

Cooperative localization Lessons learned from the Grand Cooperative Driving Challenge

Philippe BONNIFAIT Professor

Université de Technologie de Compiègne Heudiasyc UMR 7253 CNRS, France High Quality Positioning: a Key to Success for Autonomous Driving

COST Action TU1302 – Satellite Positioning Performance Assessment for Road Transport (SaPPART)

Title

- Introduction to the GCDC 2016
- Key components to do the challenge
- Architecture of the system developed at Heudiasyc
- Two scenarios during the challenge
- Lessons learned and perspectives

Grand Cooperative Driving Challenges

GCDC 2011

- A270 highway between Helmond and Eindhoven.
- Cooperative platooning (sensor based-control with speed and acceleration exchange)
- 9 teams (with cars and trucks)

- Same place
- May 28-29, 2016
- Autonomous driving with interactions with vehicles and infrastructure
- Three different traffic scenarios
- 10 European teams.

Main Challenge

Cooperation between heterogeneous systems implementing different algorithms with different GNSS receivers

Experimental vehicle

Fully electric car Renault Zoé, computer controlled

GCDC 2016 Scenarios

- Scenario 1
 - Cooperative merging on highway
- Scenario 2
 - Cooperative intersection crossing
- Scenario 3
 - To give free passage to an emergency vehicle on a highway

Snapshot of the GCDC 2016

Key components to do the challenge

Part 2

Communication

- Wireless comm on ETSI C-ITS standards
 - Both Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications.
 - ETSI ITS-G5 standard (GeoNetworking protocol and Basic Transport Protocol)
- Wifi mode, 5.9 GHz band (802.11p)
- Messages
 - CAM (Cooperative Awareness Message)
 - DENM (Distributed Environment Notification Message)
 - iCLCM (i-GAME Cooperative Lane Change Message)
- Broadcast frequency: 25 Hz

CAM Message

- Vehicle information
 - ID
 - Vehicle type (car, truck, etc.)
 - Vehicle role (emergency, roadwork)
 - Vehicle size (length and width)
- Time Stamp
 - UTC time (in ms, ~1 minute ambiguity)
- Pose
 - Position (geo) + 95% confidence bound
 - Heading
- Kinematics
 - Speed, drive direction, yaw rate
 - Acceleration

Each vehicle had to implement a system estimating its geographical pose at 25 Hz

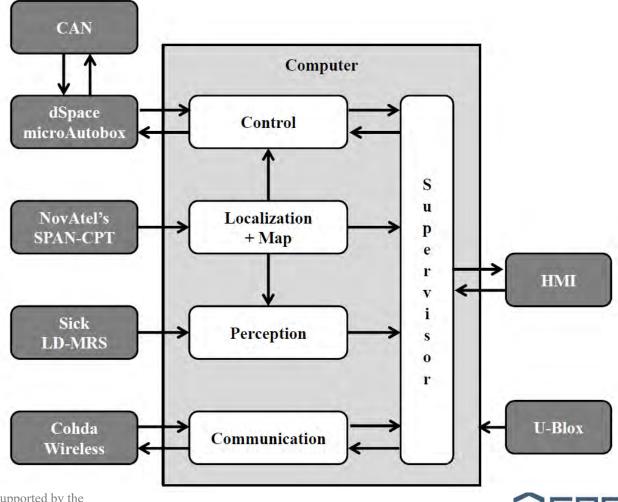
GNSS

Time-stamping of the messages

- Synchronization of the computer time to the GPS time
- With an additional GPS receiver
 - Supplying 1PPS (one pulse-per-second) output
 - Open-source implementation of NTP, chrony
- Sub-microsecond accuracy

Vehicle control

- For the GCDC, cruise control and platooning were mandatory
- Optional:
 - Cooperative platooning, Virtual platooning
 - Lane keeping, Lane changing


Architecture of the system developed at Heudiasyc UTC/CNRS

Part 3

System architecture

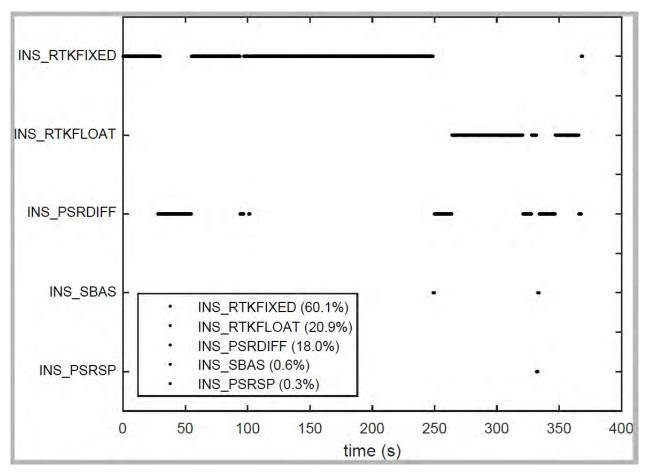
Localization system

NovAtel SPAN-CPT

- Inertial Navigation System (INS)
- Global Navigation Satellite System (GNSS)
- GPS/GLONASS
- Real-Time Kinematic (RTK) corrections (local base)
- 50 Hz
- Output: geographic coordinates (latitude, longitude, ellipsoidal height)

Cartesian Frame

- East, North, Up (ENU) coordinates with local origin
- 2D pose computation
- Cartesian coordinates are much more practical than Geodetic coordinates
- Homogeneous transformation (no projection) perfectly invertible


SPAN-CPT positioning modes with their typical accuracies

Positioning mode	Accuracy
RTK fixed ambiguities solution (RTKFIXED)	$\sim 0.01 \text{ m}$
RTK floating point ambiguities solution (RTKFLOAT)	< 1.0 m
Pseudorange Differential Solution (PSRDIFF)	< 2.0 m
Satellite-Based Augmentation System (SBAS)	$\sim 3 \text{ m}$
Pseudorange Single Point Solution (PSRSP)	$\sim 5~\mathrm{m}$

Modes during a complete merging heat

80% of the time: GNSS with sub-metric accuracy

With the data-fusion of the IMU: enough accuracy to do path following

GNSS-based lateral control

- Path following and steering control using SPAN-CPT pose estimates
- Lane change between two adjacent lanes: switching from the current lane to the new lane without path planning

Map

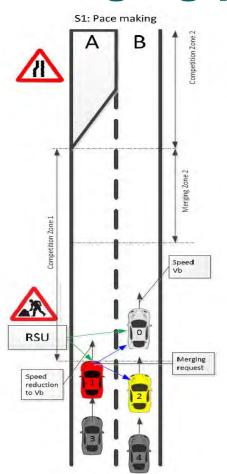
Map provided not accurate enough

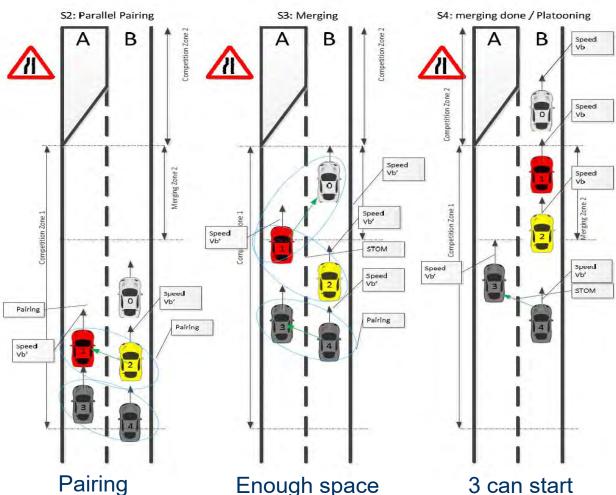
→ Built online during the first trial of the challenge (center paths of each of the two lanes of the highway)

Two scenarios during the challenge 28-29 May 2016

Part 4

Scenario 1: merging





Merging procedure

Merge request

Red is the new leader of

the yellow

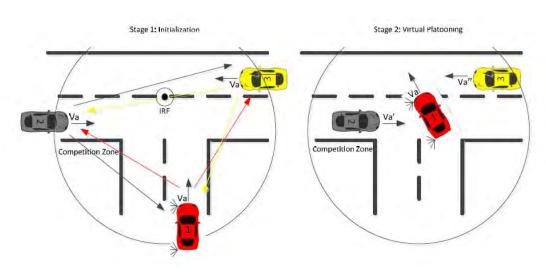
3 can start merging

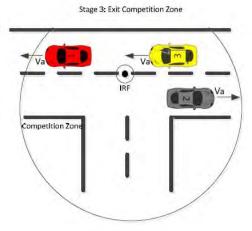
Merging during the challenge

What we did in practice

- Since the received positions were not enough reliable, we took the decision to not use the GPS position of the others to do platooning and pairing
- Platooning
 - using Lidar only with the vehicles in front
- Pairing
 - We used the list of the participants given by the organizers at the beginning of every heat

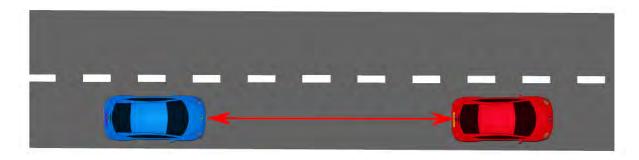
Scenario 2: Intersection crossing

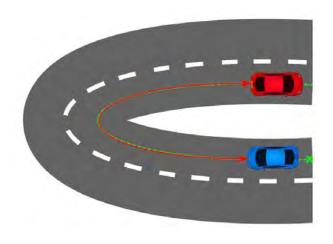




Intersection crossing

- 1 is a vehicle of the organizers
- The challengers are 2 or 3
- Goal:
 - Vehicles 2 and 3 have to let vehicle 1 cross the intersection at constant speed





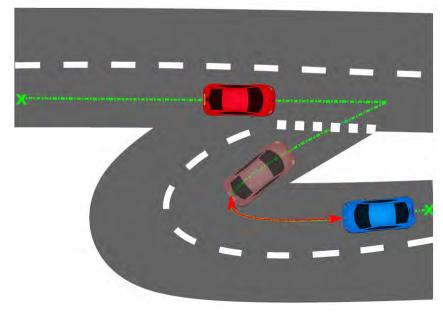
Inter-distance for platooning

In straight road, inter-distance is easy to measure (Lidar)

In curved road, compute the inter-distance along the map by using GNSS positions

The virtual platooning concept

Every vehicle computes its distance to the crossing point such that the others can locate it on their own path



The virtual platooning concept

- Here, the vehicle that is the closest to the intersection point becomes the (virtual) leader
- Then the blue one does platooning

What we did in practice

- We did virtual platooning with the vehicle of the organizers
- We used its transmitted position because we knew it was reliable
- Procedure:
 - Set the origin of the frame at the center of the intersection
 - Convert the geo-positions in this frame
 - The norm of the position is the distance to the center
 - Do virtual platooning until the car has crossed the intersection

Lessons learned

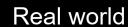
Part 5

COST Action TU1302 – Satellite Positioning Performance Assessment for Road Transport (SaPPART)

GNSS and autonomous cars

GNSS is crucial for:

- 1. Stand-alone navigation with maps
- Cooperative navigation with the other road users



GNSS positioning is mandatory for navigation tasks each time a computation is done in the virtual world

Stand-alone navigation with maps

- Path following with GNSS
 - In lane (P<0.1m, 50%) lateral
- Monitoring of the autonomous driving capability of the car on the current navigation area (motorway, etc.)
 - Lane-level (P<0.4m, 50%) lateral
- Anticipation of a dangerous area (e.g. slow down when approaching a tiny curve or an intersection)
 - Carriageway-level (P<4m, 50%) longitudinal

GNSS for cooperative navigation

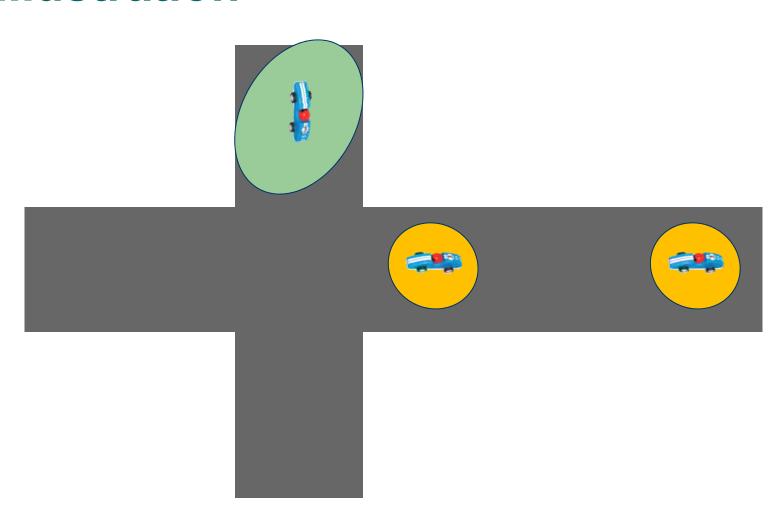
- Decisions are based on the position of the vehicle itself and of other vehicles in its vicinity.
- Cooperative merging
 - Localization can be used for associating the perceived vehicles and the received messages (to identify who wants to merge and at what location)
 - Lane-level (P<0.4m, 50%) (such that there is no ambiguity)
- Intersection crossing
 - Localization is useful for improving crossing procedures in case the vehicles can't see each other
 - Lane-level (P<0.4m, 50%).

GNSS for cooperative control

- Localization is useful for cooperative systems at the control level when the others traffic participants are out of view
 - Lane change, overtaking, intersection crossing
 - Lane-level (P<0.4m, 50%)
- Localization errors may lead to dangerous situations for cooperative control when the others traffic participants are in the vicinity
 - Inter-distances in platoons have to be regulated with embedded perception sensors
 - When crossing junctions, embedded perception sensors are necessary for a safe navigation

Integrity

- If vehicles estimate protection levels of position errors reliably and send them to the others, then complex cooperative tasks can be solved safely
- Basic principle: be pessimistic to ensure safety
- Not optimal and may reduce system availability



Illustration

Conclusion

- GNSS is essential for autonomous cars
- Vehicles exchanging dynamic information with each other is a new paradigm to improve autonomous vehicle navigation
 - Useful to reduce the number of embedded sensors for navigation
- Reliable bounds of localization errors are essential for
 - Stand-alone navigation with maps
 - Cooperative navigation

THANK YOU FOR YOUR ATTENTION!

Philippe BONNIFAIT
Professor at the Université de Technologie
de Compiègne
Heudiasyc UMR 7253 CNRS, France
philippe.bonnifait@hds.utc.fr

