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Localisation integrity
Information has to be 
― Accurate enough for the task to be performed
― Available at a sufficiently high rate
― Non-misleading and trustworthy

Integrity involves combining and merging 
data from complementary, diversified and 
redundant sources True position
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The error is correctly bounded. OK!
The bound is in the limit (AL)  use

Nominal case e<PL<AL
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Typical localization system for Intelligent Vehicles

Research questions addressed in this paper:
1. How to achieve the optimal accuracy (given a set of information sources)?
2. How to achieve high integrity without being too pessimistic?
3. How to achieve simultaneously high integrity and high accuracy?
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Detected lane markings

Sensors used in this study

HD map with georeferenced 
lane markings

GPS and Galileo 
pseudoranges

Wheel speeds and yaw rate gyro
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Classical multi-sensor data fusion 

Faults are due to:
― GNSS multipath and NLOS
― Poor camera measurements 
― Data association errors with the HD map
― Errors in georeferenced features
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Common approach:
― White Gaussian errors
― Kalman Filtering

There are many methods
- Parameter = 

Target Integrity Risk (TIR)
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Student’s t distribution for integrity
𝑋𝑋~𝑆𝑆𝑆𝑆(𝜇𝜇,𝑃𝑃, 𝜈𝜈): follows a Student’s t 
distribution with mean 𝜇𝜇, scale matrix 𝑃𝑃 and 
degree of freedom (dof) 𝜈𝜈.
The covariance matrix is defined as (𝜈𝜈 > 2):

Σ = 𝜈𝜈
𝜈𝜈−2

𝑃𝑃

If 𝜈𝜈 → ∞ : The t distribution converges to a 
Gaussian distribution
Well adapted to model the measurements 
with some outliers and to compute PL with 
small TIR
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Dead-reckoning Modeling
Evolution model:
𝑋𝑋𝑘𝑘+1 = 𝑓𝑓 𝑋𝑋𝑘𝑘,𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘

𝑢𝑢𝑘𝑘 = Δ𝑘𝑘 ,Ω𝑘𝑘 input vector contains the elementary displacement and rotation obtained 
from the wheel-speed sensors and the gyro 

𝑣𝑣𝑘𝑘 ∼ 𝑆𝑆𝑆𝑆 0,𝑄𝑄𝑘𝑘 , 𝛾𝛾𝑘𝑘
If the dof 𝛾𝛾 is high, this a Gaussian distribution
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GNSS observations modeling
Measurements:
ρk= pseudoranges = 𝑅𝑅𝑗𝑗 + 𝑐𝑐𝑐𝑐𝑆𝑆

Observation model:
ρk = ℎG(𝑋𝑋𝑘𝑘) + 𝜔𝜔𝑘𝑘
𝜔𝜔𝑘𝑘 ∼ 𝑆𝑆𝑆𝑆(0,𝑅𝑅𝑘𝑘 , 𝛿𝛿𝑘𝑘)

Euclidean distance between 
the receiver and the satellite

Receiver clock offset
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Camera observations modeling
Measurements: 
C0,𝑘𝑘 = lateral offset between 𝑅𝑅𝑀𝑀 and 𝐿𝐿
(up to 4 simultaneous meas.)

C0,𝑘𝑘 = ℎC(𝑋𝑋𝑘𝑘) + 𝜔𝜔𝑘𝑘

𝜔𝜔𝑘𝑘 ∼ 𝑆𝑆𝑆𝑆(0,𝑅𝑅𝑘𝑘 , 𝛿𝛿𝑘𝑘)
Improve the integrity in presence of poor 
perception data
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End-to-End Student’s t Filter (StF)
Student’s t distributions are used to :
- Estimate the state
- To model any error or uncertainty
If the DoF is not controlled, it tends to infinity and the StF becomes a KF
- Often, the DoF is fixed to a chosen value
- Here, the DoF is adaptive in a given interval and it depends on a residual 

computed by a Fault Detection and Exclusion (FDE) stage
― Based on the Kullback-Leibler divergence in the state space

Jacobian matrices are used for linearization (Extended Student’s t Filter )
An Information StF has been implemented (for efficient FDE)
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Experimental Results

Compiègne, trajectory of 6km
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sampling time 10 4
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Experimental Results

Conclusions :
- StF is as accurate as KF (with or without FDE)
- StF is much more consistent is terms of integrity (with or without FDE)

Without FDE With FDE
StF KF StF KF

Mean absolute error[m] 0.76 0.74 0.71 0.72
𝑆𝑆𝑅𝑅𝐴𝐴𝐴𝐴 × 10−3 1.1 3.9 1.5 1.8
𝑆𝑆𝑅𝑅𝐶𝐶𝐴𝐴 × 10−3 6.8 22 0.9 15

AT: Along Track
CT: Cross Track
𝑇𝑇𝑆𝑆𝑅𝑅 = 10−3

𝑆𝑆𝑅𝑅 = 𝑃𝑃(𝑒𝑒 > 𝑃𝑃𝐿𝐿)
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Protection Levels

Green: KF 
Red: StF with adaptive DoF
Blue: StF with fixed DoF = 3

DoF dynamic adaptation is 
therefore important to reduce 
pessimism 

Results with FDE and 𝑇𝑇𝑆𝑆𝑅𝑅 = 10−3
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Conclusion
Student’t filtering for: 
―Raw data fusion and PL computation
―Fault detection and exclusion based on KLD 
―DOF adaptation according to the quality of the observations

Experimental evaluation: 
―Gives the same level of accuracy compared to Kalman filtering
― Improves external integrity while maintaining non pessimistic uncertainty 

values

StF parameter setting is more complex than KF
―Future work: Use data driven techniques to simplify this issue
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