Séminaire (organisé par l’équipe de recherche ASER)

Dr. Cheng


Estimation d’état : Du filtre de Kalman au filtre particulaire


Mardi 16 février à 14h en RD134


Résumé :

Estimation d’état dans des modèles non linéaires est un sujet actif dans le domaine de l’automatique. De nombreux travaux ont été menés sur ce sujet depuis le célèbre filtre de Kalman qui est la solution optimale pour un modèle linéaire avec des bruits Gaussiens. Dans le contexte non linéaire, les équations intégrales définissant la solution optimale n’admettent pas en général de solution explicite.

Nous traitons les modèles linéaires et les modèles non linéaires dans un cadre unifié en prenant trois points de vue différents : la méthode des moindres carrés, l’approche Bayésiene et l’approche de la théorie de l’information. Le filtre de Kalman apparaît comme la solution optimale dans ces trois approches. Cependant, pour un modèle non linéaire ou pour un modèle linéaire non Gaussien, les trois points de vue conduisent à des filtres différents.

Nous présentons ensuite le principe du filtrage particulaire. Le filtre particulaire peut être considéré comme une approximation du filtre Bayésien recursif. L’idée consiste à représenter les densités dans le filtre Bayésien par un ensemble d’échantillons aléatoires avec des poids. Le filtre particulaire n’est rien d’autre qu’un échantillonnage d’importance séquentiel avec une étape de rééchantillonnage. Les performances du filtre particulaire dépendent fortement du choix de la distribution d’importance. Le choix le plus populaire est d’utiliser la fonction de transition (densité a priori) ce qui conduit au filtre bootstrap. Malgré de nombreuses propriétés attrayantes, ce choix peut conduire à de mauvaises performances lorsque le bruit d’état est trop fort ou lorsque le bruit d’observation est trop faible.

Nous introduisons deux nouveaux algorithmes de filtrage non linéaire permettant d’améliorer les performances du filtre particulaire. Pour le premier algorithme, nous proposons une méthode d’échantillonnage où chaque particule génère plusieurs sous-particules et on sélectionne la sous-particule dont la vraisemblance conditionnelle est maximale. Quand la variance de bruit d’état est forte, cette méthode fonctionne mieux que le filtre bootstrap classique, le filtre particulaire avec ré-échantillonnage au moyen d’une méthode de Monte Carlo par chaînes de Markov, le filtre particulaire dont la distribution d’importance est générée avec un filtre de Kalman étendu, le filtre particulaire "unscented", et le filtre particulaire auxiliaire. Pour le second algorithme, nous introduisons un modèle auxiliaire et nous utilisons des filtres "unscented" pour générer la distribution d’importance dans le filtre particulaire. Lorsque la variance du bruit d’observation est faible, nous montrons que notre méthode a de meilleures performances que les filtres particulaires précédents.

Seminars


Mardi 4 avril 2017

Séminaire à 14 h dans l’amphi du Centre d’Innovation de l’UTC, présenté par Xavier LAGORCE, PhD, Head of Computer Vision, Chronocam.
« Chronocam : Event-based cameras for machine vision »


Mardi 22 novembre 2016

Séminaire à 14 h au Centre d’Innovation de l’UTC, présenté par Riccardo SPICA, Lagadic group, Inria Rennes Bretagne Atlantique & IRISA.
« Active visual estimation for single and multiple robot systems »


Mardi 20 septembre 2016

Séminaire à 14 h au Centre d’Innovation de l’UTC, présenté par :
Hafida MOUHAGIR, Doctorante Heudiasyc en 3ème année, « Planification de trajectoires sur la base d’une perception évidentielle pour un véhicule autonome »
Israel LUGO CARDENAS, Doctorant Heudiasyc en 3ème année, « Décollage et atterrissage autonome : Méthodologie et Simulation »


Mardi 13 septembre 2016

Séminaire à 15 h au Centre d’Innovation de l’UTC, présenté par :
Manel BRINI, Doctorante Heudiasyc en 1ère année, « Safety-Bag pour les systèmes complexes »
Kaoutar RHAZALI, Doctorante Heudiasyc en 1ère année, « La sûreté de fonctionnement des mécanismes d’intelligence artificielle dans la sécurité des véhicules autonomes »


Pages 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ...




Actualités
Vidéothèque
Téléchargements
Annuaire



FR SHIC 3272

Collegium UTC/CNRS