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Abstract. This paper tackles the problem of model complexity in the
context of additive models. Several methods have been proposed to es-
timate smoothing parameters, as well as to perform variable selection.
Nevertheless, these procedures are inefficient or computationally expen-
sive in high dimension. Also, the lasso technique has been adapted to
additive models, however its experimental performance has not been an-
alyzed.

We propose a modified lasso for additive models, improving variable se-
lection. A benchmark is also developed, to examine its practical behav-
ior, comparing it with forward selection. Our simulation studies suggest
ability to carry out model selection of the proposed method. The lasso
technique shows up better than forward in the most complex situations.
The computing time of modified lasso is considerably smaller since it
does not depend on the number of relevant variables.

1 Introduction

Additive nonparametric regression model has become a useful statistical tool in
analysis of high–dimensional data sets. An additive model [10] is defined by

Y = f0 +

p∑

j=1

fj(Xj) + ε, (1)

where the errors ε are independent of the predictor variables Xj , E(ε) = 0 and
var(ε) = σ2. The fj , are univariate smooth functions and f0 is a constant. Y is
the response variable.

This model’s popularity is due to its flexibility, as a nonparametric method,
but also, to its interpretability. Furthermore, additive regression gets round the
curse of dimensionality.

Some issues related to model complexity have been studied in the context
of additive models. Several methods have been proposed to estimate smooth-
ing parameters [10], [8], [11], [15], [4]. These methods are based on generalizing
univariate techniques. Nevertheless, the application of these procedures in high



2 Marta Avalos et al.

dimension is often inefficient or highly time consuming. The choice of the de-
gree of smoothing is a complicated problem: although univariate in nature, that
remains a multivariate problem.

Also, variable selection methods have been formulated for additive models
[10], [5], [13], [3], [15]. These proposals exploit the fact that additive regression
generalizes linear regression. Since nonparametric methods are used to fit the
terms, model selection develops some new flavours. We not only need to select
which terms to include in the model, but also how smooth they should be, then,
even for few variables, these methods are computationally expensive.

Finally, the lasso technique [14] has been adapted to additive models fitted
by splines. The lasso (least absolute shrinkage and selection operator) is a regu-
larization procedure intended to tackle the problem of selection of accurate and
interpretable linear models. The lasso estimates a vector of regression coefficients
by minimizing the residual sum of squares subject to a constraint on the l1–norm
of coefficient vector.

For additive models, this technique transforms a high–dimensional into a
low–dimensional hyper–parameter selection problem, which implies many ad-
vantages. Some algorithms have been proposed [6], [7], [1]. Their experimental
performance has not been, however, analyzed, and above all, these discriminate
between linear and nonlinear variables, but does not perform variable selection.

There are many other approaches to model selection methods for supervised
regression tasks (see for example [9]). Computational costs are a primary issue
in their application to additive models.

We propose a modified lasso for additive spline regression, in order to dis-
criminate between linear and nonlinear variables, but also, between relevant and
irrelevant variables. We also develop a benchmark based on Breiman’s work [2],
to examine the practical behavior of the modified lasso, comparing it to forward
variable selection. We focus on those situations where control of complexity is
a major problem. Results allow us to deduce conditions of application of each
regularization method. The computing time of modified lasso is considerably
smaller than the computing time of forward variable selection since it does not
depend on the number of relevant variables (when the total number of input
variables is fixed).

Section 2 presents lasso applied to additive models. Modifications are in-
troduced in section 3, as well as algorithmic issues. The schema of the testing
efficiency procedure and benchmark for additive models are presented in section
4. Section 5 gives simulation results and conclusions.

2 Lasso Adapted to Additive Models

Grandvalet et al. [6], [7] showed the equivalence between adaptive ridge regres-
sion and lasso. Thanks to this link, authors derived an EM algorithm to compute
the lasso estimates. Subsequently, results obtained for the linear case were gen-
eralized to additive models fitted by cubic smoothing splines.
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Suppose that one has data L = {(x,y)}, x = (x1, . . . ,xp), xj = (x1j , . . . , xnj)
t,

y = (y1, . . . , yn)t. To simplify, assume that the responses are centered. We re-
mind that the lasso estimate is given by the solution of the following constrained
optimization problem

min
α1,...,αp


y −

p∑

j=1

xjαj




t 
y −

p∑

j=1

xjαj


 subject to

p∑

j=1

|αj | ≤ τ , (2)

and the adaptive ridge estimate is the minimizer of the problem

min
α1,...,αp


y −

p∑

j=1

xjαj




t 
y −

p∑

j=1

xjαj


 +

p∑

j=1

λjα
2
j , (3)

subject to
p∑

j=1

1

λj

=
p

λ
λj > 0, (4)

where τ and λ are predefined values.
We also remind that the cubic smoothing spline is defined as the minimizer

of the penalized least squares criterion over all twice–continuously–differentiable
functions. This idea is extended to additive models in a straightforward manner:

min
f1,...,fp∈C2


y −

p∑

j=1

fj(xj)




t 
y −

p∑

j=1

fj(xj)


 +

p∑

j=1

λj

∫ bj

aj

f ′′j (x)2dx, (5)

where [aj , bj ] is the interval for which an estimate of fj is sought. This interval

is arbitrary, as long as it contains the data; f̂j is linear beyond the extreme
data points no matter what the values of aj and bj are. Each function in (5) is
penalized by a separate fixed smoothing parameter λj .

Let Nj denote the n× (n + 2) matrix of the unconstrained natural B–spline
basis, evaluated at xij . Let Ωj be the (n + 2)× (n + 2) matrix corresponding to

the penalization of the second derivative of f̂j . The coefficients of f̂j in the un-
constrained B–spline basis are noted βj . Then, the extension of lasso to additive
models fitted by cubic splines, using the equivalence between (2) and (3)–(4) is
given by

min
β1,...,βp


y −

p∑

j=1

Njβj




t 
y −

p∑

j=1

Njβj


 +

p∑

j=1

λjβ
t
jΩjβj , (6)

subject to
p∑

j=1

1

λj

=
p

λ
λj > 0, (7)
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where λ is a predefined value. The expression (6) shows that this problem is
equivalent to a standard additive spline model, where the penalization terms
λj applied to each additive component are optimized subject to constraints (7).
This problem has the same solution as

min
β1,...,βp


y −

p∑

j=1

Njβj




t 
y −

p∑

j=1

Njβj


 +

λ

p




p∑

j=1

√
βt

jΩjβj




2

. (8)

The penalizer in (7) generalizes the lasso penalizer
∑p

j=1
|αj | =

∑p

j=1

√
α2

j .

Note that the writing (6)–(7) can also be motivated from a hierarchical Bayesian
viewpoint.

Grandvalet et al. proposed a modified EM algorithm, including backfitting
(see section 3.2), to estimate coefficients βj . This method does not perform

variable selection. When after convergence β̂t
jΩj β̂j = 0, the jth predictor is not

eliminated but linearized.
Another algorithm based on sequential quadratic programming was suggested

by Bakin [1]. This methodology seems to be, however, more complex than the
precedent one and does not perform variable selection either.

3 Modified Lasso

3.1 The Smoother Matrix

Splines are linear smoothers, that is, the univariate fits can be written as f̂j =
Sjy, where Sj is an n×n matrix called smoother matrix. The latter depends on
the smoothing parameter and the observed points xj , but not on y.

The smoother matrix of a cubic smoothing spline has two unitary eigenvalues
corresponding to the constant and linear functions (its projection part), and
n − 2 non–negative eigenvalues strictly less than 1 corresponding to different
compounds of the non-linear part (its shrinking part). Also, Sj is symmetric,

then Sj = Gj + S̃j , where Gj is the matrix that projects onto the space of

eigenvalue 1 for the jth smoother, and S̃j is the shrinking matrix [10].
For cubic smoothing splines, Gj is the hat matrix corresponding to the

least–squares regression on (1,xj), the smoother matrix is calculated as Sj =

Nj(N
t
jNj + λjΩj)

−1Nt
j , and S̃j is found by Sj −Gj :

S̃j = Sj −

(
1

n
11t + xj

(
xt

jxj

)−1
xt

j

)
. (9)

3.2 The Backfitting Algorithm

Additive models can be estimated by the backfitting algorithm which consists
in fitting iteratively f̂j = Sj(y −

∑
k 6=j f̂k), j = 1, . . . , p.
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Taking into account the decomposition of Sj , the backfitting algorithm can

be divided into two steps: 1. estimation of the projection part, g = G(y−
∑

f̃j),
where G is the hat matrix corresponding to the least–squares regression on
(1,x1, . . . ,xp), and 2. estimation of the shrinking parts, f̃j = S̃j(y−g−

∑
k 6=j f̃k).

The final estimate for the overall fit is f̂ = g +
∑

f̃j .

In addition, linear and nonlinear parts work on orthogonal spaces: Gf̃j = 0

and S̃jg = 0, so estimation of additive models fitted by cubic splines, using the
backfitting algorithm can be separated in its linear and its nonlinear part.

3.3 Isolating Linear from Nonlinear Penalization Terms

Penalization term in (7) only acts on the nonlinear components of f̂ . Conse-
quently, severely penalized covariates are not eliminated but linearized. Another
term acting on the linear component should be applied to perform subset selec-
tion.

The previous decomposition of cubic splines allow us to write linear and
nonlinear part separately:

f̂ = g + f̃ =

p∑

j=1

xj α̂j +

p∑

j=1

f̃j(xj) = xα̂ +

p∑

j=1

Ñj β̃j , (10)

where Ñj denotes the matrix of the nonlinear part of the unconstrained spline

basis, evaluated at xij , β̃j denotes the coefficients of f̃j in the nonlinear part of
the unconstrained spline basis, and α = (α1, . . . , αp)

t denotes linear least squares
coefficients.

Regarding penalization terms, a simple extension of (7) is to minimize (with

respect to α and β̃j , j = 1, . . . , p)


y − xα−

p∑

j=1

f̃j




t 
y − xα −

p∑

j=1

f̃j


 +

p∑

j=1

µjα
2
j +

p∑

j=1

λj β̃
t
jΩ̃j β̃j , (11)

subject to

p∑

j=1

1

µj

=
p

µ
, µj > 0 and

p∑

j=1

1

λj

=
p

λ
, λj > 0, (12)

where µ and λ are predefined values, and Ω̃j is the matrix corresponding to the

penalization of the second derivative of f̃j .

When after convergence, µj ≈∞ and λj ≈ ∞, the jth covariate is eliminated.
If µj < ∞ and λj ≈ ∞, the jth covariate is linearized. When µj ≈ ∞ and
λj < ∞, the jth covariate is estimated to be strictly nonlinear.
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3.4 Algorithm

1. Initialize: µj = µ, Λ = µIp, λj = λ.
2. Linear components:

(a) Compute linear coefficients: α = (xtx + Λ)
−1

xty.

(b) Compute linear penalizers: µj = µ ‖α‖1

p|αj |
, Λ = diag(µj).

3. Repeat step 2 until convergence.
4. Nonlinear components:

(a) Initialize: f̃j , j = 1, . . . , p, f̃ =
∑p

j f̃j .

(b) Calculate: g = G
(
y − f̃

)
.

(c) One cycle of backfitting: f̃j = S̃j

(
y − g −

∑
k 6=j f̃k

)
, j = 1, . . . , p.

(d) Repeat step (b) and (c) until convergence.

(e) Compute β̃j from the final estimates

β̃j =
(
Ñt

jÑj + λjΩ̃j

)−1

Ñt
j

(
y −

∑
k 6=j f̃k

)
.

(f) Compute nonlinear penalizers: λj = λ

∑p

j=1

√
β̃t

jΩ̃jβ̃j

p
√

β̃t
jΩ̃j β̃t

j

.

5. Repeat step 4 until convergence.

In spite of orthogonality, projection step 4.(b) is iterated with backfitting
step 4.(c) to improve numerical stability of the algorithm. In order to compute

nonlinear penalizers in 4.(f), calculating βj instead of β̃j in 4.(e) is sufficient,
since βt

jΩjβ
t
j is insensitive to the linear components.

An efficient lasso algorithm was proposed by Osborne et al. [12]. This one
can be used for the linear part of the algorithm, and may be adapted to the
nonlinear part.

3.5 Complexity Parameter Selection

The initial multidimensional parameter selection problem is transformed into a
2–dimensional problem. A popular criterion for choosing complexity parameters
is cross–validation, which is an estimate of the prediction error (see section 4.1).
Calculating the CV function, is computationally intensive. A fast approximation
of CV is generalized cross–validation [10], [8], [14]:

GCV(µ, λ) =
1

n

(y − f̂)t(y − f̂)

(1− df(µ, λ)/n)
2
. (13)

The GCV function is evaluated over a 2–dimensional grid of values. The point
(µ̂, λ̂) yielding the lowest GCV is selected. The effective number of parameters
(or the effective degrees of freedom) df is estimated by

df(µ, λ) ≈
∑p

j=1
dfj(µ, λ) = tr

[
x (xtx + Λ)

−1
xt

]
+

∑p

j=1
tr

[
S̃j(λj)

]
. (14)
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The df of the overall function is approximated by the sum of the univariate effec-
tive number of parameters, dfj [10]. Usually, variable selection methods do not
take into account the effect of model selection [16]. It is assumed that the selected
model is given a priori. The present estimate suffers from the same inaccuracy:
the cost of the individual penalization terms estimation is not measured.

4 Efficiency Testing Procedure

Our goal is to analyze the modified lasso behavior and compare it to another
model selection method: forward variable selection. Comparison criteria and pro-
cedures for simulations are detailed next.

4.1 Comparison Criteria

The objective of prediction is to construct a function fL providing accurate
prediction of future examples. That is, we want the prediction error

PE(f) = EY X[(Y − f(X))2] (15)

to be small.
Let f̂L be the underlying function estimator, which depends on the com-

plexity parameters. Let λ̂ et λ∗ denote complexity parameters estimations, the
former is calculated by a given method, and the latter is the value minimizing
PE, estimated from an “infinite” test set (Breiman’s crystal ball [2]):

λ̂ = argmin
λ

P̂E
(
f̂(., λ)

)
, λ∗ = argmin

λ
PE

(
f̂(., λ)

)
. (16)

4.2 A Benchmark for Additive Models

Our objective is to define the bases of a benchmark for additive models, based
on Breiman’s work: “Which situations make estimation difficult?” and “What
parameters are these situations controlled through?”

The number of observations–effective number of parameters ratio, n/df. When
n/df is high, the problem is easy to solve. Every “reasonable” method will find
an accurate solution. Conversely, a low ratio makes the problem insolvable. The
effective number of parameters depends on the number of covariates, p, and on
other parameters described next.

Concurvity. Concurvity describes a situation in which predictors are linearly
or nonlinearly dependent. This phenomenon causes non–unicity of estimations.
The particular case of collinearity (linear dependence) can be controlled through
the correlation matrix of predictors. Predictors are normally distributed:

X ∼ Np(0,Γ), Γij = ρ|i−j|. (17)
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The number of relevant variables. The nonzero coefficients are in two clusters of
adjacent variables with centers at fixed l’s. The coefficient values are given by

δj = I{ω−|j−l|>0}, j = 1, . . . , p, (18)

where ω is a fixed integer governing the cluster width.

Underlying functions. The more the structures of the underlying functions are
complex, the harder they are to estimate. One factor that makes the structure
complex is rough changes in curvature. Sine functions allow us to handle diverse
situations, from almost linear to highly zig-zagged curves. We are interested in
controlling intra– and inter–covariates curvatures changes, thus define:

fj(xj) = δj sin 2πkjxj , (19)

and f0 = 0. Consider κ = kj+1 − kj , j = 1, . . . , p− 1, the sum
∑p

j=1
kj fixed to

keep the same overall degree of complexity.

Noise level. Noise is introduced through error variance

Y =
∑p

j=1
fj + ε, ε ∼ N (0, σ2). (20)

In order to avoid sensitivity to scale, the noise effect is controlled through the
determination coefficient, which is a function of σ.

5 Results

5.1 Example

Figure (1) reproduces the simulated example in dimension five used in [7]. The
fitted univariate functions are plotted for four values of (µ, λ). The response
variable depends linearly on the first covariate. The last covariate is not relevant.
The other covariates affect the response, but the smoothness of the dependancies
decreases with the coordinate number of the covariates.

For µ = λ = 1, the individual penalization terms of the last covariate, µ5,
λ5, were estimated to be extremely large, as well as the individual nonlinear
penalization term corresponding to the first covariate, λ1. Therefore, the first
covariate was estimated to be linear and the last one was estimated to be irrele-
vant. For high values of µ and λ, the dependences on the least smooth covariates
are difficult to capture.

5.2 Comparison

Implementation. The forward selection version of the backward elimination algo-
rithm given in [3] was implemented. The GCV criteria is used to select variables
as well as to choose smoothing parameters. The GCV function was evaluated
over a grid which dimension depends on the number of variables selected in the
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Fig. 1. Modified lasso on simulated data. The underlying model is y = x1 +cos(πx2)+
cos(2πx3) + cos(3πx4) + ε. The covariates are independently drawn from a uniform
distribution on [−1, 1] and ε is a Gaussian noise of standard deviation σ = 0.3. The
solid curves are the estimated univariate functions for different values of (µ, λ), and
dots are partial residuals.

prior iteration. Thus, models with p = 1, 2, 3, 4 and p = 5 or more variables were
evaluated over a grid of 25p, 5p, 4p, 3p, and 2p values, respectively. The PE value
was estimated from a test set of size 20000 sampled from the same distribution
as the learning set.

The GCV criteria is used to select complexity parameters of modified lasso.
The GCV function was evaluated over a grid of 52 values. A reasonably large
range was adopted to produce the complexity parameters space, specifically,
λ, µ ∈ [0.02, 4]. The log–values were equally spaced on the grid. The PE value of
lasso was calculated similarly to the PE of forward selection.

Simulations. Parameters of control described in section (4.2) were fixed as fol-
lows. The number of observations and the number of covariates were, respec-
tively, n = 450 and p = 12. We considered two cases for ρ, low (ρ = 0.1) and
severe (ρ = 0.9) concurvity. With respect to relevant variables, the situations
taken into account in simulations were: ω = {1, 2, 3}, taken clusters centered at
l = 3 and l = 9. This gave 2, 6 and 10 relevant variables, over a total of 12. No
different curvature changes between covariates: κ = 0 and moderate curvature
changes within covariates:

∑
kj = 9, were taken into account. We studied a

lowly noisy situation: R2 = 0.9.
Table (1) shows estimated PE values for the two methods in comparison,

modified lasso using the GCV criteria and forward variable selection, and PE
values for the optimal modified lasso, Lasso*, (that is, complexity parameters are
the minimizers of PE, they are estimated from an “infinite” test set). We observe
that only in the most difficult situations: 6 or 10 relevant variables (ω = 2 or
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3) and severe correlation (ρ = 0.9), the lasso applied to additive models had a
lower PE than forward selection. Estimated PE values corresponding to modified
lasso using the GCV criteria are quite higher than PE values corresponding to
optimal modified lasso. This may be because this complexity parameter selection
method is not sufficiently accurate. A more extended experiment, including other
described parameters of control, would be necessary to validate these first results.

Table 1. Estimated PE values for the modified lasso and forward selection and PE
values for the optimal modified lasso, for each set of parameters.

ρ ω Lasso Forward Lasso*

0.1 1 0.109 0.081 ?
0.1 2 0.346 0.262 ?
0.1 3 0.754 0.713 ?
0.9 1 0.199 0.172 ?
0.9 2 0.907 0.935 ?
0.9 3 1.823 2.212 ?

Table (2) shows average computing time in seconds. Whereas computing time
of lasso does not seem to depend on the number of relevant variables, computing
time of forward variable selection increases considerably with the number of
variables that actually generate the model.

Table 2. Average computing time in seconds needed by modified lasso and forward
selection, when 2, 6 and 10 variables generate the model (ω = {1, 2, 3}, respectively).

ω Lasso Forward

1 9854 4416
2 8707 26637
3 7771 108440

Forward selection never missed relevant variables. However, this is not the
best solution when ρ = 0.9, considering that variables are highly correlated.
Moreover forward variable selection picked two irrelevant variables in the sit-
uations ω = 1, ρ = 0.9 and ω = 2, ρ = 0.9. Linear components of modified
lasso were estimated to be highly penalized in all cases, for all variables (we
remind that underlying functions are centered sines). Figure (2) shows inverse
of estimated univariate complexity parameters corresponding to the nonlinear
components. Modified lasso penalized severely irrelevant variables. Penalization
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of relevant variables increased with concurvity and with the number of relevant
variables.
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Fig. 2. Inverse of the estimated univariate complexity parameters corresponding to the

nonlinear components:
1

λj

, j = 1, ..., 12. All variables are represented ordered from left

to right in the horizontal axis. Stars (∗) are relevant variables and plus (+) are irrelevant
ones. First line of graphics corresponds to low concurvity, second one corresponds to
severe concurvity. Columns of graphics correspond to ω = 1, 2 and 3, respectively.

5.3 Conclusion

We propose a modification of lasso for additive models in order to perform
variable selection. For each covariate, we differentiate its linear and its nonlinear
part, and penalize them independently. Penalization is regulated automatically
from two global parameters which are estimated by generalized cross–validation.
We have tested this method on a set of problems, in which complexity was very
different.

Results of simulations allow us to conclude that lasso perform better than
forward selection in the most complex cases. Whereas computing time of lasso
does not depend on the number of relevant variables, computing time of forward
variable selection increases considerably with the number of variables that ac-
tually generate the model. Performance of modified lasso can be got better by
improving the complexity parameter selection method.



12 Marta Avalos et al.

References

1. S. Bakin. Adaptive Regression and Model Selection in Data Mining Problems. PhD
thesis, School of Mathematical Sciences, The Australian National University, Can-
berra, 1999.

2. L. Breiman. Heuristics of instability and stabilization in model selection. The Annals
of Statistics, 24(6):2350–2383, 1996.

3. B. A. Brumback, D. Ruppert, and M. P. Wand. Comment on “Variable selection
and function estimation in additive nonparametric regression using a data–based
prior” by T. S. Shively, R. Khon and S. Wood. Journal of the American Statistical
Association, 94(447):794–797, 1999.

4. E. Cantoni and T. J. Hastie. Degrees of freedom tests for smoothing splines.
Biometrika, 89:251–263, 2002.

5. Z. Chen. Fitting multivariate regression functions by interaction spline models. J.
R. Statist. Soc. B, 55(2):473–491, 1993.

6. Y. Grandvalet. Least absolute shrinkage is equivalent to quadratic penalization. In
L. Niklasson, M. Bodén, and T. Ziemske, editors, ICANN’98, volume 1 of Perspec-
tives in Neural Computing, pages 201–206. Springer, 1998.

7. Y. Grandvalet and S. Canu. Outcomes of the equivalence of adaptive ridge with least
absolute shrinkage. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors, Advances
in Neural Information Processing Systems 11, pages 445–451. MIT Press, 1998.

8. C. Gu and G. Wahba. Minimizing gcv/gml scores with multiple smoothing param-
eters via the newton method. SIAM J. Sci. Statist. Comput., 12:383–398, 1991.

9. I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning Research, Special Issue on Variable/Feature Selection, 3:1157–
1182, 2003.

10. T. J. Hastie and R. J. Tibshirani. Generalized Additive Models, volume 43 of
Monographs on Statistics and Applied Probability. Chapman & Hall, 1990.

11. J. D. Opsomer and D. Ruppert. A fully automated bandwidth selection method
for fitting additive models. J. Multivariate Analysis, 73:166–179, 1998.

12. M.R. Osborne, B. Presnell, and B.A. Turlach. On the lasso and its dual. Journal
of Computational and Graphical Statistics, 9(2):319–337, 2000.

13. T. S. Shively, R. Khon, and S. Wood. Variable selection and function estimation in
additive nonparametric regression using a data–based prior. Journal of the American
Statistical Association, 94(447):777–806, 1999.

14. R. J. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, B, 58(1):267–288, 1995.

15. S. N. Wood. Modelling and smoothing parameter estimation with multiple
quadratic penalties. J. R. Statist. Soc. B, 62(2):413–428, 2000.

16. J. Ye. On measuring and correcting the effects of data mining and model selection.
Journal of the American Statistical Association, 93:120–131, 1998.


