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Dempster-Shafer theory
Application to clustering

Focus of this talk

@ Dempster-Shafer (DS) theory (evidence theory, theory of belief
functions):
e A formal framework for reasoning with partial (uncertain, imprecise)

information.

e Has been applied to statistical inference, expert systems,
information fusion, classification, clustering, etc.

@ Purpose of these talk:

e Brief introduction or reminder on DS theory, emphasizing some
connections with rough sets;

e Review the application of belief functions to clustering, showing
some connections with fuzzy and rough approaches.
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@ Dempster-Shafer theory
@ Mass function
@ Belief and plausibility functions
@ Connection with rough sets

e Application to clustering
@ Evidential partition
@ Evidential c-means
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@ Let Q be a finite set called a frame of discernment.
@ A mass function is a function m : 22 — [0, 1] such that

> m(A)=1.

ACQ

@ The subsets A of Q such that m(A) # 0 are called the focal sets
of Q.

o If m(P) = 0, mis said to be normalized (usually assumed).
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@ A mass function is usually induced by a source, defined a 4-tuple
(S,28,P,T), where
o Sis afinite set;
e Pis a probability measure on (S, 2°);
e I is a multi-valued-mapping from S to 2%.

(S, 25,P) Q
(O
@ [ carries P from Sto 2%: forall A C Q,

=‘UtCM m(A) = P({S € S|F(S) - A}) i‘ hélldiasyg
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Interpretation

(S, 2%P) Q

@ Qs a set of possible states of the world, about which we collect
some evidence. Let w be the true state.

@ Sis a set of interpretations of the evidence.

@ If s € S holds, we know that w belongs to the subset I'(s) of Q,
and nothing more.

@ m(A) is then the probability of knowing only that w € A.
o Uil® In particular, m(f2) is the probability of knowing nothing. QE h-"d.
ersité de Technologie eudiasyc
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Example

@ A murder has been committed. There are three suspects:
Q = {Peter, John, Mary}.

@ A witness saw the murderer going away, but he is short-sighted
and he only saw that it was a man. We know that the witness is
drunk 20 % of the time.

(SI 2$IP)

T Q

drunk (0: 2) N

not drunk (0.8)

@ We have I'(—drunk) = {Peter, John} and I'(drunk) = Q, hence

m({Peter,John}) = 0.8, m(Q) =0.2 o
]“ heudiasyc
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Special cases

@ A mass function mis said to be:

e logical if it has only one focal set; it is then equivalent to a set.
e Bayesian if all focal sets are singletons; it is equivalent to a
probability distribution.

@ A mass function can thus be seen as

@ ageneralized set, or as
@ a generalized probability distribution.

> utc ‘J&E .
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Belief function

Degrees of support and consistency

@ Let mbe a normalized mass function on 2 induced by a source
(S,25, P,I).

@ Let Abe a subset of Q.

@ One may ask:

@ To what extent does the evidence support the proposition w € A?
@ To what extent is the evidence consistent with this proposition?

)‘4 heudiasyc
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@ For any A C (, the probability that the evidence implies
(supports) the proposition w € A is

Bel(A) = P({s € S|F(s) C A}) = Y_ m(B).
BCA

"‘ Eﬁ%n;ne function Bel : A — Bel(A) is called a belief function. b%héudiasyg
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Belief function

Characterization

@ Function Bel : 22 — [0, 1] is a completely monotone capacity: it
verifies Bel()) = 0, Bel(2) = 1 and

k
Bel < A,-) > Z (—1)/+1Bel <ﬂ A,-) }
i=1 P#IC{1,....k} icl

for any k > 2 and for any family Ay, ..., A in 22

@ Conversely, to any completely monotone capacity Bel
corresponds a unique mass function m such that:

m(A) = Y  (-1)A"1BIBel(B), VACQ.
0#BCA
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@ The probability that the evidence is consistent with (does not
contradict) the proposition w € A

PI(A) = P({s € SIT(s) N A # 0}) = 1 — Bel(A)

@ The function Pl : A — PI(A) is called a plausibility function. ]
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Special cases

@ If mis Bayesian, then Bel = P/ and it is a probability measure.
@ If the focal sets of m are nested (Ay C Ao C ... C A, ), mis said

to be consonant. Plis then a possibility measure:
PI(AU B) = max (PI(A), PI(B))

for all A, B C Q and Bel is the dual necessity measure.

@ DS theory thus subsumes both probability theory and possibility
theory.

> utc ‘J&E .
e e Tocmog heudiasyc

Universid deTech
Compiégne

Thierry Denceux Dempster-Shafer theory. Application to clustering 16/ 48



Mass function
Belief and plausibility functions
Connection with rough sets

Dempster-Shafer theory
Application to clustering

Summary

@ A probability measure is precise, in so far as it represents the
uncertainty of the proposition w € A by a single number P(A).

@ In contrast, a mass function is imprecise (it assigns probabilities
to subsets).

@ As aresult, in DS theory, the uncertainty about a subset A is
represented by two numbers (Bel(A), PI(A)), with
Bel(A) < PI(A).

@ This model is thus reminiscent of rough set theory, in which a set
is approximated by lower and upper approximations, due to
coarseness of a knowledge base.
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Interval rough sets

Belief and plausibility functions induced by an interval relation

@ Let S and Q be two finite sets and R C S x Q. Ris called an
interval relation (Yao and Lingras, 1998) if

FR(s) = {w e Q|(s,w) € R} #10,

foralls e S.

@ Any A C Q may be approximated in S by an interval rough set
defined by:
R(A) = {s € SITa(s) C A}

R(A) = {se S|Ta(s) N A £ 0}

@ Let P be a probability measure on (S, 2%). Then, functions Bel
and P/ defined, for all A C Q, by

Bel(A) = P(R(A)), PI(A) = P(R(A))
> utc sﬁﬁ o
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Interval rough sets

Equivalence with belief functions

@ Conversely, let m be a normalized mass function on a finite set
Q, induced by a source (S,2°, P,T). The relation

R={(s,w) e SxQweTl(s)}
is an interval relation, and
Bel(A) = P(R(A)), PI(A) = P(R(A)), VACQ.

Equivalence result

Belief function on Q = interval relation between S and Q
+ probability measure on (S, 2°)

G ] heudiasyc
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Rough mass functions

@ Let Q be the frame of discernment and let R be an equivalence
relation on Q defining a partition of Q.

@ Any A C Q may be approximated by a (Pawlak) rough set defined
by:
R(A) = {w € Qf[w]r € A}

R(A) = {w € Q|[wlgN A # 0}
@ Given a mass function m with focal sets Ay, ..., A,, we can

define:
o Its lower approximation m with focal sets B(A1), ..., B(An);
@ Its upper approximation m with focal sets R(A1), ..., R(An).

@ The pair (m, m) may be called a rough mass function. This
notion extends that of rough set.

@ Remark: these notions was introduced by Shafer (1976) with a
- utc different terminology, before the introduction of rough sets! “%‘Eh;l;diasyc
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Dempster-Shafer theory Evidential partition

Application to clustering Evidential c-means
Clustering
@ n objects described by
RASE \\ Re . N o Attribute vectors xy, ..., X, (attribute
I/ L N ° \| data) or
. o) l\ ° e Dissimilarities (proximity data).
[ ] . . .
\ AN //' @ Goal: find a meaningful structure in the
N : o ’;g - - \: - data set, usually a partition into ¢ crisp
- /e “ \ or fuzzy subsets.
\
Lo : ! @ Belief functions may allow us to express
‘e / richer information about the data
Seol structure.
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Different clustering concepts

@ Hard clustering: each object belongs to one and only one group.
Group membership is expressed by binary variables ujy such that
uy = 1 if object i belongs to group k and uy = 0 otherwise.

@ Fuzzy clustering: each object has a degree of membership
ui € [0,1] to each group, with "¢ _, ux = 1.

@ Possibilistic clustering: the condition Zi:1 ux = 1 is relaxed.
Each number uj can be interpreted as a degree of possibility
that object i/ belongs to cluster k.

@ Rough clustering: the membership of object i to cluster k is
described by a pair (uy, Ui) € {0, 1}? indicating its membership
to the lower and upper approximations of cluster k.

’Utc ‘%E o
T heudiasyc

Thierry Denceux Dempster-Shafer theory. Application to clustering 24/ 48



Dempster-Shafer theory
Application to clustering

Evidential clustering

Evidential partition
Evidential c-means

@ In Evidential clustering, the group membership of each object is
described by a (not necessarily normalized) mass function m;

over €.
@ Example:

r o2 o8
w1 o3 o5 o6 o7 o9 11
o4 ‘ #10
’ 25 0 5

Thierry Denceux

Evidential partition

0 {wr} {we} {wr,wo}
ms 0 1 0 0

0

0

ms 0.5 0 0.5
Mmeg 0 0 1

]“ heudiasyc
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Evidential partition
Evidential c-means

Relationship with other clustering structures

More general

| Evidential partition | m; general

Fuzzy partition |

| Possibilistic partition |

m; Bayesian

Less general

utc
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Rough partition

m; logical

m, certain
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Dempster-Shafer theory Evidential partition
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From evidential to hard/fuzzy/possibilistic clustering

@ Let (mq,..., mp) be an evidential partition.
@ Induced hard partition:

e {1 if Ph({wi}) = max, Ph({we})
ik =

0 otherwise.

@ Induced fuzzy partition:

Pli({wk})
>0 Plit{we})

@ Induced possibilistic partition:

Uk = Ph({wk})
’% ) h.eudiasyg
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@ Let (my,..., mp) be an evidential partition.
@ Foreach i, let A; C Q such that

mi(A;) = Tgaé m;(A).
@ Lower approximations:

"y = {1 if A = {wi}

0 otherwise.

@ Upper approximations:

T — 1 ifwkeA,-
® =0 otherwise.

il E";E*gw mg
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Algorithms

@ EVCLUS (Denoeux and Masson, 2004):

e Proximity (possibly non metric) data,
e Multidimensional scaling approach.

@ Evidential c-means (ECM): (Masson and Denoeux, 2008):

e Attribute data,
e HCM, FCM family (alternate optimization of a cost function).

@ Relational Evidential c-means (RECM): (Masson and Denoeux,
2009): ECM for proximity data.

@ Constrained Evidential c-means (CECM) (Antoine et al., 2011):
ECM with pairwise constraints.

@ Constrained EVCLUS (CEVCLUS) (Antoine et al., 2014):
EVCLUS with pairwise constraints.

> utc QE .
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Principle

@ Problem: generate an evidential partition M = (my, ..., m,) from
attribute data X = (X1, ..., Xp), X; € RP.
@ Generalization of hard and fuzzy c-means algorithms:
e Each class represented by a prototype;

e Alternate optimization of a cost function with respect to the
prototypes and to the evidential partition.

o ut
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@ Minimize

n C
Jan(U, V) =" updl

i=1 k=1
with dix = ||X; — V|| under the constraints >, ux =1, Vi.
@ Alternate optimization algorithm:

Ll ki ”5‘;"' vk=1,....c.
2iet Uy

d—2/(ﬂ 1)
Ze 1CI—Z/(ﬂ 1)°
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ECM algorithm

Dempster-Shafer theory Evidential partition
Application to clustering Evidential c-means

Principle
o ° o @ Each class wy represented by a prototype v.
°o ©°_ v, <_>>:’2 @ Each non empty set of classes A; represented
o Vigo----®” ! by a prototype v; defined as the center of mass
o MO Vs © of the vy for all wy € A;.
N o] ..
S 2w, @ Basic ideas:
Vios 0 e For each non empty A; € Q, mj = mi(4))
O\‘/o should be high if x; is close to v;.
R 0 V3 e The distance to the empty set is defined as a
o fixed value ¢.
o utc ‘JE -
e heudiasyc
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ECM algorithm

Objective criterion

@ Criterion to be minimized:

Jeow(M, V) = Z M |A;\“m§ct?+262 My,
=1

i=1 {j/A#0,ACQ}

@ Parameters:

@ « controls the specificity of mass functions;
e [ controls the hardness of the evidential partition;
@ ¢ controls the amount of data considered as outliers.

@ J.ou(M, V) can be iteratively minimized with respect to M and V
using an alternate optimization scheme.

> utc QE .
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Brain data

Problem

@ Magnetic resonance imaging of pathological brain, 2 sets of
parameters.

@ Three regions: normal tissue (Norm), ventricles + cerebrospinal
fluid (CSF/V) and pathology (Path).

Image 1 highlights CSF/V (dark), image 2 highlights pathology. . .-.
/g&g&(bright). % heudiasyc
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Brain data

Results in grey level space

Dempster-Shafer theory
Application to clustering

Evidential partition
Evidential c-means

150

Grey levels in image 2
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Brain data

Image segmentation

Pathology (left); CSF and ventricles (center); normal brain tissues
(right). The lower approximations of the clusters are represented by
light grey areas, the upper approximations by the union of light and
dark grey areas.
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Determining the number of groups

@ If a proper number of classes is chosen, the prototypes will cover
the clusters and most of the mass will be allocated to singletons
of Q.

@ On the contrary, if ¢ is too small or too high, the mass will be
distributed to subsets with higher cardinality or to 0.

@ Nonspecificity of a mass function:

N(m)£ " m(A)log, |Al + m(0)log, |2,
Ae22\()

@ Proposed validity index of an evidential partition:

* A 1 . i .
N*(c) = 7n|092(0) 2 Aggn\@ m;(A)log, | Al + m;(0) log,(c)
/ut‘c ~
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Conclusion
DS theory vs. Rough set theory

@ Dempster-Shafer theory and Rough set theory have different
agendas:
e DS theory formalizes reasoning with uncertainty;
e Rough set theory is a tool for knowledge extraction from databases.

@ However, they are both concerned with coarseness of
representation, and they have strong connections from a formal
point of view:

o A belief function Q can be seen as being generated from a
probability measure on some underlying space S and an interval
relation between S and Q.

e The notions of lower and upper approximations of a set induced by
an equivalence relation can be extended to mass functions.
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Conclusion

Evidential vs. rough clustering

@ When applied to clustering, DS theory leads to the notion of
evidential partition, which generalizes most previous clustering
structures, including rough clustering.

@ Several algorithms have been proposed to generate an evidential
partition from proximity or attribute data:

e EVCLUS;
e Evidential c-means and its variants (proximity data, optimized
distance measure, etc.)

@ These algorithms may also be used to generate a rough
clustering structure.

@ A detailed comparison with, e.g., the rough c-means algorithm

(Lingras and West, 2004) remains to be done (see a first
approach in Joshi and Lingras, 2012).
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