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Localisation integrity

Information has to be Nominal case e<PL<AL
— Accurate enough for the task to be performed

— Available at a sufficiently high rate '
— Non-misleading and trustworthy

Integrity involves combining and merging
data from complementary, diversified and
redundant sources True position
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Estimated error bound
(Protection Level)

The error is correctly bounded. OK!
The bound is in the limit (AL) = use {“%




Typical localization system for Intelligent Vehicles

_ _ Pose &
Proprioceptive Uncertainty

-

Feature Detector

Research questions addressed in this paper:
1. How to achieve the optimal accuracy (given a set of information sources)?

2. How to achieve high integrity without being too pessimistic?
3. How to achieve simultaneously high integrity and high accuracy?
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Sensors used in this study
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HD map with georeferenced
lane markings
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Classical multi-sensor data fusion

Fault §
Exclusion
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Faults are due to: Common approach: There are many methods
— GNSS multipath and NLOS — White Gaussian errors - Parameter =
— Poor camera measurements — Kalman Filtering Target Integrity Risk (TIR)

— Data association errors with the HD map
— Errors in georeferenced features




Student’s t distribution for integrity

X~St(u, P,v): follows a Student’s t
distribution with mean u, scale matrix P and
degree of freedom (dof) v.
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The covariance matrix is defined as (v > 2):

y=—P
v—2 02 L
If v = oo : The t distribution converges to a

Gaussian distribution

L1 PL2
0.3 L
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Well adapted to model the measurements
with some outliers and to compute PL with
small TIR oo |
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Dead-reckoning Modeling

Evolution model:
X1 = [ (Xg, ug) + vy

u, = |Ag, Q] input vector contains the elementary displacement and rotation obtained
from the wheel-speed sensors and the gyro

Vg ~ St(O, Qk' yk)
If the dof y is high, this a Gaussian distribution




GNSS observations modeling

Measurements:

p,= pseudoranges = R; + cdt

/N

Euclidean distance between
the receiver and the satellite

Receiver clock offset

Observation model:

Pr = ha(Xi) + wg
Wi ~ St(O, Rk! 5k)




Camera observations modeling

Measurements:
Yo

Co x = lateral offset between Ry, and L
(up to 4 simultaneous meas.)

Cox = hc(Xi) + wg

Wi ~ St(O, Rk! 5k) Y

Improve the integrity in presence of poor
perception data




End-to-End Student’s t Filter (StF)

Student’s t distributions are used to :

- Estimate the state

- To model any error or uncertainty

If the DoF is not controlled, it tends to infinity and the StF becomes a KF
- Often, the DoF is fixed to a chosen value

- Here, the DoF is adaptive in a given interval and it depends on a residual
computed by a Fault Detection and Exclusion (FDE) stage

— Based on the Kullback-Leibler divergence in the state space

Jacobian matrices are used for linearization (Extended Student’s t Filter )

An Information StF has been implemented (for efficient FDE)

D = utC 10
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Experimental Results

Satellite skyplot (GPS, GAL)
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Experimental Results

StF KF StF KF

IR = P(e > PL)

Mean absolute error[m] 0.76 0.74 0.71 0.72 AT: Along Track
IRyr X 1073 1.1 3.9 1.5 1.8 CT: Cross Track
IRcr X 1073 6.8 22 0.9 15 TIR = 1073
Conclusions :

- StF is as accurate as KF (with or without FDE)

- StF is much more consistent is terms of integrity (with or without FDE)
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Protection Levels
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Conclusion
Student’t filtering for:

— Raw data fusion and PL computation
— Fault detection and exclusion based on KLD
— DOF adaptation according to the quality of the observations

Experimental evaluation:

— Gives the same level of accuracy compared to Kalman filtering

— Improves external integrity while maintaining non pessimistic uncertainty
values

StF parameter setting is more complex than KF
— Future work: Use data driven techniques to simplify this issue
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