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Focus of this talk

Dempster-Shafer (DS) theory (evidence theory, theory of belief
functions):

A formal framework for reasoning with partial (uncertain, imprecise)
information.
Has been applied to statistical inference, expert systems,
information fusion, classification, clustering, etc.

Purpose of these talk:
Brief introduction or reminder on DS theory, emphasizing some
connections with rough sets;
Review the application of belief functions to clustering, showing
some connections with fuzzy and rough approaches.
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Mass function

Let Ω be a finite set called a frame of discernment.
A mass function is a function m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1.

The subsets A of Ω such that m(A) 6= 0 are called the focal sets
of Ω.
If m(∅) = 0, m is said to be normalized (usually assumed).
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Source

A mass function is usually induced by a source, defined a 4-tuple
(S,2S,P, Γ), where

S is a finite set;
P is a probability measure on (S, 2S);
Γ is a multi-valued-mapping from S to 2Ω.

(S,$2S,P)$ Ω"

Γ$

s$
Γ(s)$

Γ carries P from S to 2Ω: for all A ⊆ Ω,

m(A) = P({s ∈ S|Γ(s) = A}).
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Interpretation

(S,$2S,P)$ Ω"

Γ$

s$
Γ(s)$

Ω is a set of possible states of the world, about which we collect
some evidence. Let ω be the true state.
S is a set of interpretations of the evidence.
If s ∈ S holds, we know that ω belongs to the subset Γ(s) of Ω,
and nothing more.
m(A) is then the probability of knowing only that ω ∈ A.
In particular, m(Ω) is the probability of knowing nothing.
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Example

A murder has been committed. There are three suspects:
Ω = {Peter, John,Mary}.
A witness saw the murderer going away, but he is short-sighted
and he only saw that it was a man. We know that the witness is
drunk 20 % of the time.

(S,$2S,P)$ Ω"Γ$
drunk$(0.2)$

not$drunk$(0.8)$
Peter$

John$

Mary$

We have Γ(¬drunk) = {Peter, John} and Γ(drunk) = Ω, hence

m({Peter, John}) = 0.8, m(Ω) = 0.2
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Special cases

A mass function m is said to be:
logical if it has only one focal set; it is then equivalent to a set.
Bayesian if all focal sets are singletons; it is equivalent to a
probability distribution.

A mass function can thus be seen as
a generalized set, or as
a generalized probability distribution.
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Belief function
Degrees of support and consistency

Let m be a normalized mass function on Ω induced by a source
(S,2S,P, Γ).
Let A be a subset of Ω.
One may ask:

1 To what extent does the evidence support the proposition ω ∈ A?
2 To what extent is the evidence consistent with this proposition?

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!
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Belief function
Definition and interpretation

For any A ⊆ Ω, the probability that the evidence implies
(supports) the proposition ω ∈ A is

Bel(A) = P({s ∈ S|Γ(s) ⊆ A}) =
∑
B⊆A

m(B).

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

The function Bel : A→ Bel(A) is called a belief function.
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Belief function
Characterization

Function Bel : 2Ω → [0,1] is a completely monotone capacity: it
verifies Bel(∅) = 0, Bel(Ω) = 1 and

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
.

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω.
Conversely, to any completely monotone capacity Bel
corresponds a unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω.
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Plausibility function

The probability that the evidence is consistent with (does not
contradict) the proposition ω ∈ A

Pl(A) = P({s ∈ S|Γ(s) ∩ A 6= ∅}) = 1− Bel(A)

Ω!
A!

B1!

B2!

B3!

B4!

(S,2S,P)! Γ!

s3!

s2!

s1! s4!

The function Pl : A→ Pl(A) is called a plausibility function.
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Special cases

If m is Bayesian, then Bel = Pl and it is a probability measure.
If the focal sets of m are nested (A1 ⊂ A2 ⊂ . . . ⊂ An ), m is said
to be consonant. Pl is then a possibility measure:

Pl(A ∪ B) = max (Pl(A),Pl(B))

for all A,B ⊆ Ω and Bel is the dual necessity measure.
DS theory thus subsumes both probability theory and possibility
theory.
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Summary

A probability measure is precise, in so far as it represents the
uncertainty of the proposition ω ∈ A by a single number P(A).
In contrast, a mass function is imprecise (it assigns probabilities
to subsets).
As a result, in DS theory, the uncertainty about a subset A is
represented by two numbers (Bel(A),Pl(A)), with
Bel(A) ≤ Pl(A).
This model is thus reminiscent of rough set theory, in which a set
is approximated by lower and upper approximations, due to
coarseness of a knowledge base.
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Interval rough sets
Belief and plausibility functions induced by an interval relation

Let S and Ω be two finite sets and R ⊆ S × Ω. R is called an
interval relation (Yao and Lingras, 1998) if

ΓR(s) = {ω ∈ Ω|(s, ω) ∈ R} 6= ∅,

for all s ∈ S.
Any A ⊆ Ω may be approximated in S by an interval rough set
defined by:

R(A) = {s ∈ S|ΓR(s) ⊆ A}

R(A) = {s ∈ S|ΓR(s) ∩ A 6= ∅}

Let P be a probability measure on (S,2S). Then, functions Bel
and Pl defined, for all A ⊆ Ω, by

Bel(A) = P(R(A)), Pl(A) = P(R(A))

are belief and plausibility functions.
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Interval rough sets
Equivalence with belief functions

Conversely, let m be a normalized mass function on a finite set
Ω, induced by a source (S,2S,P, Γ). The relation

R = {(s, ω) ∈ S × Ω|ω ∈ Γ(s)}

is an interval relation, and

Bel(A) = P(R(A)), Pl(A) = P(R(A)), ∀A ⊆ Ω.

Equivalence result

Belief function on Ω = interval relation between S and Ω
+ probability measure on (S,2S)
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Rough mass functions

Let Ω be the frame of discernment and let R be an equivalence
relation on Ω defining a partition of Ω.
Any A ⊆ Ω may be approximated by a (Pawlak) rough set defined
by:

R(A) = {ω ∈ Ω|[ω]R ⊆ A}

R(A) = {ω ∈ Ω|[ω]R ∩ A 6= ∅}
Given a mass function m with focal sets A1, . . . ,An, we can
define:

Its lower approximation m with focal sets R(A1), . . . ,R(An);
Its upper approximation m with focal sets R(A1), . . . ,R(An).

The pair (m,m) may be called a rough mass function. This
notion extends that of rough set.
Remark: these notions was introduced by Shafer (1976) with a
different terminology, before the introduction of rough sets!
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Clustering

n objects described by
Attribute vectors x1, . . . , xn (attribute
data) or
Dissimilarities (proximity data).

Goal: find a meaningful structure in the
data set, usually a partition into c crisp
or fuzzy subsets.
Belief functions may allow us to express
richer information about the data
structure.
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Different clustering concepts

Hard clustering: each object belongs to one and only one group.
Group membership is expressed by binary variables uik such that
uik = 1 if object i belongs to group k and uik = 0 otherwise.
Fuzzy clustering: each object has a degree of membership
uik ∈ [0,1] to each group, with

∑c
k=1 uik = 1.

Possibilistic clustering: the condition
∑c

k=1 uik = 1 is relaxed.
Each number uik can be interpreted as a degree of possibility
that object i belongs to cluster k .
Rough clustering: the membership of object i to cluster k is
described by a pair (uik ,uik ) ∈ {0,1}2 indicating its membership
to the lower and upper approximations of cluster k .
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Evidential clustering

In Evidential clustering, the group membership of each object is
described by a (not necessarily normalized) mass function mi
over Ω.
Example:

-5 0 5 10
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0

2

4
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2

3

4

5 6 7

8

9

10

11

12

Evidential partition
∅ {ω1} {ω2} {ω1, ω2}

m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Relationship with other clustering structures

Hard	
  par''on	
  

Fuzzy	
  par''on	
   Possibilis'c	
  par''on	
   Rough	
  par''on	
  

Eviden'al	
  par''on	
  

mi	
  certain	
  

mi	
  Bayesian	
   mi	
  consonant	
   mi	
  logical	
  

mi	
  general	
  
More	
  general	
  

Less	
  general	
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Rough clustering as a special case

m({ω1})=1( m({ω1, ω2})=1( m({ω2})=1(

Lower(
approxima4ons(

Upper(
approxima4ons(

ω1
L( ω2

L( ω2
U(ω1

U(
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From evidential to hard/fuzzy/possibilistic clustering

Let (m1, . . . ,mn) be an evidential partition.
Induced hard partition:

uik =

{
1 if Pli ({ωk}) = max` Pli ({ω`})
0 otherwise.

Induced fuzzy partition:

uik =
Pli ({ωk})∑
` Pli ({ω`})

Induced possibilistic partition:

uik = Pli ({ωk})
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From evidential to rough clustering

Let (m1, . . . ,mn) be an evidential partition.
For each i , let Ai ⊆ Ω such that

mi (Ai ) = max
A⊆Ω

mi (A).

Lower approximations:

uik =

{
1 if Ai = {ωk}
0 otherwise.

Upper approximations:

uik =

{
1 if ωk ∈ Ai

0 otherwise.
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Algorithms

EVCLUS (Denoeux and Masson, 2004):
Proximity (possibly non metric) data,
Multidimensional scaling approach.

Evidential c-means (ECM): (Masson and Denoeux, 2008):
Attribute data,
HCM, FCM family (alternate optimization of a cost function).

Relational Evidential c-means (RECM): (Masson and Denoeux,
2009): ECM for proximity data.
Constrained Evidential c-means (CECM) (Antoine et al., 2011):
ECM with pairwise constraints.
Constrained EVCLUS (CEVCLUS) (Antoine et al., 2014):
EVCLUS with pairwise constraints.
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Principle

Problem: generate an evidential partition M = (m1, . . . ,mn) from
attribute data X = (x1, ...,xn), xi ∈ Rp.
Generalization of hard and fuzzy c-means algorithms:

Each class represented by a prototype;
Alternate optimization of a cost function with respect to the
prototypes and to the evidential partition.
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Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβik d2
ik

with dik = ||xi − vk || under the constraints
∑

k uik = 1, ∀i .
Alternate optimization algorithm:

vk =

∑n
i=1 uβik xi∑n

i=1 uβik
∀k = 1, . . . , c,

uik =
d−2/(β−1)

ik∑c
`=1 d−2/(β−1)

i`

.
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ECM algorithm
Principle

v1

v2

v3

v1

v2

v3

v4

Each class ωk represented by a prototype vk .
Each non empty set of classes Aj represented
by a prototype v̄j defined as the center of mass
of the vk for all ωk ∈ Aj .
Basic ideas:

For each non empty Aj ∈ Ω, mij = mi (Aj )
should be high if xi is close to v̄j .
The distance to the empty set is defined as a
fixed value δ.
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ECM algorithm
Objective criterion

Criterion to be minimized:

JECM(M,V ) =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ij d2

ij +
n∑

i=1

δ2mβ
i∅,

Parameters:
α controls the specificity of mass functions;
β controls the hardness of the evidential partition;
δ controls the amount of data considered as outliers.

JECM(M,V ) can be iteratively minimized with respect to M and V
using an alternate optimization scheme.
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Butterfly dataset
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4-class data set
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4-class data set
Hard evidential partition
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4-class data set
Lower approximations
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4-class data set
Upper approximations
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Brain data
Problem

(a) (b)

Magnetic resonance imaging of pathological brain, 2 sets of
parameters.
Three regions: normal tissue (Norm), ventricles + cerebrospinal
fluid (CSF/V) and pathology (Path).
Image 1 highlights CSF/V (dark), image 2 highlights pathology
(bright).
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Brain data
Results in grey level space
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Brain data
Image segmentation

(a) (b) (c)

Pathology (left); CSF and ventricles (center); normal brain tissues
(right). The lower approximations of the clusters are represented by
light grey areas, the upper approximations by the union of light and

dark grey areas.
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Determining the number of groups

If a proper number of classes is chosen, the prototypes will cover
the clusters and most of the mass will be allocated to singletons
of Ω.
On the contrary, if c is too small or too high, the mass will be
distributed to subsets with higher cardinality or to ∅.
Nonspecificity of a mass function:

N(m) ,
∑

A∈2Ω\∅

m(A) log2 |A|+ m(∅) log2 |Ω|,

Proposed validity index of an evidential partition:

N∗(c) ,
1

n log2(c)

n∑
i=1

 ∑
A∈2Ω\∅

mi (A) log2 |A|+ mi (∅) log2(c)

 ,
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Determining the number of groups
Result with the 4-class dataset

2 3 4 5 6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

α=1

α=2

α=3

Number of clusters

N
*(

c)

Thierry Denœux Dempster-Shafer theory. Application to clustering 45/ 48



Conclusions
References

Conclusion
DS theory vs. Rough set theory

Dempster-Shafer theory and Rough set theory have different
agendas:

DS theory formalizes reasoning with uncertainty;
Rough set theory is a tool for knowledge extraction from databases.

However, they are both concerned with coarseness of
representation, and they have strong connections from a formal
point of view:

A belief function Ω can be seen as being generated from a
probability measure on some underlying space S and an interval
relation between S and Ω.
The notions of lower and upper approximations of a set induced by
an equivalence relation can be extended to mass functions.
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Conclusion
Evidential vs. rough clustering

When applied to clustering, DS theory leads to the notion of
evidential partition, which generalizes most previous clustering
structures, including rough clustering.
Several algorithms have been proposed to generate an evidential
partition from proximity or attribute data:

EVCLUS;
Evidential c-means and its variants (proximity data, optimized
distance measure, etc.)

These algorithms may also be used to generate a rough
clustering structure.
A detailed comparison with, e.g., the rough c-means algorithm
(Lingras and West, 2004) remains to be done (see a first
approach in Joshi and Lingras, 2012).
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