
Improved data association using buffered pose adjustment
for map-aided localization

Anthony Welte∗, Philippe Xu∗, Philippe Bonnifait∗, Clément Zinoune†

Abstract— Maps provide an important source of information
for autonomous vehicles. They can be used along with cameras
and lidars to localize the vehicle. This requires the ability to
correctly associate observations to features referenced in the map.
The problem is all the more difficult than all observations are
not necessarily referenced, and all map features might not be
detectable with the embedded sensors.

This paper presents an adjustment technique than enables
to increase the number of associations that can be made while
limiting the chance of obtaining wrong associations. This is
achieved by matching observations in batches in a buffer and
matching them regularly. Periodically, the observation buffer
is used to adjust the trajectory used to match observations.
This is done without making any assumption on the association
between observations and map features through a likelihood
maximization process. The adjusted trajectory then provides the
best associations that are used for real-time localization.

The method was tested with data recorded on public roads
using an experimental vehicle. The results show that thanks to
the trajectory adjustment step and the use of an observation
buffer, the number of associations that can be made is increased.
This also results in greater localization accuracy and consistency.

I. INTRODUCTION

Autonomous vehicle navigation highly depends on an accu-
rate and reliable localization with respect to a representation of
the driving environment which is stored in a map. With High-
Definition (HD) maps which contain georeferenced features
[12], [20] the localization system accuracy can be improved
significantly [19], [10], [6]. Building such maps can be ex-
pensive but we believe that, in the near future, HD maps of
the road network can be deployed on a large scale. Accurate
mapping being itself a challenging task, the resulting map
often contains errors or is incomplete [16] due to constant
evolution of road networks. Such faulty data must be carefully
taken into account.

Improvement of localization using accurate maps can only
be done using sensors able to observe referenced landmarks.
Smart cameras that measure distances to road markings and
road edges (ground features) are being equipped on commer-
cial vehicles for Advanced Driver-Assistance Systems (ADAS)
such as lane keeping assistant systems. These sensors have
already been used for localization and are particularly useful
to improve the across track localization accuracy [19].

Another promising type of sensors is lidar. As lidars mea-
sure distances, they are especially interesting for localization
when combined with maps. Lidars have not only been used
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with dense maps [1], [22], [13] but also with sparse feature
maps [5], [7]. From lidars, particular landmarks can be de-
tected not only using the Cartesian information, but also thanks
to the intensity data returned by most lidars. Indeed some
features such as road signs are easily identified using lidar
intensities as these features have been designed to be seen at
night, thus return most of the laser light.

Using detected features for localization is not straightfor-
ward. Indeed, detections need to be matched to their cor-
responding feature in the map. This problem is especially
important as a wrong association can have a significant effect
on the localization solution which cannot be acceptable for
safety-critical applications like autonomous driving.

Localization and mapping are often studied in a SLAM
context for navigation in unknown environments. In this
context, finding loop closures is essential to build the map. For
autonomous vehicle navigation these are rare. The problem of
finding correct association is nonetheless similar with SLAM.
This work focuses on the matching problem of ground features
and road sign measurements with georeferenced features in
HD maps provided by a third party. The main contributions
of the paper are the following. i) Our matching approach
uses a smoothing step to improve localization estimates on
a local window. ii) An optimal rigid adjustment of the
local trajectory is then computed. Since the dimension of
the adjustment parameter is small, it enables a real-time
and tractable computation of a multi-hypothesis adjustment
without approximation. This adjustment increases the number
of good associations, leading to an improved localization. iii)
We explain how a filtering scheme is implemented in parallel
to provide to the vehicle a high-frequency pose information.
iv) An experimental evaluation using real data is presented.
This shows significant improvements compared to classical
snapshot data association methods.

The next section reviews related work in localization with
perception sensors and maps. Section III introduces the estima-
tion scheme based on Kalman filtering and the observations
considered in this paper. Section IV details the association
process and section V describes the adjustment step. Finally,
section VI presents experimental results obtained from data
recorded on public roads using an experimental vehicle.

II. RELATED WORK

The matching problem comes up in many fields of robotics.
Image based detectors are typically able to extract descriptors
of the detected features. These descriptors are compared to
those stored in the map, making the matching problem easier.



To alleviate the effect of bad associations, the localization
problem is solved using robust estimation techniques such as
RANSAC [11]. This assumes that the best association needs
to maximize the number of matches which is not necessarily
the case when the map is missing features.

Descriptors can also be found for point clouds. The authors
in [3], [4] exploit both point cloud descriptors and the relative
distances between mapped and observed features to provide a
matching solution. They build a graph where each connection
represents two coherent (in terms of relative distance) asso-
ciations. The associations forming the biggest clique are then
used for localization.

Matching is also a problem studied in SLAM applications.
Although consecutive observations can be matched fairly
easily since the map is built based on those same observa-
tions, SLAM approaches still need to find accurate matches
for loop closure tasks. In [8], the authors build upon the
iSAM2 framework and introduces multi-hypothesis factors
to account for matching ambiguities. This method provides
multiple estimates of the variable depending on the selected
hypothesis. iSAM2 is not suitable for applications where
real-time estimation is critical and MH-iSAM2 significantly
increases the computational cost making such method unsuited
for autonomous vehicles.

Variations of iSAM have been proposed to enable real-time
estimation of the state. Kaess et al. [9] separate the problem in
two: a filtering part operating in real-time and a smoothing part
the periodically integrate the information from the smoother.
This framework assumes, however, that the factors introduced
in the graph are accurate, thus that any ambiguity has already
been dealt with in the front-end.

Another way used to account for ambiguous association is
the use in the factor graph of non-Gaussian noise models. The
authors in [15], [2] proposes to approximate the multi-modal
Gaussian by whichever mode is most likely at the estimation
point. This approach is dangerous for real-time applications
as, although the dominant mode might improve during the
iterative estimation process, the first choice will influence
the most recent estimate significantly. This method is not
suited for applications where the real-time estimate is the most
important and the rest of the trajectory is somewhat irrelevant.
Others have also proposed to use non-Gaussian models [18].

Although approaches used in SLAM have shown great
promise, they usually do not enable high frequency state esti-
mation which is critical for autonomous driving applications.
Moreover, approaches that attempt to solve this issue [9]
expect input measurements to be unambiguous. Because in
SLAM applications the map is built incrementally using the
same detection system used for localization, the ambiguous
association problem typically occurs rarely at loop closure.
Using highly detailed third party maps results in ambiguities
at almost every observation. For these reasons, this work uses
Kalman filtering in order to guarantee real-time estimation
and relies on a trajectory adjustment before selecting matches.
This step is done without approximating the multi-modal noise
model and is made tractable by only estimated a 2D rigid
transformation of the trajectory instead of solving the complete
state space as would be done using a SAM framework.

III. LOCALIZATION FILTER

A. Filtering Scheme

Localization is performed using extended Kalman filtering
to estimate the vehicle state xk =

[
xk, yk, θk, vk, ωk

]T
composed of the vehicle two dimensional pose, i.e., position
and heading, along with its longitudinal speed and yaw rate.
The filter combines three kinds of measurements: Dead-
Reckoning (DR) measurements which provide the relative
motion of the vehicle from one time sample to the next, GNSS
measurements giving coarse estimates of the position and
vehicle heading, and perception measurements from a camera
and a 3D lidar that are used to localize the vehicle within a map
through Kalman’s updates. The filtering is derived classically
as follows:

Prediction: x̂k|k−1 = fk
(
x̂k−1|k−1

)

P k|k−1 = F kP k−1|k−1F
T
k +Qk

Update: ỹk = zk − hk
(
x̂k|k−1

)

Sk = HkP k|k−1H
T
k +Rk

Kk = P k|k−1H
T
kS
−1
k

x̂k|k = x̂k|k−1 +Kkỹk
P k|k = (I −KkHk)P k|k−1

where F k and Hk are the Jacobian matrices of respectively
the evolution model fk and the observation model hk.

All the measurements are used as observations. Since GNSS
data fusion with DR is well studied in the literature, it is
not detailed in this paper. The measurements used for the DR
estimation of the vehicle are a yaw rate gyro, 4 wheel encoders
and the steering wheel angle. The observation models used for
these sensors follows Ackerman geometry and are described
in-depth in [21].

Perception measurements from cameras or lidars provide lo-
calization information relatively to the sensor reference frame.
To be used for absolute localization, these measurements
have to be matched to a map encoding absolute position.
In this work, we suppose to have a HD map containing
road markings, represented as polylines, i.e. sequences of line
segments, and road signs, represented by points localized at
their geometric center. An intelligent camera is used for road
markings detection and a lidar for road sign detection. Through
the rest of the paper, the HD map M = {m1,m2, . . .} is
represented as a set of map features mi which can either be
a line segment (road marking) or a point (road sign).

B. Observation Models for the Camera and the Lidar

1) Road Markings: ADAS use off-the-shelf smart cameras
that are able to return lateral distances to neighboring road
markings. These observations are valuable for localization as
they provide a lateral constraint for state estimation.

Let mi =
[(
xAi , y

A
i

)
,
(
xBi , y

B
i

)]
be a map feature repre-

senting a line segment [AB], where
(
xAi , y

A
i

)
and

(
xBi , y

B
i

)

are the geo-referenced coordinates of points A and B. Let xk
be the vehicle state at time k. The road marking observation



Fig. 1: Schema of the vehicle with a road sign observation (red) and
a ground feature observation (blue). The lateral distance ci from the
front bumper to the ground feature is measured as well as the 2D
position

[
Mxi

Myi
]T of the road sign in the mobile frame.

model hmi of the camera measurement ci is given by [19] :

ci = hmi (xk) (1)

=

(
l sin θk + yk − yAi

)
xABi −

(
l cos θk + xk − xAi

)
yABi

xABi cos θk + yABi sin θk

where xABi = xBi − xAi , yABi = yBi − yAi and l is the
longitudinal distance between the camera and vehicle frame
as pictured in Figure 1.

2) Road Signs: Lidars are especially well suited for road
sign detection as they are made to be reflective for visibility
purpose. This results in a high returned intensity. A detector
can therefore be built by thresholding the lidar point cloud
to keep only intensities over a threshold Imin. The resulting
points can be grouped into clusters by Euclidean clustering.
The centroid

(
Mxi,

Myi
)

of each cluster can then be found by
fitting a bounding box to the cluster using principal component
analysis (PCA).

Now, let mi =
(
xSi , y

S
i

)
be a map feature representing a

geo-referenced road sign. The road signs observation model
hsi of the lidar measurement is defined as
[
Mxi
Myi

]
= hsi (xk) =

[
cos θk sin θk
− sin θk cos θk

] [
xSi − xk
ySi − yk

]
(2)

IV. DATA ASSOCIATION PROCESS

Associating the detected objects to their corresponding
map features is a critical step. Map features can improve
localization accuracy significantly but require to be correctly
associated. The effects of a bad association are twofold. The
estimation error increases while the uncertainty decreases
because of the new measurement. Then, because the state has
been corrected using bad observation, subsequent observations
can be wrongly matched, worsening the problem.

At a given time k, let Z(k) =
{
z
(k)
1 , z

(k)
2 , . . .

}
be the set of

observed features, which can be a mix of road markings and
signs. The goal of the data association process is to find for
each observation z

(k)
j its corresponding map feature mi ∈M.

A. Unique Nearest Neighbor

Nearest neighbor association is widely used to associate
high level observations to map features. In this paper, the

(a) (b)

Fig. 2: Difference between a UNN (a) and Hungarian (b) association
methods. The UNN method matches an observation to its closest
feature and does not match if the feature is already taken, thus
the top observation (red) is associated to the bottom lane marking
(black). The Hungarian method, associates every observation in order
to minimize the sum of association distances. The two observations
are thus associated to their correct lane marking.

nearest neighbor association is performed using Mahalanobis
distances with the different map features. This is done to
account for the uncertainty propagation of the predicted mea-
surements. It is also useful for rejecting unlikely associations.

Hence, an observation z
(k)
j is associated with the map

feature mi such that

mi = arg min
mi∈M

(√
yTi,jS

−1
i,j yi,j

)
(3)

where yi,j = z
(k)
j − hi (x̂k), x̂k is an estimate of the vehicle

state and Si,j = HiP kH
T
i +Rj with Hi the Jacobian of hi,

P k and Rj the covariance matrices of respectively the state
estimate and the measurement.

This method allows multiple observations to be associated
with the same feature. To prevent this, when multiple observa-
tions are associated with the same feature, only the observation
with the lowest Mahalanobis distance is kept. We refer to this
method as Unique Nearest Neighbor (UNN).

B. Hungarian Association (Kuhn-Munkres)

UNN can either associate an observation with its closest
feature, or not associate the observation if that feature is closer
to another observation. Munkres algorithm [14] performs a
global matching considering all observation at time k. Like
the UNN method, it only allows features to be associated with
a single observation. However, it does not necessarily asso-
ciate an observation with its closest features (Figure 2). The
method finds matches that minimize the summed Mahalanobis
distances of all matches. Hence, at time k for an observation
set Z(k) of size n, it will find the subset Mk ⊆M containing
n features so that

Mk = arg min
Mk⊆M

( ∑

mi∈Mk

√
yTi,jS

−1
i,j yi,j

)
(4)

where mi is the feature associated to the observation z
(k)
j .

C. Association Rejection

To avoid potential wrong matches, the maximum Maha-
lanobis distance allowed for an association to be valid is
limited. Observations that are too far from their associated
feature are discarded. This step is done through a rejection
step that only allows association with a small enough distance.
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Fig. 3: Steps of the matching algorithm. Blue: measurements, Green:
pose estimates, Red: road signs (dots are mapped, the cross is not),
Black: markings. (a) The measurements available at the current time.
(b) Buffered observations and estimates. (c) Smoothed trajectory. (d)
Adjusted trajectory used for the final matching.

For an observation z
(k)
j associated with a map feature mi, the

observation is considered valid if

yTi,jS
−1
i,j yi,j < F−1χ2 (1− α; d) (5)

where Fχ2 is the cumulative distribution function of a χ2 law
with a degree of freedom d = 1 for road markings and d = 2
for road signs. The value α ∈ [0, 1] quantifies the probability
of rejecting the association (i, j) when it is actually valid.

V. BUFFERED POSE ADJUSTMENT FOR AN IMPROVED
ASSOCIATION

When using in real-time high level features, such as road
markings or signs, the observation set Z(k) at time k is of
limited size. Having few observations can lead to wrong data
association as many ambiguities can arise due to a large
pose uncertainty. Moreover, if the perception modules are
asynchronous, the markings from the camera and the signs
from the lidar are likely to arrive at different times.

The final objective is to use the exteroceptive measures with
the best association in the update of the filter. Consider for
instance the real situation of Figure 3 (a) where a missing road
sign is detected but unfortunately there are other signs nearby.
In order to limit association ambiguities, the observations
are not matched in a snapshot manner. Buffers containing
the observations are used with filtered state estimates (see
Figure 3 (b)). Hence, the matching is performed using more
observations thus limiting the risk of ambiguous matching. The
observation buffer provides a larger number of measurements
and allows a globally consistent matching, which is known to
be more robust.

Thanks to this approach another problem can be addressed.
Estimation errors which are time-correlated can cause incor-
rect matchings. A Kalman smoothing is first applied on the
buffer to correct the jaggedness of the filtered estimates (see
Figure 3 (c)). Then, an adjustment of the whole trajectory
over the buffer is made to compensate as much as possible
the filter errors to find the best data association. Figure 3 (d)
shows the final result. It can be noticed that the faulty road
sign measurement has been sufficiently shifted away such that
a wrong matching will be rejected in the last filter update.

The observation buffer is processed at a low frequency (e.g.
every 250ms) since it cannot always be treated within the filter
update period. Once the association of all the exteroceptive
measurements is done, the new matches are provided to the
Kalman filter estimator. The localization filter is run again
starting from the first matched observation to provide an
improved real-time localization. This is explained more in-
depth in Section V-C.

Let K be the most recent time of the observation
buffer, with which the matching is solved. Let ZK ={
Z(k) |k ∈ JK − S,KK

}
be the set of all the observations

over a buffer of size S. The goal is to associate all the elements
of ZK simultaneously. The following sections detail the steps
used to achieve this. The vehicle trajectory is first smoothed. It
is then adjusted using the observations. The adjusted trajectory
is finally used to match observations to map features.

A. Pose Smoothing

Instead of using directly the filtered state estimates x̂k|k,
with k ∈ JK − S,KK, we propose to first compute better state
estimates over the buffer using a Kalman smoother [17]. To
do so, a backward pass is performed as follows:

x̂k|K = x̂k|k + Jk
(
x̂k+1|K − x̂k+1|k

)
(6)

P k|K = P k|k + Jk
(
P k+1|K − P k+1|k

)
JTk (7)

where
Jk = P k|kF

T
k+1P

−1
k+1|k (8)

Thus, from the filtered estimates
{
x̂k|k |k ∈ JK − S,KK

}
,

smoothed state estimates X̂K =
{
x̂k|K |k ∈ JK − S,KK

}
are

obtained. These are more accurate with less uncertainty which
will be very useful for the data association process.

B. Pose Adjustment

An additional way to improve the state estimation is to
maximize the likelihood of all the states in the buffer given
all the observations:

L
(
xK−S , . . . ,xK

∣∣∣Z(K−S), . . . ,Z(K)
)

(9)

Maximizing this likelihood function in equation (9) for
all the poses is the buffer is computationally. Moreover, the
temporal coherence between the successive state estimates
coming from the evolution model could be degraded. Instead,
we propose to estimate a unique 2D local rigid transformation,
i.e., a translation and a rotation, δ =

[
δx, δy, δθ

]
to all the state

estimates x̂k|K so that the likelihood of the resulting states is
maximized. Let X̃K(δ) = {x̃k |k ∈ JK − S,KK} be the δ-
adjusted state estimates defined as follows:

x̃k =



x̃k
ỹk
θ̃k


 =




cos δθ − sin δθ 0
sin δθ cos δθ 0

0 0 1





x̂k|K
ŷk|K
θ̂k|K


+



δx
δy
δθ


 (10)

A new likelihood function is defined as

L (δ |ZK ) = L
(
x̃K−S , . . . , x̃K

∣∣∣Z(K−S), . . . ,Z(K)
)

(11)



which can be rewritten as

L (δ |ZK ) =
∏

k∈JK−S,KK

L
(
x̃k

∣∣∣Z(k)
)

(12)

=
∏

k∈JK−S,KK

∏

z
(k)
j ∈Z(k)

L
(
x̃k

∣∣∣z(k)j

)

The observation z
(k)
j is related to the state estimate x̃k via

the map features M = {m1,m2, . . .}. Suppose that z(k)j is one
of the observations at time k associated to the map feature mi,
then the corresponding likelihood is expressed as follows with
a Gaussian assumption:

Li,j

(
x̃k

∣∣∣z(k)j

)
= 1√

(2π)d|S̃i,j |
exp

(
−1

2
ỹTi,jS̃

−1
i,j ỹi,j

)
(13)

with

ỹi,j = z
(k)
j − hi (x̃k) , S̃i,j = HiP k|KH

T
i +Rj (14)

and d = 1 for road markings and d = 2 for road signs.
Because the association between z

(k)
j and mi is not known

at this stage, all the map features M in the vicinity have to
be considered. From the law of total probability, we have

L
(
x̃k

∣∣∣z(k)j

)
=
∑

mi∈M

Li,j

(
x̃k

∣∣∣z(k)j

)
Pi,j (15)

where Pi,j is the probability that z
(k)
j corresponds to mi.

Without any additional information such as appearance or
shape cues on the detections or on the features, there is no
reason to favor one association over another. Therefore, a
discrete uniform distribution over Pi,j is chosen.

The likelihood function in equation (15) does not take into
consideration the fact that the sensors may detect features that
either do not exist or have not been mapped. To account for
this, we propose to add a non-association probability P∅,j and
a likelihood L∅,j which leads to

L
(
x̃k

∣∣∣z(k)j

)
=
∑

mi∈M

Li,j

(
x̃k

∣∣∣z(k)j

)
Pi,j + L∅,jP∅,j (16)

In practice, maximizing the likelihood in equation (12)
may lead to a large adjustment δ, especially when there
are some spatial invariance, i.e., along a straight lane.
In order to constrain the spacial adjustment, we propose
to reformulate the maximum likelihood estimation into a
maximum a posteriori (MAP) one. For that purpose, we set
the a priori distribution over δ as δ ∼ N

(
0;PK|K

)
. We

chose arbitrarily the most recent covariance matrix estimate
PK|K from the buffer as a representative measure of the
pose uncertainty. The resulting MAP estimation is then defined
as

δ̂ = arg max
δ

(L (δ |ZK )P (δ)) (17)

= arg max
δ

(
L (δ |ZK ) exp

(
−1

2
δTP−1K|Kδ

))

In practice, it is more convenient to minimize the negative
log likelihood

δ̂ = arg min
δ

(− logL (δ |ZK )− logP (δ)) (18)

= arg min
δ




∑

k∈JK−S,KK

∑

z
(k)
j ∈Z(k)

− logL
(
x̃k

∣∣∣z(k)j

)

+
1

2
δTP−1K|Kδ

)

This minimization problem is solved using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm which is an ap-
proximation of the Newton method. The algorithm typically
converges in fewer than 10 iterations but a maximum number
of iterations is also set such that the matching step always
ends in time to provide matches.

C. Matching and Integration in the Filter

The adjusted trajectory is an improvement over the filtered
trajectory. However, as quantifying the resulting uncertainty
attached to it is not easy, it is only used to improve the
matching of features. This matching is then used in the filter.

Once the δ-adjusted trajectory has been found, it can be
used to associate observations by applying methods presented
in Section IV. The newly associated observations can now be
used in the filtering scheme.

Because the matching cannot always be performed within
the filter update period, it is instead run at a higher pe-
riod ∆tm. Therefore, when using the buffer pose adjustment
method, road sign and road marking observation are not used
directly to estimate the state. The state is estimated without
these observations for some time before they are associated
and can be used.

The matching starts at time sample K using observations
and state estimates from time K − S to K. In parallel, the
filter keeps estimating states without map feature observations
to always get a real-time estimate. When the matching is done,
the filter might have estimated states beyond time K. The filter
is then run again starting at time K −S up to current time to
account for the new matches that have been made.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The method has been evaluated on real data. The sensor
data was recorded using an experimental Renault ZOE, see
Figure 4, equipped with a u-blox M8T GNSS, an intelligent
camera by Mobileye providing up to four simultaneous road
marking measurements at 3.7 Hz, and a Velodyne VLP-32C
lidar used to detect road signs at 10 Hz. The vehicle was
also equipped with a Novatel SPAN-CPT that combines Real
Time Kinematic (RTK) GNSS and high accuracy IMU data to
provide centimeter level accuracy. This system is only used
as a ground truth to evaluate the localization quality. The
sensor data were recorded using the ROS framework and all
sensors except the camera were synchronized to the GNSS
time. The non-accurate synchronization of the camera has



Fig. 4: Left: Experimental vehicle with GNSS, lidar and camera.
Right: trajectory used to test the algorithm (red: Rambouillet 1,
yellow: Rambouillet 2).

not been found to be detrimental to the localization as these
lateral measurements do not change significantly as the vehicle
moves.

The data has been recorded on open roads through the
commercial district of the city of Rambouillet, France. The
trajectory used to evaluate in detail the method consists in
several stretches of straight roads separated by roundabouts,
as shown in red on Figure 4. Further results will be presented
in section VI-E on the yellow trajectory and on trajectories
recorded in Compiègne. The Mobileye camera was able to
detect road markings only during the straight portions. The
road sign detector provided measurements along the entire
trajectory, although there were more road signs close to
intersections and roundabouts.

The map used in this experiment is a HD map that refer-
ences road markings as line segments and road signs as points
in two dimensions. The map was built by a third party map
provider and is expected to have centimeter level of accuracy.

Several configurations have been tested in these experi-
ments. Results are presented when the two matching strategies
(UNN and HG) are applied in real-time. In this case, measure-
ments are used as they are received and matched directly to be
used in the next filter update. The same matching strategies are
also applied after the method presented in this paper has been
used (Buffered UNN and Buffered HG). The observations are
not used directly but are saved to be matched every ∆tm. The
entire matching step has been found to take less than 50 ms
to compute in most cases. ∆tm was chosen high enough (250
ms) such that the matching always ends within this period. In
both cases, the localization is performed at 50 Hz. The buffer
length is chosen at 5s (S = 250), the reason for this choice is
explained in section VI-D.

Thanks to a test trajectory with a ground truth, the model
uncertainty of the camera has been found to increase linearly
with the lateral distance to the observed markings. Therefore,
the measurement covariance matrix is chosen as Rm =[
(λ · ci)2

]
, where λ is a scaling factor (chosen at 0.1). We

have observed that the uncertainty of road sign measurements
can be simply modeled as a diagonal matrix Rs = σ2

s · I2×2.
This has been estimated by a statistical analysis and found
σRS = 0.2m.

As the Mobileye camera is a black-box from which the
raw images are not available, evaluating the correctness of the
association is impossible. Instead, the proportion of observa-
tion that can be matched is studied as well as its effect on

Fig. 5: Localization error and observation availability depending on
the rejection rate α. Results are given for the UNN, Hungarian (HG),
Buffered UNN (BUNN) and Buffered HG (BHG). The solid lines
show the localization error. The dashed line (road markings) and
dotted lines (road signs) describe the percentage of matched features.

localization accuracy. Finally, the influence of the buffer size
is assessed.

B. Observation Availability

The number of observations that can be matched to fea-
tures directly affect the localization accuracy. As expected,
increasing the rejection factor α results in fewer observations
for every configuration. However, our method performs better
as the adjustment step reduces the distances to features and
therefore allows matching more map features that will be used
in the filter. Moreover, since the number of matches remains
almost constant until the rejection rate reaches α = 0.7 (see
Figure 5), its value can be set high which limits the chance
of bad associations.

The availability of road marking feature matches is similar
for every method. The UNN approach performs slightly worse
than the Hungarian association as it only matches if an
observation is closest to the features. When two side-by-side
ground features are detected, the estimation error can cause
the UNN approach to only match a single observation while
the Hungarian approach can match both, see Figure 2. Using
the proposed method, the advantage of using the Hungarian
method is reduced as the adjustment step compensates for the
estimation error.

Please note that the road sign matching is greatly improved
using an observation buffer and an adjustment step. The
adjustment step enables to reduce the observation residuals
used for the matching, limiting the effect of the non-linearity
of the model. Also, because all observations contained in the
buffer are being matched, observations that could not have
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Fig. 6: Consistency plot for the four configurations. It shows the
covariance weighted error (without unit) over a 30 s stretch of the
test trajectory for the four tested configurations. Samples above
the threshold line indicate a loss of consistency of the estimate.
The results are presented for a rejection rate of α = 0.05 for
every configuration. Although decreasing the rejection rate α should
increase the number of observations thus increase the accuracy, it
also results in bad matches for methods UNN (red) and HG (green).

been matched earlier might be matched in the following itera-
tions of the matching process. For road signs association, the
Hungarian method does not provide significant improvement
compared to UNN.

C. Localization accuracy and consistency

If the matching can be correctly done, a higher number of
observations will result in a greater accuracy. This is true for
all configurations, as the rejection rate α is chosen bigger,
the number of matches decreases and the localization error
increases. The observation error increases steadily when the
UNN and Hungarian method are used alone. Because of
the adjustment step, the number of matches for the buffered
configurations only starts to decrease for high rejection rates.
The localization error follows a similar pattern: it increases
slowly until α = 0.6 at which point the number of matches
drops and the error increases.

When the matching is not buffered, the Hungarian method
results in errors smaller by around 2 cm. Its ability to associate
more road markings explains this improvement. However,
when matching using an adjusted trajectory, the two methods
are not noticeably different whichever rejection risk is chosen.
Hence the UNN method is preferred as it is computationally
less expensive to run.

Configurations without adjustment are less accurate because
of the fewer measurements that can be matched. To increase
the number of matches, a solution would be to lower the re-
jection rate. This, however, increases the change of erroneous
matching. For rejection rate lower than 0.05%, a road sign
is incorrectly matched greatly affecting the consistency of the
state estimate, as shown in Figure 6. Since consistency is very
important for the integrity of localization for autonomous vehi-
cle navigation, we believe that snapshot matching approaches
are not well suited in this context.

Given the localization for different rejection rate, α is
chosen at 0.5 such that the maximum association distance is
as small as possible while still keeping some margin to avoid
risking the loss of accuracy occurring for α > 0.6. With this
value, the localization error averages at 0.28 m and has not
been found to go beyond 1 m at any point of the trajectory.

Fig. 7: Distribution of the localization error depending of the buffer
size (the rejection rate is chosen at α = 0.5). Buffers too short lead
to ambiguous associations thus larger errors. Additionally, a rigid
transformation cannot properly adjust the trajectory leading to fewer
matches and decreased accuracy.

D. Buffer size influence

Our method has two components that contribute to improv-
ing matching, the optimization step enables to reduce resid-
uals, making matching easier thus increasing the number of
observations. The second component is the use of past obser-
vations in the optimization step. Indeed, the adjustment step is
dependent on the number of observations it has available. If the
optimization is performed in a snapshot fashion using only to
the current observations, the optimization converges toward the
closest map feature to the observations. This would not help
the matching as when a single road sign is observed, it would
be matched to the closest feature. Hence, erroneous matchings
would occur. Using a buffer of observations provides a more
detailed picture of what is observed thus constraining the
optimization and preventing the most recent measurements to
be the sole influence on the matching.

The length of the buffer affects the number of observations
considered. A longer buffer should therefore result in fewer
ambiguous matchings. The buffer should, however, be small
enough as the smoother state estimates are transformed in a
rigid manner by the optimization, see equation (10).

Figure 7 shows the localization error of the vehicle for
different buffer lengths. It can be seen that buffers shorter than
3 s are not sufficient as outliers start to appear. This is due
to the lack of unambiguous measurements in small buffers to
compensate for ambiguous ones. In this case, the error is due
to an erroneous road sign matching in a situation similar to that
described in Figure 3. With small buffers, there are not enough
measurements to constrain the adjustment in orientation and
laterally and the observed road sign is matched to the wrong
feature (the observed sign was not referenced in the map).

Longer buffers enable to better adjust the trajectory but to
a point. For buffers longer than 10 s, the localization error
starts to increase. This is the result of the assumption made
for the adjustment that the trajectory only needs to be moved
rigidly. Hence, too long buffers result in higher residuals after
adjustment. This causes more observations to be rejected,
finally affecting the localization error. For a rejection rate of
α = 0.5, a buffer length of 5 s has been found to be sufficient
to enable unambiguous matches while still providing enough
measurements.



BUNN UNN HG
α 0.5 0.05 0.5 0.05 0.5

Rambouillet 1 0.25 0.31 0.42 0.3 0.43
Rambouillet 2 0.68 1.25 2.75 1.26 2.75
Compiègne 1 0.75 0.94 0.97 0.88 0.96
Compiègne 2 0.57 0.65 0.73 0.60 0.73
Compiègne 3 0.77 0.78 0.83 0.78 0.82

TABLE I: Average localization error (in meter) for each method
tested on different trajectories.

E. Evaluation using different datasets

To further evaluate the performance of the proposed ap-
proach, it has been tested on another recording done in
Rambouillet and on three other experiments carried out in
another city (Compiègne) obtained with a similarly equipped
vehicle. The five trajectories amount to 21 km of roads (50
minutes). Table I contains the average localization error for
different datasets. It can be seen that in all cases the pro-
posed method performs better (by 16% on average) although
sometime marginally (Compiègne 3). The parameters used for
the buffered method were kept the same as those identified
with the first Rambouillet trajectory. Even with a low α, the
UNN and HG methods rarely achieve accuracies similar to our
approach. These results also show that optimized parameters
on a particular trajectory lead to a good accuracy in different
environments which shows a good robustness of the method.

VII. CONCLUSION

In this paper, an adjustment method aiming at improving
features matching for map-aided localization has been pre-
sented. The quality of the localization is greatly improved
by using signs and markings in buffers. Indeed, adjusting the
trajectory before matching increases the number of road signs
that can be matched sixfold. Through the minimization step
described in this work, the adjustment can be made without
making assumptions on the observations correspondence to
map features. This also enables to set stricter rejection rate
while keeping a good measurement availability. The quality
of the adjustment step depends on the number of observations
it uses. This work shows that by only keeping measurements
from the last 5 seconds, the adjustment can converge satisfac-
torily and not result in wrong associations that would affect the
localization error. Because of the increased number of observa-
tions that are matched, the accuracy of the localization system
is also improved. In urban environment, the localization error
averages 0.66 meters and rarely goes beyond a meter.
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