ = 0.01 rad.

First, the 2D occupancy of the linearized and direct
method from an integrity point of view has been computed.
In the presented context the integrity property refers to the
capability of the estimated occupation space, computed from
a wrongly localized sensor, to contain the whole cluster of
point cloud or bounding polygon representing the object
perceived at exact localization. Given a raw-data cluster Gi,
composed of points gi, a bounding polygon Bi that bounds
points of Gi, a transformation function f and a risk α, a
bounding polygon defined as B̂i, obtained by applying the
transformation f to each vertex of Bi, keeps the integrity
property if and only if: Pr(Bi ⊆ B̂i) ≥ 1− α.

The same reasoning can be applied at lane level. Given a
set of segments Si representing the lane level drivable space
occupied by a bounding polygon Bi and a risk α, a set of
segments Ŝi, computed by map matching the transformed
bounding polygon B̂i, satisfies the integrity property if and
only if: Pr(Si ⊆ Ŝi) ≥ 1− a.

These integrity definitions are depicted in Fig. 6.
Considering a risk α and the consequent confidence level

1−α ∈ {0.90, 0.95, 0.99, 0.999, 0.9999}, the occupancy con-

TABLE II: Integrity comparison of the linearized and direct
methods for 2D occupancy confidence domain.

1− α 90% 95% 99% 99.9% 99.99%

Linearized 44.54% 49.50% 56.45% 62.59% 66.33%
Direct 97.69% 98.87% 99.21% 99.69% 99.88%

TABLE III: Integrity comparison of the linearized and direct
methods for lane-level occupancy confidence domain.

1− α 90% 95% 99% 99.9% 99.99%

Linearized 91.04% 91.50% 91.96% 92.82% 93.05%
Direct 99.23% 99.30% 99.35% 99.73% 99.90%

fidence domain has been computed by using both methods
from a not correctly localized sensor. Then, for each obstacle
cluster, it has been computed whether all the points within the
cluster, acquired from the exact localization, were contained
in the occupancy confidence domain or not. A method has
been considered to satisfy the integrity constraint if the ratio
of clusters entirely contained in their confidence domain is
greater than the confidence level 1−α. Table II summarizes
the results obtained in the experiments. It can be seen that the
linearized method does not provide reliable results. This is
due to the non linearity induced by an error on the heading
of the vehicle that leads to a banana shaped distribution
of the LiDAR points which is badly approximated by a
Gaussian one. On the other hand, the direct approach keeps
the integrity up to a confidence of 99%. For higher degrees
of confidence, the integrity objective is not exactly reached
but the statistics result being very close.

The same analysis has also been performed in terms of
occupied curvilinear space. Table III shows that the direct
propagation method also outperforms the linearization one at
lane level. This is directly related to the better performances
identified in 2D space occupation. Nevertheless, the curvi-
linear integrity values are significantly higher than the 2D
occupation ones. This behavior is due to the fact that a 2D
bound that does not fully include a given obstacle may still
include its curvilinear occupancy at the lane level. Fig. 6 (c)
illustrates such a situation.

All the algorithms have been coded in C++ using the
ROS middleware. The computation for the whole processing
including segmentation, clustering, uncertainty propagation,
map filtering and map matching reached real-time computa-
tion with an average computational time of about 33 ms on
a 2.2 GHz CPU. From Table I it is possible to see how the
uncertainty handling and the map-matching phases do not
degrade the real time performances being perfectly suited
for autonomous vehicles navigation.

Finally, to demonstrate the usefulness of the method, it
has been qualitatively validated in an autonomous driving
scenario. The roundabout crossing algorithm presented in
[24] has been implemented replacing vehicles positions by
their occupancy intervals extracted by LiDAR detection and
uncertainty injection in curvilinear domain. Autonomous
driving tests were conducted on the Séville experimental
test track of the University of technology of Compiègne.
A vehicle and a bicycle were looping inside a roundabout
with the aim of having the autonomous vehicle inserting in
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the roundabout. Tests with a 95% confidence level led to
satisfactory behavior for autonomous navigation.

VI. CONCLUSION

In the paper, a fast and efficient method to propagate the
uncertainty of the ego-vehicle localization in the perception
task with good integrity has been proposed. It has been
proved that the presented methodology of direct uncertainty
propagation preserves the integrity property and outperforms
a state-of-the-art method. This result has been shown in both
domains, the 2D space occupation and the lane-level curvilin-
ear space occupation. By its application it has been possible
to extract the occupied drivable surface avoiding dangerous
situations, making the obtained information suited to perform
safety critical maneuvers. In the end, the methodology has
been implemented and tested in a real autonomous vehicle
to perform such maneuvers.
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