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Abstract

Multidimensional scaling (MDS) is a data analysis technique for representing mea-
surements of (dis)similarity among pairs of objects as distances between points in a
low-dimensional space. MDS methods differ mainly according to the distance model
used to scale the proximities. The most usual model is the Euclidean one, although
a spherical model is often preferred to represent correlation measurements. These
two distance models are extended to the case where dissimilarities are expressed as
intervals or fuzzy numbers. Each object is then no longer represented by a point but
by a crisp or a fuzzy region in the chosen space. To determine these regions, two
algorithms are proposed and illustrated using typical datasets. Experiments demon-
strate the ability of the methods to represent both the structure and the vagueness
of dissimilarity measurements.
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1 Introduction

Multidimensional Scaling (MDS) (Schiffman et al., 1981; Cox and Cox, 1994;
Borg and Groenen, 1997) is a classical tool in data analysis. It aims at build-
ing a map of objects only described by a proximity matrix (similarities or
dissimilarities). The idea is to represent the objects in a low dimensional
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space (usually Euclidean) in such a way that the interpoint distances reflect,
in some sense, the dissimilarities: similar objects are mapped close to each
other, whereas dissimilar objects are represented as points distant from one
another. This method has been used for many years in various fields (e.g.,
marketing, psychometric, psychology, chemistry) to produce product maps,
stimulus-response maps, concept maps, molecular maps, etc. Its fundamental
purpose is to uncover any hidden structure that might be residing in a complex
data set, through easily interpretable graphical displays. Fuzzy multidimen-
sional scaling, as described in this paper, is an attempt to generalize classical
MDS to the analysis of proximities expressed as fuzzy numbers. Such data can
arise in various situations (Denœux and Masson, 2004):

• The initial data may consist in fuzzy feature vectors whose components are
fuzzy numbers. Such a data type may be useful to describe a set of entities
or the range of a variable observed during a certain period. It may be also a
good way to summarize a large amount of data in data mining applications
(see, for instance, Diday and Bock (2000)).

• The dissimilarities may be directly elicited from human evaluators who have
some difficulty in precisely quantifying the proximity of two objects. A fuzzy
number rather than a real value may be more suitable to account for the
vagueness of the evaluation.

• The dissimilarities may be measured independently by several sensors, so
that the available information concerning the dissimilarity between any two
objects takes the form of an empirical distribution. One way to analyze such
data is to describe the distribution by a fuzzy number computed from some
fractiles of the distribution.

In the past few years, a great deal of attention has been paid to the statistical
analysis of imprecise or fuzzy data (see, e.g., Kruse and Meyer (1987); Viertl
(1996); Gebhardt et al. (1998); Diamond and Tanaka (1998); Bertoluzza et al.
(2002); Denœux and Masson (2004)). In Denoeux and Masson (2000) and
Masson and Denœux (2002), generalizations of Euclidean MDS to interval-
valued and fuzzy data were presented. This work is reviewed in this paper,
and the approach is extended to spherical MDS, a technique useful to analyze
fuzzy correlation data such as introduced in Hébert et al. (2003) and Denœux
et al. (2005).

The paper is organized as follows. Classical multidimensional scaling methods
are first briefly recalled in Section 2. Two conventional distance models are pre-
sented: the Euclidean model and the spherical one. Section 3 reviews previous
work concerning the generalization of the Euclidean model to interval-valued
data (Section 3.1) and to fuzzy data (Section 3.2). In each case, two approaches
are presented: least-square fitting that attempts to represent dissimilarities as
faithfully as possible on average, and “possibilistic” fitting which guarantees a
certain relationship between distances and dissimilarities. New material con-
cerning spherical MDS is then introduced in Section 4. Again, the cases of
interval-valued and fuzzy data are addressed, successively, in Sections 4.1 and
4.2, and both least-squares and possibilistic procedures are described in each
case. All models and algorithms are illustrated using various real data sets.
Section 5 concludes the paper.
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2 Classical multidimensional scaling

2.1 Generalities

Given an arbitrary set of points in a p-dimensional space, it is easy to calculate
a symmetric matrix containing distances between all points. The basic objec-
tive of MDS methods is to solve the inverse problem: given a square matrix
∆ = (δij) expressing the dissimilarities between n objects, the problem is to
represent each object i by a point [xi1, ..., xip] in a p-dimensional space such
that the interpoint distances reflect, according to some criterion, the input
dissimilarities. The representation space is generally chosen to be Euclidean
so that the distance between two objects i and j can be computed as:

dij =

√√√√
p∑

l=1

(xil − xjl)2 . (1)

The aim is then to find a n×p matrix X = (xil) such that the distance matrix
D(X) computed from X approximates ∆. The quality of approximation is
measured via a loss function, usually referred to as a stress function, one of
the simplest form of which is:

σ(X) =
∑

i<j

(dij − δij)
2 . (2)

Starting from an initial random position, X can be obtained through iterative
minimization of (2).

Example 1 Color data set. An experiment by Helm (1964) reported in Borg
and Groenen (1997, page 360) about the perception of colors by human sub-
jects is considered. Ten colored objects (with different hues but constant
brightness and saturation) were presented to different subjects who were asked
to rate the perceived dissimilarities. In this example, only the response of the
first subject is considered. Classical scaling on these data leads to the two-
dimensional representation in Figure 1. It can be seen that the proximities of
the colors in the plane agree with common sense, and, as already reported by
Eckman (1954), that they are positioned around a circle. The approximation
quality can also be checked using the Shepard diagram shown in Figure 2,
which represents the reconstructed distances as a function of the dissimilari-
ties.

MDS is a generic term that includes many different specific models and algo-
rithms. The models differ mainly according to:

• the way (quantitative or qualitative) the dissimilarities are considered (met-
ric and nonmetric approaches);

• the distance model.
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Fig. 1. Two-dimensional configuration for the color data.
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Fig. 2. Shepard diagram for the color data.
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2.2 Metric vs. nonmetric approaches

It is often considered sufficient to represent dissimilarities up to a certain
transformation. For that purpose, the raw dissimilarities δij in (2) may often
be replaced by pseudo-dissimilarities or disparities using an appropriate trans-
formation f such that d̂ij = f(δij). Common choices for the transformation f

are the affine transformation (d̂ij = aδij + b), the logarithmic transformation

(d̂ij = a log(δij)+ b) and the exponential transformation (d̂ij = a exp(δij)+ b).
Coefficients a and b are new parameters to be determined during the optimiza-
tion process. Anyway, in all these cases, the method is referred to as metric
since the dissimilarities are considered in a quantitative way. Often, espe-
cially in social sciences, only the rank order of the dissimilarities is considered
meaningful. In this case, the disparities are computed using a transformation
referred to as isotonic regression (Kruskal, 1964) which insures that dij ≤ dkl

whenever δij ≤ δkl. This nonmetric or ordinal approach will not be considered
further in this paper, although a nonmetric MDS procedure for interval-valued
data was proposed in Denoeux and Masson (2000).

2.3 Spherical scaling

Spherical scaling was introduced by Cox and Cox (1991) as an alternative
to Euclidean scaling. It is used to find configurations of objects that do not
need any “edge points” and is thus especially suitable to visualize correlations
between statistical variables. We begin the explanation of the method with
the representation on a circle (scaling in R2), after which spherical scaling will
be presented.

Let us assume that the available data consists in a n × n matrix T = (τij)
where τij denotes the correlation between two variables i and j. The idea is to
represent each variable by a vector of unit length in such a way that the cosine
of the angle between two vectors is as close as possible to the correlation be-
tween the corresponding variables. The problem may be formalized as follows:
let the polar coordinates of a variable i be given by (1, θi). The cosine of the
angle φij between two variables i and j is the scalar product of the Cartesian
coordinates. It is given by:

cos φij = cosθi cos θj + sin θi sin θj . (3)

The set Θ = (θ1, θ2, ..., θn) of angles, starting from an initial random guess,
can be determined by iterative minimization of the following stress function:

σ(Θ) =
∑

i<j

(cos φij − τij)
2 . (4)

The generalization to multidimensional scaling on the two-dimensional sur-
face of a sphere is straightforward: each variable is represented by spheri-
cal coordinates (1, θi1, θi2) which are equivalent in Cartesian coordinates to
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xi = (cos θi1 sin θi2, sin θi1 sin θi2, cos θi1). The cosine of the angle φij between
two variables i and j can be computed by the scalar product < xi,xj > and
the criterion (4) is minimized with respect to Θ = (θ11, θ12, ..., θn1, θn2).

Note that spherical scaling can be seen, alternatively, as a constrained form of
principal component analysis where the component loadings are constrained
to have length one. This problem can thus be attacked by minimizing a least-
squares criterion under equality constraints, as proposed by Pietersz and Groe-
nen (2004). However, our extension of spherical scaling to interval and fuzzy
data, described in Section 4, is based on spherical coordinates, following the
approach introduced in Cox and Cox (1991).

3 Fuzzy Euclidean scaling

3.1 Interval-valued data

3.1.1 Model

In this section, we assume the dissimilarities to be given in the form of inter-
vals [δij] = [δ−ij , δ

+
ij ]. Each interval is interpreted as the set of possible values for

the true unknown dissimilarity δij. Since the objects are imprecisely located
with respect to each other, it is natural to generalize the Euclidean multidi-
mensional scaling so as to represent an object, no longer as a point, but as a
region Ri in Rp. The minimum and maximum distances between two regions
Ri and Rj are then defined by:

d−
ij = min

xi∈Ri,xj∈Rj

‖xi − xj‖ (5)

d+
ij = max

xi∈Ri,xj∈Rj

‖xi − xj‖. (6)

In practice, a parameterized shape has to be chosen for regions Ri. Two models
are presented in Denoeux and Masson (2000), corresponding to the represen-
tation of objects as hyperspheres and as hyperboxes. Only the hypersphere
model will be described here (the hypersphere model is further investigated in
the paper by Groenen et al. (2005) in this issue.). In this model, each region is
parameterized by a center ci ∈ Rp and a radius ri ∈ R+. The representation
of d−

ij and d+
ij in this case is given in Figure 3. As it can be easily seen from

this figure, d−
ij and d+

ij are defined by the following equations:

d−
ij = max(0, dij − ri − rj) (7)

d+
ij = dij + ri + rj, (8)

where dij = ‖ci − cj‖ denotes the Euclidean distance between the centers ci
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Fig. 3. Minimum and maximum distance between two regions.

and cj. The problem is then to determine the centers and the radii such that
the interval-valued distances represent, in some sense, the dissimilarities.

Remark 1 Note that a MDS model with hypersphere representation was al-
ready proposed by Okada and Imaizumi (1987) (we thank the anonymous ref-
eree for drawing our attention on this work). However, the problem addressed
in Okada and Imaizumi (1987) was not to scale imprecise dissimilarities, but
asymmetric dissimilarity data. The radii of the hyperspheres allow to com-
pute asymmetric distances, the expressions of which differ from those given
by Equations (7)-(8).

3.1.2 Least-squares fitting

A straightforward generalization of the conventional Euclidean multidimen-
sional scaling presented in Section 2.1 consists in minimizing the following
stress function:

σ′(R) =
∑

i<j

(d−
ij − δ−ij)

2 +
∑

i<j

(d+
ij − δ+

ij)
2, (9)

where R denotes the set of n regions {R1, . . . , Rn}. The n(p+1) model param-
eters (n centers defined by p coordinates and n radii) can then be determined
by minimizing σ′(R) with respect to R, using an iterative gradient descent
algorithm. Note that this is a constrained optimization problem, since the
radii have to be positive. To avoid using constrained optimization procedures,
a trick consists in replacing each radius ri by ρ2

i , where ρi is a new parame-
ter to be determined. Studying the optimality conditions of the problem, as
explained in Masson and Denœux (2002), gives interesting insight into the
model. In particular, two points are remarkable:

• if all the dissimilarities are precise (i.e. δ−ij = δ+
ij), the model leads to null

radii, thereby generalizing the classical model;
• otherwise, each radius rk is linearly related to the quantity

sk =
∑

i6=k

(δ+
ik − δ−ik), (10)
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which is a measure of the global imprecision of the assessed dissimilarities
between object k and all other objects. This observation is fundamental, as it
allows to relate the size of the region Ri describing object i, to the imprecision
of the data regarding that object.

3.1.3 Possibilistic fitting

The previous algorithm was intended to approximate the input dissimilarities
in the least squares sense. Inspired from fuzzy regression models initiated by
Tanaka et al. (1982), another way to fit the model was proposed in Masson and
Denœux (2002). In the basic Tanaka’s interval regression model, a linear model
with interval coefficients is postulated, leading to interval-valued predictions.
The regression coefficients are determined through a linear programming (LP)
formulation so as to minimize the sum of the widths of the predicted intervals,
under the constraint that they include the real or interval-valued output data.

Our possibilistic MDS fitting algorithm is based on a similar idea. Let us
suppose that the centers ci of the hyperspheres have already been determined,
for example by minimizing (9). We may attempt to find the smallest radii ri

such that the following condition is satisfied:

[δ−ij , δ
+
ij ] ⊆ [d−

ij, d
+
ij] ∀i, j. (11)

This is a conservative approach, since the distance interval [d−
ij, d

+
ij] between

regions i and j can then be interpreted as a “pessimistic” representation of
the dissimilarity interval [δ−ij , δ

+
ij ]. This leads to the following optimization

problem:

min
r

n∑

i=1

ri (12)

subject to:
d−

ij ≤ δ−ij ∀i, j (13)

d+
ij ≥ δ+

ij ∀i, j (14)

ri ≥ 0 ∀i = 1, n . (15)

In (12), r denotes the vector of radii (r1, r2, ..., rn)t. Using the expressions of
d−

ij and d−
ij given by (7) and (8), constraints (13) and (14) may be written as

max(0, dij − ri − rj) ≤ δ−ij (16)

ri + rj ≥ δ+
ij − dij, (17)

which may be expressed in a more compact form as

ri + rj ≥ max(dij − δ−ij , δ
+
ij − dij) ∀i, j. (18)

The minimization of (12) over r under the constraints (15) and (18) is a linear
programming problem once the dij are fixed. It is trivial to observe that this
problem always has a feasible solution, since d−

ij → 0 and d+
ij → ∞ when ri

and rj → ∞. Thus, the parameters of the model can be obtained for any input
dissimilarities.
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Remark 2 In contrast to least-squares fitting, possibilistic fitting does not
lead to null radii in case of precise but erroneous input dissimilarities: in fact,
the obtained representation reflects both the imprecision in the data (the
widths of the input dissimilarities) and the goodness-of-fit of the model (i.e.,
the choice of the Euclidean distance, the dimensionality of the configuration,
and the estimation errors).

Example 2 Towns data set. We carried the following experiment: a member
of our research group was asked to evaluate the distances between 8 European
cities. Because of the difficulty of precisely assessing the distances, the sub-
ject was allowed to express his evaluations using intervals. These intervals are
given in Table 1. The results obtained from both methods are given in Fig-
ures 4 and 5. Note that the orientation of axes is arbitrary and is the result
of a subjective choice of classical north/south and east/west orientation (any
rotation or reflection would keep inter-point distances unchanged). The possi-
bilistic fitting was initialized using the centers obtained from the least-squares
procedure. Figure 4 suggests that the respondent had more difficulty to assess
large distances, which is reflected by the representation of the peripheral cities
(Dublin, Berlin, Madrid and Rome) by larger circles. The least-squares model
is thus able to render the overall vagueness (imprecision) in the input data.
In the representation obtained by possibilistic fitting, the circles representing
each of the cities are larger than those obtained in the least-squares model.
This result was expected, since the possibilistic model reflects both impreci-
sion and uncertainty that might reside in the input data. Figure 6 shows a
modified Shepard diagram for this example, in which the lower and upper
distances are plotted against the upper and lower dissimilarities. It may be
checked that the inclusion constraints are satisfied.

Paris Dublin London Frankfort Berlin Marseille Rome

Paris 0

Dublin [850;1050] 0

London [250;450] [450;650] 0

Frankfort [500;700] [1300;1700] [600;800] 0

Berlin [900;1100] [1700;2300] [1000;1400] [450;650] 0

Marseille [800;1000] [1800-2400] [1100;1400] [1000;1200] [1600;2000] 0

Rome [1400;1800] [2200;2800] [1800;2100] [1000;1200] [1700;2300] [700;900] 0

Madrid [1500;1900] [1700;2300] [1700;2000] [1500;2500] [2100;2800] [900;1100] [1200;1800]

Table 1
Interval-valued distances estimated by the human subject.

Remark 3 Note that, following a similar line of reasoning, one could attempt
to solve the dual problem of maximizing the volume of hyperspheres, under
the constraints:

[d−
ij, d

+
ij] ⊆ [δ−ij , δ

+
ij ] ∀i, j. (19)

This is again a LP problem, which, however, does not always have a solution.
In fact, the significance of this approach appears to be mostly theoretical:
experiments have shown that the existence of a solution is seldom satisfied
in practice and that it leads to hardly interpretable representations. For that
reason, it will not be detailed further in this paper.
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Fig. 4. Town data set: configuration obtained from a least-squares fitting.
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3.2 Fuzzy data

3.2.1 Model

We assume in this part that each dissimilarity is now expressed as a fuzzy
number. As explained in the introduction, such data may come from a lin-
guistic evaluation by a single human subject (such as “very close”, “quite
different”, etc.), or from the synthesis of responses from a panel of assessors.
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It is now natural to represent each object by a fuzzy region R̃i in Rp defined
by a fuzzy membership function µ

R̃i
. Applying the extension principle (Zadeh,

1975), the fuzzy distance between two fuzzy regions R̃i et R̃j can be defined
as:

µ
d̃ij

(w) = sup
x,y∈Rp

min(µ
R̃i

(x), µ
R̃j

(y)), (20)

where the supremum is computed under the constraint ‖x−y‖ = w. If R̃i and

R̃j are multidimensional fuzzy numbers (Kaufmann and Gupta, 1991, page

146), each α-cut of d̃ij is a closed interval αd̃ij = [αd̃−
ij,

αd̃+
ij], whose bounds are

respectively the minimum and maximum distances between the α-cuts of R̃i

and R̃j. In the line of the previous section, we choose to represent each object
by a fuzzy region whose α-cuts are concentric hyperspheres of radii αri and
center ci, so that

αd̃−
ij = max(0, dij −

αri −
αrj) (21)

αd̃+
ij = dij + αri + αrj, (22)

where dij denotes, as before, the Euclidean distance between centers ci and
cj.

3.2.2 Least squares fitting

To fit the model, a set {αi}i=1,c of predetermined levels of α − cuts has to be
chosen with the convention:

1 = α1 > . . . > αc = 0 (23)
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Then, the stress function (9) is extended in the following way:

σ′′(R̃) =
c∑

k=1

∑

i<j

(αk d̃−
ij −

αk δ̃−ij)
2 +

c∑

k=1

∑

i<j

(αk d̃+
ij−

αk δ̃+
ij)

2, (24)

where R̃ denotes the set of the fuzzy regions R̃i, and 0x̃ represents, by conven-
tion, the support of fuzzy number x̃. Note that this stress function is equivalent
to the fuzzy least-squares criterion proposed by Diamond (1988) and extended
by Ming et al. (1997). The number of parameters of the model is n(p + c):
n centers defined by p coordinates cij, i = 1, . . . , n, j = 1, . . . , p and nc radii
αkri, i = 1, . . . , n, k = 1, . . . , c. The new parameterization

αkri =
k∑

h=1

αhρ2
i (25)

allows to account for the positivity constraints αkri ≥ 0, ∀i, k and the mono-
tonicity constraints αk+1ri ≥

αkri, thus transforming a constrained minimiza-
tion problem into an unconstrained one.

3.2.3 Possibilistic fitting

Following the idea developed in Section 3.1.3, we generalize condition (11) as

δ̃ij ⊆ d̃ij, ∀i, j (26)

where ⊆ now denotes the standard fuzzy set inclusion, i.e.

µ
δ̃ij

≤ µ
d̃ij

, ∀i, j. (27)

Since δ̃ij and d̃ij are fuzzy numbers, this condition may be expressed as

[αk δ̃−ij ,
αk δ̃+

ij ] ⊆ [αk d̃−
ij,

αk d̃+
ij] ∀i, j, k. (28)

As in Section 3.1.3, we assume that the centers ci, i = 1, . . . , n have been
determined using, e.g., the least-squares procedure described in the previous
section. The problem is then to find the “smallest” fuzzy regions R̃i satisfying
condition (28). Following the same line of reasoning as in Section 3.1.3, this
can done by solving the following LP problem:

min
r

c∑

k=1

n∑

i=1

αkri (29)

subject to:

αkri + αkrj ≥ max(dij −
αkδ−ij ,

αkδ+
ij − dij) ∀i, j, k (30)

α0ri ≥ 0, ∀i (31)
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αkri ≤
αk+1ri, ∀i,∀k < c, (32)

where r in (29) denotes the vector of all parameters αkri.

Example 3 We turn back to Example 1 about the perception of colors. We
now consider the answers of several subjects. They were classified into two
groups: some of them had a normal color vision, whereas the other had a color-
deficient vision. Two separate analyses were conducted on these two groups.
The perception of each group was summarized using a triangular fuzzy number
computed from the minimum, maximum and mean responses of the subjects
defining, respectively, the lower and upper bounds of the support and the core
of the fuzzy number. Figure 7 presents the results obtained using c = 2 α-cut
levels (support and core) using possibilistic fitting. It can be seen that the color
annular structure is well-recovered for the first group of subject. Moreover,
the small size of the darker circles indicates that the Euclidean model is well-
adapted to the input data, and that the mean responses of the subjects were
very precise. Some colors (like green-yellow-1, green-yellow-2 and green or red-
purple, purple-1 and purple-2) are logically less discriminated than others.
With the color-deficient subjects, a greater confusion among colors can be
noticed. The annular structure is slightly distorted, confirming similar results
reported by Helm. As compared to the configuration resulting from the color-
normal subjects, it is evident that the answers of the second group of subjects
are confused and erroneous, which is indicated by larger cores and supports
of the fuzzy regions. This result is confirmed by the left-hand side and right-
hand side of Figure 8 showing the membership of some dissimilarities and
corresponding reconstructed distances for the two groups of subjects. The
agreement between dissimilarities and distances is obviously much worse for
the blind-color group, which is compensated in the possibility model by greater
imprecision.

The least-squares method was also applied to the same data as above. As
before, only c = 2 levels were used. The configurations obtained for the nor-
mal and color-blind group are shown in Figure 9. Once again, the annular
structure pointed out by Helm is well recovered, with some distortion in the
color-blind group. The regions representing each color are more precise than
those obtained using the possibility model, and their core is reduced to a
point, which results from the choice of triangular fuzzy numbers to represent
the input dissimilarities. Interestingly, the configurations for the two groups
are more similar than those obtained with the possibility model. This may
be explained by the fact that, in the least-squares model, the imprecision of
the representation (i.e., the size and fuzziness of the regions) does not reflect
estimations errors (stemming from the inadequacy of the Euclidean model),
but the imprecision of the input dissimilarities, which is here about the same
for the two groups. The left-hand side and right-hand side of Figure 10 rep-
resenting the membership functions of some dissimilarities and reconstructed
distances for the two groups, clearly show that reconstruction errors are larger
in the color-blind group.
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Fig. 7. Color data: possibilistic model. (left) normal subjects; (right) color-deficient
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cores of the fuzzy regions.
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Fig. 8. Color data: possibilistic model. Membership functions of δ̃ij (bold lines) and
d̃ij for 10 pairs of colors seen by normal subjects (left) and color-deficient subjects
(right).
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Fig. 10. Color data: least-squares model. Membership functions of δ̃ij (bold lines)
and d̃ij for 10 pairs of colors seen by normal subjects (left) and color-deficient
subjects (right).

4 Fuzzy spherical scaling

4.1 Interval-valued data

4.1.1 Model

Let us now assume the data to consist in interval-valued correlations between n
variables. Each interval [τij] = [τ−

ij ; τ+
ij ] is interpreted as a set of possible values

for the true unknown correlation value τij between variables i and j. Such data
typically arise when objects are described by interval-valued attributes. The
Kendal’s rank correlation coefficient was extended to such data in Hébert
et al. (2003); Denœux et al. (2005), but other correlation coefficients could
be considered as well (see, e.g., Liu and Kao (2002)). As in classical spherical
scaling, the objects will be represented on a hypersphere Sp of radius 1 in the
space of dimension p: S2 is a circle and S3 is a sphere.

In the case of precise numerical data, the classical spherical scaling method
allows to approximate the correlation value τij by the cosine of the angle
̂(xi,xj) (see Section 2.3). This angle, defined in [0, π], is the angle between

the points xi and xj in the plane specified by the three points xi, xj and
the center O of Sp. As in the Euclidean case, it is natural to represent the
imprecise location of each object i by a region Si of Sp. Therefore, a pair of
regions Si and Sj located on Sp induces a set of cosines, that may conveniently
be characterized by its minimum and maximum:

min
xi∈Si,xj∈Sj

cos ̂(xi,xj) = cos( max
xi∈Si,xj∈Sj

̂(xi,xj)) (33)

max
xi∈Si,xj∈Sj

cos ̂(xi,xj) = cos( min
xi∈Si,xj∈Sj

̂(xi,xj)). (34)
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The maximal and minimal angles, which correspond, respectively, to the min-
imal and maximal possible cosines, are denoted as follows:

φ−
ij = max

xi∈Si,xj∈Sj

̂(xi,xj) (35)

φ+
ij = min

xi∈Si,xj∈Sj

̂(xi,xj). (36)

In practice, we decide to parameterize the shape of each region Si by a center
ci in Sp and an imprecision angle βi ∈ [0, π] as follows:

Si =
{
x ∈ Sp / (̂x, ci) ≤ βi

}
. (37)

Each region Si is thus a circular arc when p = 2, and a spherical cap when

p = 3. The interval [φ+
ij, φ

−
ij] obviously defines the complete set of angles ̂(xi,xj)

such that xi ∈ Si and xj ∈ Sj. Since the cosine function is decreasing, the
interval [cos(φ−

ij), cos(φ+
ij)] defines the whole set of possible cosines obtained

with pairs (xi,xj) ∈ (Si, Sj).

Let φij denote the angle (̂ci, cj). As already explained in the crisp case, it can
be computed as the arccosine of the scalar product of the centers ci and cj:

φij = arccos 〈ci, cj〉 . (38)
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Fig. 11. Maximal and minimal angles between two regions.

For any dimension p, the pair of extreme angles (φ+
ij, φ

−
ij) may clearly be mea-

sured in the plane (O, ci, cj). Figure 11 gives a representation of this plane,
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where it can be seen that φ−
ij and φ+

ij are defined by the following equations,
regardless of the dimension p:

φ−
ij = min (π, φij + βi + βj) (39)

φ+
ij = max (0, φij − βi − βj) . (40)

It is necessary to introduce the min and max functions, in order to deal with
two particular cases:

• ∃(xi,xj) ∈ (Si, Sj) / ̂(xi,xj) = π: the maximal angle π corresponding to
opposite locations is reached, so φ−

ij is equal to π;

• ∃(xi,xj) ∈ (Si, Sj) / ̂(xi,xj) = 0: the minimal angle 0 corresponding to
identical locations is reached, so φ+

ij is equal to 0.

Consequently, the problem is to determine the centers ci and the imprecision
angle βi of each object i, such that the cosine of the interval-valued angular
distances represent the interval-valued correlations.

The center ci located on the sphere Sp will be characterized by the spherical
coordinates (1, θi1, . . . , θi(p−1)), where θi(p−1) ∈ [0, 2π] and θiq ∈ [0, π] for all
q < p − 1.

Figure 12 shows a pair of objects in the case p = 3: S3 is a sphere, and
the shapes of regions Si and Sj are spherical caps. Both centers ci and cj

are marked with the × sign. Included in the plane (O, ci, cj), the white arc
delimited by the + signs connects the furthest points of Si and Sj, whereas its
subset delimited by the o signs connects the nearest points: the corresponding
angles are equal, respectively, to φ−

ij and φ+
ij.

4.1.2 Least-squares fitting

A straightforward generalization of the conventional spherical multidimen-
sional scaling presented in Section 2.3 consists in minimizing the following
criterion:

σ′(S) =
∑

i<j

(
cos(φ−

ij) − τ−
ij

)2
+
∑

i<j

(
cos(φ+

ij) − τ+
ij

)2
, (41)

where S denotes the set of n regions {S1, . . . , Sn}. The np model parameters
(n centers defined by p−1 coordinates θiq and n angles βi) can be determined
by minimizing σ′(S) with respect to S, using an iterative gradient descent
algorithm. The partial derivatives w.r.t. each parameter are given in Appendix
A. It is a constrained optimization problem since the imprecision angles must
belong to [0, π]. To account for this constraint, each parameter βi is replaced
by a real bi ∈ R, which is transformed by a derivable and increasing function
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Fig. 12. Representation of two regions on the sphere S3.

e(x) : R → [0, π]. We choose in practice the function

e(x) =
π

1 + exp(−x)
.

4.1.3 Possibility fitting

The possibilistic procedure described in Section 3.1 can be adapted to fit
the interval spherical model. First, we assume that the centers of the regions
Si have already been computed, for example by minimizing (41). Next, we
look for the smallest imprecision angles such that the following condition is
satisfied:

[τ−
ij , τ

+
ij ] ⊆

[
cos(φ−

ij), cos(φ+
ij)
]
, ∀i, j. (42)

The angular distances [φ+
ij, φ

−
ij] may then be interpreted as a “pessimistic”

representation of the correlation interval [τ−
ij , τ

+
ij ]. The optimization problem

is then specified as follows:

Minimizing
n∑

i=1

βi, (43)
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subject to:
cos(φ−

ij) ≤ τ−
ij , ∀i, j (44)

cos(φ+
ij) ≥ τ+

ij , ∀i, j (45)

βi ≥ 0, ∀i (46)

βi ≤ π, ∀i. (47)

Using (39) and (40), constraints (44) and (45) may be simplified as:

cos(φ−
ij) ≤ τ−

ij ⇔ cos(min(π, φij + βi + βj)) ≤ τ−
ij (48)

⇔min(π, φij + βi + βj) ≥ arccos(τ−
ij ) (49)

⇔φij + βi + βj ≥ arccos(τ−
ij ) (50)

⇔ βi + βj ≥ arccos(τ−
ij ) − φij , (51)

and

cos(φ+
ij) ≥ τ+

ij ⇔ cos(max(0, φij − βi − βj)) ≥ τ+
ij (52)

⇔max(0, φij − βi − βj) ≤ arccos(τ+
ij ) (53)

⇔φij − βi − βj ≤ arccos(τ+
ij ) (54)

⇔ βi + βj ≥ φij − arccos(τ+
ij ). (55)

Consequently, both constraints (44) and (45) can be expressed in the following
compact form:

βi + βj ≥ max
(
arccos(τ−

ij ) − φij, φij − arccos(τ+
ij )
)
, ∀i, j. (56)

The minimization of criterion (43) under the constraints (46), (47) and (56) is
a linear programming problem. This problem always has a feasible solution:
if βi → π and βj → π then φ−

ij → π and φ+
ij → 0; consequently cos(φ−

ij) → −1

and cos(φ+
ij) → 1.

4.2 Fuzzy data

4.2.1 Model

We assume in this part some correlations to be expressed as fuzzy intervals
τ̃ij. Concepts of fuzzy correlation were introduced in Liu and Kao (2002) and
Hébert et al. (2003); Denœux et al. (2005) to measure the degree of association
between fuzzy-valued attributes, by applying the extension principle (Zadeh,
1975). The data being fuzzy, each object i will now be represented by a fuzzy

region S̃i in Sp, defined by a fuzzy membership function µ
S̃i

. The extension
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principle allows to define the fuzzy angular distance φ̃ij between two regions

S̃i and S̃j:
µ

φ̃ij
(w) = sup

x,y∈Sp / (̂x,y)=w

min(µ
S̃i

(x), µ
S̃j

(y)). (57)

In the line of the fuzzy Euclidean case, we choose to represent each object i
by a fuzzy spherical cap (respectively, a fuzzy circular arc in the case p = 2),
whose α-cuts are nested caps (respectively, nested circular arcs) with center

ci and imprecision angle αβi. Then, αφ̃ij is the closed interval [αφ̃+
ij,

αφ̃−
ij] such

that:

αφ̃−
ij = min (π, φij + αβi + αβj) (58)

αφ̃+
ij = max (0, φij −

αβi −
αβj) , (59)

where φij denotes, as before, the angle (̂ci, cj).

4.2.2 Least-squares fitting

We apply the same convention of using a set {αk} of predetermined levels of
α-cuts, such that:

1 ≥ α1 > . . . > αc > 0. (60)

The stress function (41) is extended in the following way:

σ′′(S̃) =
c∑

k=1

∑

i<j

(
cos(αk φ̃−

ij) −
αk τ̃−

ij

)2
+

c∑

k=1

∑

i<j

(
cos(αk φ̃+

ij) −
αk τ̃+

ij

)2
, (61)

where S̃ denotes the set of the fuzzy spherical caps S̃i. The number of pa-
rameters of the model is n(p − 1 + c): n centers defined by (p − 1) spherical
coordinates θij and nc imprecision angles αkβi. The following parameterization
is used:

αkβi = e

(
α1bi +

k∑

h=2

αhbi
2

)
(62)

=
π

1 + exp
(
−
(

α1bi +
∑k

h=2
αhbi

2
)) , (63)

which automatically takes care of the constraints αkβi ∈ [0, π], ∀i, k, and
αkβi ≤

αk+1βi, ∀i, ∀k < c.

The obtained minimization problem is unconstrained, and may easily be solved
by an iterative descent algorithm. Partial derivatives formulas are detailed in
Appendix B.
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Products Opaque Brilliant Granulose Bright Nacre

1 (96,99.9,99.9) (97.7,100,100) (96,99.9,99.9) (96.8,100,100) (26.7,30,53.4)

2 (19.4,28,31.4) (60.5,69.4,75.1) (26.1,37.4,43.7) (64.4,74.1,80.8) (59.5,68.1,78)

3 (36,48.3,68.8) (3.2,10.3,14.6) (17.7,25.7,31.9) (42.7,54.4,67.5) (66.9,78,86)

4 (94.8,96.2,99.1) (43.9,56.5,63.6) (84.9,92.1,96.4) (92.3,94,100) (58.9,71,77.1)

5 (48.1,58.1,65.5) (26.7,42.3,48.9) (18.5,35.3,46.8) (50.9,59.7,71) (42.3,58.5,64.9)

6 (46.8,56,65.7) (0,0.3,4.2) (48.5,60.3,68.8) (31.9,44.8,62.8) (51.7,68.1,72.8)

7 (0,0,0) (44,50.9,62.6) (0.3,0.3,0.3) (0.1,0.1,0.1) (54.2,71.2,83.5)

8 (6.8,12.4,22.4) (81.5,85.4,96.6) (79.2,85.8,95.2) (16.1,20.6,40.1) (82.1,91.9,99.9)

Table 2
Fuzzy scores assigned by the expert to the 8 products according to the 5 descriptors.

Example 4 Sensory data set. We consider in this part a real fuzzy data set
coming from the evaluation of a set of 8 products by a subject, according to
5 visual descriptors: OPAQue, BRILliant, GRANUlose, BRIGht, and NACRe.
For each descriptor, the assessor was asked to assess the intensity level of
its perception for each product, on a continuous scale [0, 100]. The classical
method consists in acquiring precise numerical scores. However, such scores
typically exhibit high variability, and the evaluation needs to be repeated
several times. Reducing the number of repetitions would allow to reduce the
cost of the experiment. In this experiment, the subject was asked to provide
not only a precise numerical value for each product and each attribute (cor-
responding to the “most possible” value), but also an interval that surely
contained the “true” value. Together with the point estimate, this interval
defines a triangular fuzzy number, which may be seen as a fuzzy score.

An expected result of such an analysis is deeper understanding of the relation-
ship between descriptors. In the case of crisp data, the similarity or dissimi-
larity of each pair of descriptors is expressed by a correlation measure. In the
case of fuzzy data, fuzzy correlations measures may be obtained by applying
Zadeh’s extension principle. Kendall’s correlation coefficient was chosen for
this data set, because the ordinal information appears more relevant than the
quantitative one. However, it would also be possible to use fuzzy Pearson’s
correlations (Liu and Kao, 2002). The application of Zadeh’s extension prin-
ciple to extend Kendall’s rank correlation to fuzzy numbers is described in
Denœux et al. (2005) and Hébert et al. (2003).

The triangular fuzzy numbers obtained for each descriptor are given in Table
2, and they are represented graphically in Figure 13. The computed fuzzy
Kendall’s tau values τ̃ij are shown in Figure 14. We note that each interval
ατ̃ij is the convex hull of the set of possible Kendall’s coefficients that may be
obtained by values taken in the α-cuts of the fuzzy scores according to the
descriptors i and j.

The 0+ and 0.9 level cuts of the fuzzy regions obtained with spherical MDS
for p = 3 are represented in Figure 15. Shepard’s diagram (Figure 16) shows a
quite good approximation of the Kendall’s tau values. Figure 15 immediately
reveals a rather high correlation between descriptors Opaque, Granulose and
Bright which appear as a cluster on the sphere. The other salient feature is
the high degree of imprecision of the representation for descriptor Nacre, due
to the large support of its Kendall’s coefficients as shown in Figure 14. This
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Fig. 13. Sensory data set.
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Fig. 14. Membership functions of the fuzzy Kendall’s coefficients for the sensory
data set.

imprecision may be interpreted as a lack of discriminant power. In Table 2
and Figure 13, we may indeed verify that this descriptor does not allow to
distinguish between the products: a lot of pairs (i, j) of objects have overlap-
ping fuzzy score supports; for each (i, j), this means that both orders i ≻ j
and i ≺ j are possible. Note that the Nacre descriptor is also clearly opposed
to the four others: on the sphere, it is possible to draw diameters joining the
cap representing this descriptor and the four others. This is justified by the
possibility of strong negative correlations as shown in Figure 14.
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Fig. 15. Sensory data: spherical MDS, least-squares model, α-cuts {0+, 0.9}.
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Fig. 16. Sensory data: Shepard’s diagram of the spherical MDS, least-squares model.
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4.2.3 Possibilistic fitting

As in the Euclidean case, constraint (42) is generalized by:

τ̃ij ⊆ cos(φ̃ij), ∀i, j. (64)

where ⊆ denotes the standard fuzzy set inclusion, i.e.:

µτ̃ij
≤ µ

cos(φ̃ij)
, ∀i, j. (65)

Since τ̃ij and φ̃ij are fuzzy numbers, and the cosine function is decreasing on
[0, π], this condition may be expressed as:

[αk τ̃−
ij ,

αk τ̃+
ij ]⊆

[
cos

(
max(αk φ̃ij)

)
, cos

(
min(αk φ̃ij)

)]
(66)

⊆
[
cos(αk φ̃−

ij), cos(αk φ̃+
ij)
]

∀i, j, k. (67)

As in Section 4.1.3, we assume that the centers ci, i = 1, . . . , n have already
been computed using, e.g., the least-squares algorithm of the previous sec-
tion. The problem is to determine the “smallest” fuzzy regions Si satisfying
condition (66). This may be obtained by solving the following LP problem:

Minimizing
c∑

k=1

n∑

i=1

αkβi, (68)

subject to:
αkβi ≤

αk+1βi, ∀k < c, ∀i, (69)
α1βi ≥ 0, ∀i, (70)
αcβi ≤ π, ∀i, (71)

αkβi + αkβj ≥ max
(
arccos(αk τ̃−

ij ) − φij, φij − arccos(αk τ̃+
ij )
)
, ∀i, j, k. (72)

Example 5 Sensory data set. Figure 17 shows the representation of the sen-
sory data set of Example 4 obtained using the possibilistic fitting procedure.
As expected, the imprecision of this representation is higher than using the
least-squares method, which is also confirmed by the Shepard’s diagram shown
in Figure 18. This is particularly true for the spherical caps corresponding to
0.9-level cuts, which are much larger than in Figure 15. Otherwise, both rep-
resentations basically lend themselves to the same interpretation.

5 Conclusion

This article focused on the problem of visualizing interval and fuzzy dissim-
ilarity data. The basic principle underlying our approach is that imprecise
dissimilarities should be represented by regions instead of points in the chosen
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Fig. 17. Sensory data: spherical MDS, possibility model, α-cuts {0+, 0.9}.
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Fig. 18. Sensory data: Shepard’s diagram of the spherical MDS, possibility model.

25



space, which led us to propose extensions of standard MDS procedures. Two
kinds of representation spaces were investigated, depending on the interpre-
tation of the dissimilarity data: those corresponding to distances are better
represented in a Euclidean space, whereas a spherical space is more relevant
in the case of correlation measurements. The obtained representations have
been presented in low dimensions, but they may be easily extended to higher
dimensions, using planar projections.

Two approaches were proposed to compute optimal configurations. The least-
squares procedure aims at minimizing the approximation errors, thus provid-
ing readable “compromise” solutions. In the configurations obtained using this
method, the size of the regions reflects the imprecision of the input data: ob-
jects whose proximities to others have been specified in a less precise way tend
to be represented by larger regions.

The second approach (refered to as the possibilistic procedure) starts from
fixed centers determined, e.g., by the previous method, and computes the
smallest regions such that reconstructed distance intervals include observed
dissimilarity intervals. We thus obtain an exact, “worst-case”, representation,
in contrast to the compromise solution provided by the least-squares method
alone. The induced excess of reconstructed imprecision reflects the estimation
errors, i.e., the inadequacy of the model. However, this interesting property
is obtained at the cost of very high imprecision of the representation, which
may make it less readable, and higher sensitivity to input data. In practice,
these two methods can be seen as complementary, and we recommend to apply
them jointly, as they provide different views of the data. They are currently
being applied to the analysis of subjective evaluations collected during sensory
testings for the car industry.

Acknowledgements

The authors would like to thank PSA Peugeot Citröen company for supporting
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A Spherical interval model: stress function derivatives for least
square fitting

In the interval model, the following stress function has to be minimized with
respect to the centers and the imprecision angles of the regions:

σ′(S) =
∑

i<j

(
cos(φ−

ij) − τ−
ij

)2
+
∑

i<j

(
cos(φ+

ij) − τ+
ij

)2
, (A.1)

A.1 Partial derivatives w.r.t. the spherical coordinates of center ci

Denoting as θik (k < p− 1) the k-th spherical coordinate of vector ci, we have

∂σ′(S)

∂θik

=
∑

i<j

∂σ′(S)

∂φ−
ij

∂φ−
ij

∂θik

+
∑

i<j

∂σ′(S)

∂φ+
ij

∂φ+
ij

∂θik

, (A.2)

with

∂σ′(S)

∂φ−
ij

=−2
(
cos(φ−

ij) − τ−
ij

)
sin(φ−

ij) (A.3)

∂σ′(S)

∂φ+
ij

=−2
(
cos(φ+

ij) − τ+
ij

)
sin(φ+

ij), (A.4)

and, from (39) and (40)

∂φ−
ij

∂θik

=
∂φij

∂θik

1[0,π](φij + βi + βj) (A.5)

∂φ+
ij

∂θik

=
∂φij

∂θik

1[0,π](φij − βi − βj). (A.6)

Finally,

∂φij

∂θik

=
∂ arccos < ci, cj >

∂θik

(A.7)

=−
1√

1− < ci, cj >2
·
∂ < ci, cj >

∂θik

(A.8)

=−
1

sin φij

·
∂
∑p

l=1 cilcjl

∂θik

(A.9)

=−
1

sin φij

·
p∑

l=1

cjl
∂cil

∂θik

(A.10)
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In the case Sp is a circle (p = 2):

cil
∂cil

∂θi1

l = 1 cos θi1 − sin θi1

l = 2 sin θi1 cos θi1

In the case Sp is a sphere (p = 3):

cil
∂cil

∂θi1

∂cil

∂θi2

l = 1 cos θi1 sin θi2 − sin θi1 sin θi2 cos θi1 cos θi2

l = 2 sin θi1 sin θi2 cos θi1 sin θi2 sin θi1 cos θi2

l = 3 cos θi2 0 − sin θi2

A.2 Partial derivatives w.r.t. parameters bi

We have

∂σ′(S)

∂bi

=
∑

i<j

∂σ′(S)

∂φ−
ij

∂φ−
ij

∂bi

+
∂σ′(S)

∂φ+
ij

∂φ+
ij

∂bi

, (A.11)

with

∂φ−
ij

∂bi

=
∂φ−

ij

∂βi

∂βi

∂bi

(A.12)

= 1[0,π](φij + βi + βj) ·
∂βi

∂bi

(A.13)

∂φ+
ij

∂bi

=
∂φ+

ij

∂βi

∂βi

∂bi

(A.14)

=−1[0,π](φij − βi − βj) ·
∂βi

∂bi

. (A.15)

Finally,

∂βi

∂bi

=−π
exp (−bi)

(1 + exp (−bi))
2 · (−1) (A.16)

=
π exp (−bi)

(1 + exp (−bi))
2 . (A.17)
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B Spherical fuzzy model: stress function derivatives for least square
fitting

In the fuzzy model, the following stress function has to be minimized with
respect to the centers and the nested imprecision angles of the regions:

σ′′(S̃) =
c∑

k=1

∑

i<j

(
cos(αk φ̃−

ij) −
αk τ̃−

ij

)2
+

c∑

k=1

∑

i<j

(
cos(αk φ̃+

ij) −
αk τ̃+

ij

)2
, (B.1)

with

αφ̃−
ij = min (π, φij + αβi + αβj) (B.2)

αφ̃+
ij = max (0, φij −

αβi −
αβj) , (B.3)

and
αkβi =

π

1 + exp
(
−
(

α1bi +
∑k

h=2
αhbi

2
)) . (B.4)

B.1 Partial derivatives w.r.t. the spherical coordinates of center ci

Denoting as θik (k < p− 1) the k-th spherical coordinate of vector ci, we have

∂σ′′(S)

∂θik

=
c∑

l=1

∑

i<j

∂σ′′(S)

∂αlφ̃−
ij

∂αlφ̃−
ij

∂θik

+
c∑

l=1

∑

i<j

∂σ′′(S)

∂αlφ̃+
ij

∂αlφ̃+
ij

∂θik

, (B.5)

with

∂σ′′(S)

∂αlφ̃−
ij

=−2
(
cos(αlφ̃−

ij) −
αk τ̃−

ij

)
sin(αlφ̃−

ij) (B.6)

∂σ′′(S)

∂αlφ̃+
ij

=−2
(
cos(αlφ̃+

ij) −
αk τ̃+

ij

)
sin(αlφ̃+

ij), (B.7)

and

∂αlφ̃−
ij

∂θik

=
∂φij

∂θik

1[0,π](φij + αlβi + αlβj) (B.8)

∂αlφ̃+
ij

∂θik

=
∂φij

∂θik

1[0,π](φij −
αlβi −

αlβj). (B.9)

Finally,
∂φij

∂θik

is given by (A.7)-(A.10).
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B.2 Partial derivatives w.r.t. parameters αhbi

We have

∂σ′′(S)

∂αhbi

=
c∑

l=1

∑

i<j

∂σ′′(S)

∂αlφ̃−
ij

∂αlφ̃−
ij

∂αhbi

+
c∑

l=1

∑

i<j

∂σ′′(S)

∂αlφ̃+
ij

∂αlφ̃+
ij

∂αhbi

, (B.10)

with

∂αlφ̃−
ij

∂αhbi

=
∂αlφ̃−

ij

∂αlβi

∂αlβi

∂αhbi

(B.11)

= 1[0,π](φij + αlβi + αlβj) ·
∂αlβi

∂αhbi

(B.12)

∂αlφ̃+
ij

∂bi

=
∂αlφ̃+

ij

∂αlβi

∂αlβi

∂αhbi

(B.13)

=−1[0,π](φij −
αlβi −

αlβj) ·
∂αlβi

∂αhbi

. (B.14)

Then,

∂αlβi

∂αhbi

=
−π exp

(
−
(

α1bi +
∑l

k=2
αkbi

2
))

(
1 + exp

(
−
(

α1bi +
∑l

k=2
αkbi

2
)))2 ·

∂
(

α1bi +
∑l

k=2
αkbi

2
)

∂αhbi

, (B.15)

with

∂
(

α1bi +
∑l

k=2
αkbi

2
)

∂αhbi

=





1, if h = 1;

2(αhbi), if h ∈ {2, . . . , l};

0, otherwise.

(B.16)
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