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Abstract— Autonomous vehicles navigation in complex sce-
narios is still an open issue. One of the major challenges is
the safe navigation of autonomous vehicles on roads open to
public traffic. Indeed, behaviors and intentions of human-driven
vehicles are hard to predict and understand. In this paper, we
propose a strategy to make an autonomous vehicle able to cross
safely a roundabout. Our approach relies on High-Definition
(HD) maps with lane level description which allows to predict
the future situation thanks to the concept of virtual vehicles.
This method handles safely collision avoidance and guarantees
that no priority constraint is violated during the insertion
maneuver without being overly cautious. The performance is
evaluated with the SUMO simulation framework. An highly
interactive vehicles flow has been generated using real data
from the INTERACTION dataset. We also propose strategies
to extend our algorithm to multi-lane roundabouts and report
how these extensions behave in terms of safety and traffic flow.

I. INTRODUCTION

Nowadays, Autonomous Driving (AD) vehicle technol-
ogy is a very active field of research. In a not-too-distant
future, one can imagine that AD vehicles will co-exist
with manually-driven (MD) vehicles. Safe navigation has
to be guaranteed in complex dynamic environments like in
intersections, lane merging or roundabouts, where the risk of
accident is one of the highest in the road environment.

Many works have been done for intersection crossing with
only AD vehicles (see [21], [16] and [25]) and with priority
constraints [4]. Some approaches solve the intersection cross-
ing problem with optimization [21] or with model predictive
control [17]. Computing and avoiding the situations where
a collision is unavoidable even if an emergency braking is
executed is another way to address the problem [2]. Finally,
the autonomous intersection management protocol (AIM)
[3] [23] and virtual platoon methods [20] [5] have shown
interesting properties.

In a mixed traffic environment with AD and MD vehicles,
avoidance sets can be computed with the reachability theory
[15] [6]. In [22] the authors implement a collaborative motion
planning algorithm that cooperates with MD vehicles. Other
works as in [11] estimate the MD vehicle behavior in the
worst-case (e.g. the acceleration of a MD car approaching
an intersection is considered to be the highest). In [9], the
behavior of a MD vehicle is modeled with a mathematical
representation that captures the human way of driving.

In [19], we have have shown that using virtual vehicles
along the lanes of an HD map is very efficient to predict the
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Fig. 1: A roundabout with its HD map representation. The decision
zones are green, the transition zones are yellow and the Ring zone
is red. The roundabout exits are blue.

dynamic situation in a roundabout. This paper extends this
approach with the following contributions:

• A safe and priority-preserving curvilinear decision
method for one lane roundabout with several MD vehi-
cles is fully described,

• The generation of a realistic vehicles flow for simula-
tion studies using real data from the INTERACTION
dataset [27] to be used in a SUMO-based simulation
environment [14],

• Three extensions are presented to handle two-lane
roundabouts with a navigation strategy in the outermost
lane of the roundabout,

• An evaluation of these extensions in terms of safety and
flowability of the insertion.

The paper is organized as follows. In the next section, we
first introduce curvilinear representation along with high def-
inition (HD) maps. Then, Sec. III formalizes our case study
and states the different hypothesis. In Sec. IV, we present
our roundabout crossing algorithm for both the single lane
case and its extension to the two-lane one. The simulation of
a vehicle flow using real traffic data is explained in Sec. V
followed by experimental results in Sec. VI.

II. CURVILINEAR COORDINATES ALONG HD MAPS

In complex urban environments, multiple vehicles share
the driving road and it is important to properly represent their
spatial positions with respect to each other. Euclidean coor-
dinates are often not well suited to represent spatial relation
between road user. Curvilinear coordinates along HD maps
provide an efficient way to manage the interactions between
road users. Curvilinear frameworks are often preferred as
they capture the lane level interaction between the vehicles,
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Fig. 2: The HD map representation with the three zones of Fig.
1. The vehicle trajectories are estimated w.r.t. the map framework
according to [19] over a time horizon. The decision (green) and
transition (yellow) zones are shown.

for example in terms of conflicting trajectories w.r.t. the AD
vehicle navigation corridor [11] [24].

The principle of curvilinear coordinates is to map an
Euclidean pose, i.e., position and heading angle, onto a
curvilinear pose with respect to a geometrical curve. This
curve typically represents the nominal path of the vehicles.
In many driving contexts, the center line within a lane is a
sufficient approximation of the path that the vehicles follow.
Throughout this paper, we assume that the center lines are
stored in a HD map.

The first step of the curvilinear representation is to get the
lane followed by the vehicles. For an AD vehicle, it is simply
given by the path planning module. In contrast, the driving
lanes of the MD vehicles need to be estimated by a map-
matching procedure. It is well known that map-matching
ambiguities may arise when a road splits or when the vehicle
changes lanes. We do the map-matching process using the
method described in [19] where multiple candidate lanes can
be simultaneously occupied by creating virtual copies of the
MD vehicle, one for each lane possibly occupied.

Once the path has been defined, the curvilinear abscissa
s of the vehicle is computed from an origin point of the
path. This representation is particularly useful to do virtual
platooning with a vehicle driving on another road [20]. By
taking the curvilinear origin at the intersection of two lanes,
the curvilinear abscissas can be used to compute the relative
virtual gap between two vehicles lying on two intersecting
lanes as illustrated in Fig. 2. Practical computation of the
curvilinear coordinates can be found in [10].

In this work, we use an HD map that explicitly represents
all the lanes by polylines, i.e., sequences of line segments.
Another commonly used map representation is the lanelet
one [1] which uses the left and right bounds of the lane. In
this case, a conversion into a center line representation is
needed beforehand as done in [12].

III. PROBLEM STATEMENT

The state of a vehicle is represented as Vi = [si, si, vi, Pi],
where [si, si] are the lower and upper bounds over the
curvilinear occupancy of Vi encompassing both the size and
the uncertainty (bounded) over its position estimate, vi is its
estimated speed and Pi its predicted path. These parameters
are typically provided by a perception system able to detect,
track and map-match the vehicles nearby.

In this work, we constrain the AD vehicle to navigate only
on the outermost lane of the roundabout. In other words,

we do not allow the AD vehicle to overtake and change
lane during the roundabout crossing. With this simplification,
the navigation algorithm has only to control the longitudinal
motion of the AD vehicle to perform the task, the lateral
control being done by lane keeping. The traffic regulations
that we consider are as follows: the priority lanes are situated
inside the roundabout ring while the non-priority ones are
in the entering branches. Three rules are important in our
strategy. An AD vehicle

1) Has to keep a safe inter-distance w.r.t. the vehicle
ahead.

2) Can enter into the roundabout if it does not make an-
other vehicle inside the roundabout decelerate (vehicles
inside the roundabout have the right of way).

3) Avoids stopping on a road lane except if rules (1) or
(2) require it to do so.

This means that a vehicle on a non-priority lane is allowed
to enter into the roundabout only if the insertion maneuver
does not force a priority vehicle to decrease its speed. A
priority vehicle must follow its reference speed profile and
should perform an inter-distance regulation only with respect
to vehicles that have the same priority level. It is also desired
that the AD vehicle makes an insertion as smooth as possible
without making a stop at the entrance of the roundabout
which requires it to anticipate the behavior of the other
vehicles.

IV. ROUNDABOUT INSERTION ALGORITHM

A. Roundabout Lanes Classification

In accordance to the problem statement and the three rules
listed in Sec. III, we propose to decompose a roundabout into
three zones as illustrated in Fig. 1. Each zone describes sub-
steps of the insertion maneuver, as follows:

a) The Decision Zone (in green in Fig. 1) is before the
merging into the roundabout ring. In this zone, the AD vehi-
cle does not have priority w.r.t. vehicles in the roundabout.
It has to evaluate the possibility of a safe insertion without
violating priority constraints.

b) The Transition Zone (in yellow in Fig. 1) is the last part
of the entering lane where it merges with the roundabout
ring. In this part, the AD vehicle performs a transition to
enter into the roundabout. When the AD vehicle is here, a
safety inter-distance w.r.t. an eventual incoming MD vehicle
on the roundabout ring must be kept in order to allow a safe
insertion.

c) The Ring Zone (in red in Fig. 1) corresponds to the
roundabout ring. In this zone, the insertion is completed
and the AD vehicle follows the nearmost MD vehicle in the
roundabout or drives at its nominal speed if it is alone.

As a consequence, the crossing of the whole transition
zone is taken into account in the decision making procedure.
In facts, once a vehicle enters into that zone, it can no longer
change its decision. If it needs to stop, it means that the
decision of entering into the roundabout has been wrongly
taken which makes the approaching vehicle to decelerate in
order to avoid a collision. Finally, once the AD vehicle has
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Fig. 3: (3a) Classical virtual platooning (dashed) and its extension to intervals (solid). V is the ego-vehicle and V ,
1 is a virtual copy of

V1. (3b) Situation with 6 other vehicles (all the possible relative positionings). (3c) Intervals overlapping corresponding to Fig. (3b).

crossed the transition zone, it gains the same priority as all
the vehicles in the roundabout ring.

B. Single-lane roundabout

The principle of virtual platooning is to establish a cross-
ing order for complex scenarios such as intersection [20]
or roundabout [19]. By using intervals [s, s] to represent
the curvilinear occupancy of vehicles, cases where no total
order between vehicles may arise. Let us consider the case
illustrated in Fig. 3a, where the trajectory of the AD vehicle
(in blue) crosses the one of an MD vehicle (in green) at a
point n. Let us define [s, s] the curvilinear occupancy of the
AD vehicle w.r.t. the origin n, and similarly [si, si] for a
MD vehicle Vi. Fig. 3b illustrates the six possible relative
positions between the AD vehicle and the MD ones with
their corresponding virtual projections (Fig. 3c).

Note that if there is no priority constraint between the
vehicles, using intervals does not lead to a unique order
among the vehicles. Therefore, one needs to choose an
insertion policy [19]. This issue is out of the scope of this
paper, as we consider that vehicles inside the roundabout
have the highest priority. From Fig. 3c, one can see that
in all the cases (2), (3),..., (6), the AD vehicle cannot be
guaranteed to be in front of the incoming MD vehicle.The
only case where the AD vehicle may expect to be in front of
the MD vehicle is the case (1). As soon as the AD vehicle
enters the transition zone, it starts to have physical interaction
with other vehicles in the ring zone. Therefore, it needs to be
in the case (1) and guarantee that the (virtual) inter-distance
between the two vehicles dref = s − s1 is greater than a
minimal safety distance dsafe during the whole time it takes
for the AD vehicle to insert into the roundabout (i.e., for the
whole transition from the decision zone to the Ring zone).

Let us consider the scenario depicted in Fig. 2, where the
AD vehicle V is in the decision zone of the roundabout and
an incoming priority MD vehicle V1 in the ring zone. Let us
define t0 as the time when the front part of the AD vehicle
enters into the transition zone. At a given time t < t0 (i.e.,
when the AD vehicle is still in the decision zone), one can
see that having

dref (t0) = s(t0)− s1(t0) > dsafe, (1)

is not sufficient for the AD vehicle to ensure a safe and
priority preserving insertion maneuver. Indeed, if the speed

v1 of vehicle V1 is greater than the speed v of V , the inter
distance between the two vehicles will shrink over time. This
shows that vehicle dynamics must be taken into account at
the decision making level.

The AD vehicle needs to guarantee that Eq. (1) will be
satisfied during the whole insertion maneuver, i.e., from the
moment that the upper bound s enters the transition zone
until the lower bound s leaves it. Let ∆t be the time needed
by the AD vehicle to go completely through the transition
zone, i.e., the back of the AD vehicle has exited it. The
decision to enter the roundabout is taken if:

∀t ∈ [t0, t0 + ∆t], s(t)− s1(t) > dsafe. (2)

In order to guarantee the inequality of equation 2, we need
to know how both s and s1 evolves over time. In this work,
we assume that both vehicles drive at a constant speed. This
assumption may seem simplistic, but it is representative of
the driver behavior in the INTERACTION dataset. Within
the roundabout ring of the INTERACTION dataset, the speed
profiles of the MD vehicles have a standard deviation less
than 1 m/s in average. Under this assumption, we have
∆t = l/v, where l is the length of the transition zone, and
the kinematics of each interval can be expressed as follows
(bearing in mind the aforementioned considerations):

s(t) = s(t0) + v · (t− t0), (3)

s1(t) = s1(t0) + v1 · (t− t0). (4)

Substituting equations (3) and (4) in (2), we obtain

s(t0)− s1(t0) + (v − v1) · (t− t0) ≥ dsafe. (5)

The inequality (5) needs to hold ∀t ∈ [t0, t0 + ∆t].
If v > v1, it leads to

s(t0)− s1(t0)− dsafe ≥ 0. (6)

It means that if the AD vehicle drives faster than V1, it can
insert if it is sufficiently ahead of V1 at t0.

Otherwise, if v < v1, we have

s(t0)− s1(t0)− dsafe +
(

1− v1
v

)
l ≥ 0. (7)

We can see that the relative speed v1/v needs to be taken
into account in the decision.

Inequality (7) allows us to decide if an AD vehicle has
enough space to keep a safety inter-distance w.r.t. an eventual
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Fig. 4: Illustration of the three strategies to handle the lane change maneuvers in a two-lane roundabout. The vehicle trajectory is green
and the corresponding lane occupation is red. Note that for methods 4c the lane occupation becomes red when the intention to change
lane is detected (yellow square)
incoming vehicle, knowing its velocity and its occupancy at
time t0. In the case where equation (7) is not satisfied, the
ego vehicle slows down to perform a safe stop at the end of
the decision zone (that coincides with the give way marking).

Nevertheless, once the speed of the AD vehicle is close to
zero, it is difficult for the AD vehicle to find a sufficiently
large gap to effectuate the insertion. This is due to the
singularity present in equation 7 when v = 0. In facts,
considering the function h(v) =

(
1− v1

v

)
, one can see

that has a peak towards −∞ for v → 0. This drastically
degrades the performances of our algorithm as once the AD
has stopped, it will only insert once no incoming vehicle is
present. To overcome this, we propose to replace h(v) with
another function for the case v < v1. In particular, we look
for a function that meets the following criteria:

1) As v → 0, the value of the function becomes less
dependent on v.

2) For v = 0 the value of the function depends at least
on v1.

The main idea is to have a function that allows to set
safety gap that depends at least only on the other vehicle
speed v1. This solution is convenient when the dynamics
of the system is not well known and we need to perform
a prediction without being too pessimist. In this work, we
choose a function with the following form:

ĥ(v) = A

(
1

1 + e−α(v−v1)
− 1

2

)
(8)

Where the two parameters A and α have been tuned during
the real experiments phase to choose a convenient insertion
maneuver VI. Equation 7 now becomes{

s(t0)− s1(t0)− dsafe ≥ 0 if v > v1,

s(t0)− s1(t0)− dsafe + ĥ(v)l ≥ 0 else.
(9)

C. Two-lane Roundabout

We propose an extension of the aforementioned method to
navigate into two-lane roundabouts. We consider again the
roundabout shown in Fig. 1. One of the most difficult issues
in this scenario is the handling of vehicles that perform lane
change maneuvers from the inner ring of the roundabout to
outer one. In practice, it is very challenging to predict a lane
change maneuver, especially when vehicles attempt to do a
lane change with nudging [15]. We propose three different
strategies to handle the navigation of multiple vehicles inside
the a two-lane roundabout.

The first method consists in occupying systematically both
lanes of the roundabout ring if at least one lane is occupied.
This means that, if a vehicle is occupying the innermost lane,
the outermost one will result occupied too. Fig. 4a illustrates
this method. The second method consists in occupying the
lanes only when there is a significant physical occupancy of
a vehicle. This implies that during a lane change maneuver
there is always one occupied lane at most, i.e., the outer lane
becomes occupied only when the first half of the vehicle
has already crossed the bound between the two lanes of the
roundabout (Fig. 4b). The third method occupies the outer
lane only when the intention of a vehicle to change lane is
detected. This approach is shown in Fig. 4c. In this case, we
assume to have a system that is able to predict when a driver
decides to change lane, e.g., by detecting blinkers or lateral
distance from the lane center.

V. VEHICLES FLOW GENERATION

To simulate a realistic vehicles flow, we propose to use
data from real traffic. Several datasets can be found in
the literature such as Common Road [18], ACFR [28] or
INTERACTION [27]. We have chosen the latter one because
it provides data for highly interactive road users. For each
roundabout of the dataset, traffic flow data recordings at
microscopic level in a dense traffic flow situation is provided.

To quantify the degree of interaction between traffic
agents in the vehicle flow, the authors propose to use the
∆TTICmin metric (minimum time-to-conflict-point differ-
ence for an interactive pair of vehicles [26]). The resulting
∆TTICmincomputations for every scenario are provided
too. For a given interactive pair of vehicles, the correspond-
ing ∆TTICmin can be computed as

∆TTICmin = min
t∈[Tstart,Tend]

(TTICt1 − TTICt2),

where TTICti = 4dti/υti , i = 1, 2, is the traveling time to
the conflict point of each vehicle in the interactive pair. If
∆TTICmin 6 3 s, it means that there is interaction be-
tween the vehicles. Moreover, an interaction between a pair
of vehicle is defined intense if ∆TTICmin 6 1 s. In this
study, we focused on the data from the USA Roundabout FT
scenario because it is the most interactive two-lane round-
about with the highest number of vehicles and recorded
sequences.

The main idea of this part is to generate with the SUMO
simulator a flow of vehicles based on these traffic data that
has the same degree of interaction in terms of ∆TTICmin.
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Fig. 5: Inter-distances distributions from one sequence of the INTERACTION dataset 5a. Cumulative distribution of departure speeds 5b
for the same sequence. Comparison between the ∆TTICmin distribution generated from the same sequence of the USA Roundabout FT
scenario of the INTERACTION dataset (blue) and the one obtained from the traffic flow simulated by the resulting traffic flow simulation
in SUMO (green). One can notice that an highly dynamic behavior (∆TTICmin 6 1 s) is present in both scenarios.

We decided to use SUMO because it is a widely used simula-
tor for microscopic traffic simulation in the field of collision
avoidance [13] [7]. This has several advantages. First, it
allows us to quantify the performance of our algorithm w.r.t.
the interaction degree of the traffic scenario. Then, we can
obtain a vehicle flow with the same degree of interaction on
a different roundabout testbed (for example the one in Fig.
1). Finally, a simulated vehicles flow in SUMO can react
dynamically to the ego vehicle decisions (e.g. brake when
the insertion maneuver is too aggressive), while it is not the
case for a recorded flow dataset.

To do this, we have implemented an algorithm to compute
common intersection points between vehicles trajectories
(similar to the one presented in section IV-B) and the cor-
responding ∆TTICmin for every interactive pair. Note that
vehicles trajectories are not present in the INTERACTION
dataset and they need to be computed offline. Furthermore,
the distances 4dti have been computed in a curvilinear
framework considering an HD map representation obtained
from the Lanelet2 HD maps provided with the dataset
visualization interface.

In order to feed SUMO simulator, we compute for every
track of the USA Roundabout FT the arrival times, arrival
speeds, inter-distances w.r.t. the vehicle ahead and behind.
Fig. 5a shows the resulting inter-distances distributions,
while Fig. 5b gives the inverse cumulative distribution of
vehicle speeds. Regarding the arrival times, a uniform dis-
tribution has been estimated.

On the basis of this data, we randomly sampled one value
for each distribution in order to create vehicle objects with
the same properties as the true ones. Considering the inter-
distances distribution, only the one w.r.t. vehicles ahead has
been used as the minGap distance for vehicle objects, with
an outlier rejection for too large gaps (right tail of Fig. 5a).

Finally the speed of each vehicle has been bounded by
the speed limit provided by the road shape and the path of
each vehicle object has been chosen randomly giving more
weight to routes intersecting the AD vehicle one.

The output of the system is a traffic flow with the
∆TTICmin distribution similar to the one computed with
the real traffic data. Fig. 5 illustrates the output of the simula-
tion for a recorded traffic sequence of INTERACTION. One

can see that a highly dynamic behavior (∆TTICmin 6 1
s) is present in both scenarios.

The high degree of interaction between interactive pairs is
mostly due to the vehicles navigation into the double lane of
the roundabout ring. In other words, if two or more vehicles
navigate very close to each other on parallel lanes of the
roundabout ring, a high interaction between them exists.

VI. EXPERIMENTAL SETUP AND RESULTS

To validate our approach, we have used two simulators.
The SUMO simulator [14] was used for microscopic traffic
flow generation while a ROS-based simulation framework
was used to implement the navigation algorithm and the
AD vehicle dynamics. The coupling and synchronization of
both simulators has been achieved with the TraCi SUMO
library and its Python API. An explanation about time
synchronization and coupling of the two simulators can be
found in [8].

Furthermore, we have imported in the SUMO simula-
tion environment the HD map representation of the testbed
roundabout. This has been achieved with the Netedit and
Netconvert tools included in the SUMO suite [12].

For each simulation, a random high density vehicle flow
that meets the ∆TTICmin criterion has been generated over
a fixed time horizion T = 200 s. Each simulation contained
between 200 and 400 seconds for a total amount of more
than 1 hour of simulation. The number of vehicles for each
flow randomly varied between 50 and 175, for a total amount
of more than 5000 vehicles.

These limits have been chosen to capture a wide range
of scenarios, starting from a sparse traffic flow until a more
dense vehicle stream. Moreover, to simulate both localization
(AD vehicle) and perception (MD vehicles) uncertainty, we
consider a ±1 m bound to add at the curvilinear interval
[si, si] and [s, s], which represent the projection of the
vehicle footprint on the centerlane.

A. One lane Roundabout

To experimentally validate our approach, we consider sev-
eral scenarios with the aforementioned technique to generate
high density traffic flows. The simulations have been carried
out with the HD map representation of the “Guy Dénielou”
roundabout, in the city of Compiègne, France (Fig. 1). In
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Fig. 6: Inter-distances distributions w.r.t. the vehicle ahead (blue)
and behind (green) during an insertion maneuver. The red line
represents the 5 m safety gap.

the first part of the tests, only the outermost lane has been
considered.

To better quantify the performance of our algorithm, we
have computed the distributions of the inter-distances w.r.t.
the vehicle ahead and behind during the crossing of the tran-
sition zone. Fig. 6 shows the inter-distances distributions for
both the ahead and behind gaps. As one can see, the behind
safety gap meets always the safety criterion. Conversely,
considering the gap w.r.t. vehicles ahead, there is a slight
violation of the safety bound. This violation is due to some
controller imperfection and can be neglected. Moreover, we
are interested in quantifying the insertion rate w.r.t. the
vehicles flow. Table I illustrates the average insertion rate
and waiting time as function of the number of vehicles in
the flow. The insertion time is computed considering that the
total length of the decision and transition zones is 33.4 m
and the nominal speed in this zone is 30 km/h, which gives
us a nominal waiting time of 4.2 s.

As one can see, the number of insertions decreases w.r.t.
the number of vehicles in the flow. Conversely, the waiting
time increases.

Finally, to validate our strategy in a real scenario, we im-
plemented the whole architecture on an autonomous Renault
Zoé and we tested the insertion first in an hybrid environment
(i.e. with simulated vehicles moving on the experimental
circuit) then with real road agents detected with a Lidar-
based perception system

B. Two-lane Roundabout

For every strategy listed hereafter (Section IV-C), several
simulations on SUMO with a randomly generated vehicle
flow on the full roundabout (two lanes) have been carried out.
To properly model a lane change maneuver inside SUMO,
we consider a nonzero duration for lane changes and the
other hypotheses done in [12]. In order to quantify the
performance of our approach, Fig. 7 and 8 show respectively
the inter-distances w.r.t. the vehicles ahead and behind for
the three strategies. The first method always ensures safety.
For the other two, it is not the case. In fact, the second
method violates the safety constraints in both forward and
backward cases. This is due to the late detection of lane
changes. As a consequence of that, it can happen that the
AD vehicle performs an insertion maneuver when another

Fig. 7: The inter-distances distributions w.r.t. the vehicle ahead for
the three strategies presented in section VI-B.

Fig. 8: Inter-distances distributions w.r.t. the vehicle behind for the
three strategies. One can see that the intention detection method
behaves as a compromise between the other two.

vehicle has already decided to change lane. In this situation,
two scenarios can happen: The AD vehicles force the other
car to change its intentions or the other car complete the
lane change despite of the AD vehicle presence. In the first
case, this driving behavior is called nudging. In the second
case, the other vehicle cut off the road of the AD vehicle,
resulting on an hazardous maneuver or on a collision. The
second case behaves as a compromise between the two.

To analyze this aspect, Table II shows the collision prob-
abilities, average insertion times and average waiting times
at give way for the three strategies. Logically, if one wants
to have safety ensured, the average waiting time increases.
This is due to the fact that with a double lane roundabout the
vehicles capacity on the ring is more w.r.t. a single lane one.
As a consequence, the first method (Fig. 4a) tends to be too
overly conservative. Conversely, the second method (Fig. 4b)
is much more aggressive because of the lack of lane change
prediction. However, this method has a large unsafe set of
configurations. Finally, the third method (Fig. 4c) behaves as
a compromise in-between.

VII. CONCLUSION

In this work, an method to perform a safe roundabout
crossing based on virtual vehicles methods has been pre-
sented. It has been tested under a simulated traffic flow
similar to real data. The degree of interaction of the generated
flow has been used to generate a scenario close to real world
driving. We have shown that the proposed insertion maneuver
on a single-lane roundabout is always safe. We have also
proposed some performance indexes to evaluate its efficiency
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TABLE I: The average insertion times, the percentage of average waiting time relative to the nominal case and the average number of
insertion as function of vehicles flow for the single-lane roundabout case.

50 75 100 125
Crossing Time (s) 5.60 (+1.3) 7.32 (+1.7) 10.05 (+2.39) 15.26 (+3.63)
Number of Insertions 24 21 18 16

TABLE II:
Probability of a safety bound violation (ahead and behind), average
crossing times and effective average waiting times for the three
methods.

Method behind Ahead Cross time Wait time
Two lanes occupancy 0% 0% 23.3s 14.46s
Only one lane occupancy 30% 29% 8.6s 4.7s
Intention detection 0% 4% 16.4s 7.79s

in terms of traffic fluidification. To handle the problem of a
double-lane roundabout, a lane change intention detector is
required to obtain safe and not overly cautious performance.
If this technology is unavailable, we suggest to use instead
a worst-case occupation method that provides always a safe
insertion.

It is our opinion that, in order to safely cross a roundabout
ensuring safety and without being too overly conservative,
an accurate lane change intention detection algorithm is
required. Moreover, if the lane change detector is able to
detect also nudging, one can discriminate between a real
intention of a driver to effectuate a lane change and a false
alarm. This approach should add efficiency in the insertion
maneuver, decreasing waiting times without compromising
safety.

As a future perspective, the we aim to extend the tests
with a real vehicle to more complex scenarios (e.g. two-
lanes roundabouts) and to include in their architecture a
lane change intention detector to validate experimentally the
obtained results.
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