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Autonomous cars navigation

Cars don’t drive in opened spaces

The navigation space is constrained
and there are interactions between cars.
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Main question addressed in this talk

How can a car see far enough with a reasonable set of
embedded sensors?
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Level of autonomy of
autonomous vehicles

Part 1



Autonomous Vehicles: Trends

=Driverless vehicles
O New Mobility Services
O Shuttles and Robot taxis
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“ Autonomous cars
O Traditional customers
O Valet vehicle

O Traffic Jam Assist



Robot vehicle

Ability to function independently of a human operator in any
context

Operational autonomy

— Feedback mechanisms to control behavior to follow a predefined
trajectory, while rejecting disturbances

— No need for user monitoring
Decisional autonomy

— The machine has the ability to understand and take safe decisions despite

the uncertainties of perception and localization as well as incomplete
information about the environment
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The three roboticist axes

Autonomy ability
Independence with respect to human

/ Complexity of the

Complexity of the environment mission or task
and of the navigation area
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Example of autonomous car: Valet Vehicle (PAMU Renault)
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The valet vehicle of the roboticist axes

Autonomy ability
Independence with respect to human

® \Valet Vehicle

/ Complexity of the

Complexity of the environment mission or task
and of the navigation area
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Cooperation as a mean to increase abilities of
autonomous cars

Autonomy ability
| want my car to have a

/ high level of autonomy

,
,

el Complexity of the
mission or task

S

Complexity of the environment
and of the navigation area
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Key elements for
cooperative
autonomous

navigation

Part 2




Sources of information for autonomous
navigation

GNSS receiver

Exteroceptive
Digital maps

—

(  Proprioceptive sensors
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Localization and perception

Localization system Jesuila !

— allows the vehicle to position itself
spatially, absolutely or relatively, in its
evolution environment

Perception system

— equips the vehicle with understanding
and prediction capabilities of its
immediate environment. From the
sources of information available, the
vehicle builds a representation of the
environment that allows it to navigate
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Localization and perception
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Wireless communication for cooperative
autonomous navigation

GNSS receiver

Wireless
. communication
Exteroceptive

means
PENOr x \ /
Digital maps

—

(  Proprioceptive sensors
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Wireless Networks for data exchange

Vehicular ad hoc networks (VANETs) allow an augmented
perception of the dynamic environment by using wireless
communications:

— Vehicle-to-Vehicle (V2V)

— Infrastructure to Vehicle (12V)

Some typical messages (ETSI standard)

— CAM (Cooperative Awareness Message)
— DENM (Distributed Environment Notification Message)
— CPS (Collective Perception Service - ETSI TR 103 562 under preparation)

Features

— short range radio technologies (Wifi mode), 5.9 GHz band (802.11p)
— Broadcast frequency: 1-10 Hz
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CAM Message (V2V)

Vehicle information

— ID

— Vehicle type (car, truck, etc.)

— Vehicle role (emergency, roadwork)
— Vehicle size (length and width)

Time Stamp
— UTC time (in ms, ~1 minute ambiguity)

Pose
— Position (geo) + 95% confidence bound
— Heading

Kinematics

— Speed, drive direction, yaw rate
— Acceleration
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DENM Message (I12V)
Sent by Road Side Units (RSU)

Data :

— Station type
— Time Stamp

— Event type

— Roadworks,

— Stationary vehicle,

— Emergency vehicle approaching,
— Dangerous Situation, etc.

— Lane position
— Lane is closed or not
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CPS Message (I12V)

Can be emitted by the infrastructure or the vehicles.

Information:

— List of detected objects

— Position, speed, acceleration

— ID and type of the sensor which provided the measurement data
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Sensors,

maps and

wireless
information

Typical processing loop

Localization and

: Decision
erception ’ :
Acquisition @—> pld pd i —> planning and —> actions
(world modeling control

and understanding)

l

Wireless
communication

l

Localization and perception
information
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Cooperative
navigation example:
Intersection crossing
with V2V data

Exchange

Part 3




Grand Cooperative Driving Challenges

GCDC 2011

— A270 highway between Helmond and Eindhoven.

— Cooperative platooning (sensor based-control
with speed and acceleration exchange)

— 9 teams (with cars and trucks)

GCDC 2016

— Same place

— May 28-29, 2016

— Autonomous driving with interactions with vehicles and infrastructure
— Three different traffic scenarios

— 10 European teames.

Main Challenge

— Cooperation between heterogeneous systems implementing different
algorithms
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Heudiasyc team

Team Leader:
Philippe XU

People involved

— 5 Profs and Researchers
— 3 Engineers

— 2 Phd students

— 2 interns

— 12 Master students

ROB & 1A 2018

24



Experimental vehicle

Fully electric car (Renault Zoé)
Maximum speed of 50 km/h while driving autonomously
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Snapshot of the GCDC 2016
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Inter-distance for platooning

In straight road, inter-distance is easy to measure (e.g. Lidar)

In curved road, compute
the inter-distance along
the map by using
positions exchanged by
wireless communication
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Cooperative merging using virtual platooning
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The virtual platooning concept

Every vehicle

— Computes its distance to the crossing point
— Such that the others can localize it on their own path
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The virtual platooning concept

In this example, the red vehicle is the closest to the
intersection point and becomes the (virtual) leader

Then the blue one does platooning

ROB & 1A 2018
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Crossing Scenario at the GCDC

Vehicle 1 is a car of the organizers, the challengers are 2 and 3
Goal:

— Vehicles have to reach the competition zone at a given time with a given speed
— Vehicles 2 and 3 have to let vehicle 1 cross the intersection at constant speed
— The goal of each challenger is to exit the CZ as fast as possible (with no collision)
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Snapshot of an intersection crossing
during the GCDC
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Cooperative Wireless platooning with CAM
Messages

Experiments at Compiegne
33
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Cooperative
navigation with
Infrastructure-based
Warning systems

The merging example

During the GCDC



GCDC Scenario

A lane is closed (e.g. road work)

A RSU broadcasts this event
using a DENM message.
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Lanes merging snapshots

ROB & 1A 2018

36



Merge request

Merging procedure

Pairing Enough space
Red is the new to merge
leader of the yellow
ROB & 1A 2018

3 can start the
merging process

37



Initialization of a merging scenario
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Merging during the challenge
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Cooperative
navigation with
Infrastructure-based
perception systems

The roundabout crossing example

Tornado project



Infrastructure-based perception systems

The infrastructure scans the environment and

It shares information about the current traffic participants by
broadcasting the locations and speeds of the mobile objects

This reduces the ambient uncertainty by providing
contextual information
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Case study: Roundabout crossing

Infrastructure can assist autonomous cars to cross
roundabouts by detecting and broadcasting CPM messages
with vehicles positions and speeds inside the roundabout

Thanks to this, autonomous vehicles can anticipate crossing
the roundabout by adapting their speed
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Adapting the Virtual Platooning Concept to

Roundabout Crossing

 Use a high-definition map (HD map)
 Map-match every estimated position
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Virtual Platooning in @ Roundabout

Compare distances between vehicles and a common
node

44
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Virtual Platooning in @ Roundabout

Place the other car on your own path.
Determine the leader

ROB & 1A 2018
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Virtual Platooning in @ Roundabout

The red car is the leader which is followed by the
green one

ROB & 1A 2018
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Guy Denielou Roundabout (Compiegne)
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Example with cooperative autonomous cars
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Conclusion and
perspectives



Conclusion

Cooperation is a hew paradigm for autonomous
vehicles navigation

Thanks to wireless communication, vehicles can
— Receive information from the infrastructure

— Exchange highly dynamic information with the others
Localization is crucial since most of the decisions
are based on the location of the vehicle itself and
of other vehicles in its vicinity

Cooperation is useful

— For augmented perception

— For anticipation

— For cooperative maneuvers

— To reduce the number of embedded sensors for navigation
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Cooperation for autonomous cars

Infrastructure to car information
(one way)

—

Car to car information
(cycles)
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Perspective

Progress to be made

— Methods that guaranty the integrity of the information

exchanged and control the propagation of errors and faults

— In particular, cycles of exchange inducing data incest
problems have to be taken into account

— Methods able to compute in real-time reliable bounds of
the errors

— Data exchange standards
— In particular, regarding the uncertainty representation

ROB & 1A 2018
52



Thank you for your attention !
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